
Popa & Wagner
Spring 2016

CS 161
Computer Security Project 1

Due: Tuesday February 16, 2016, 11:59PM

Version 0: Thursday January 29, 2016

Background

It is a time of rebellion. The evil empire of Caltopia oppresses its people with relentless
surveillance, and the emperor has recently unveiled his latest grim weapon: a supremely
powerful botnet, called Calnet, that aims to pervasively observe the citizenry and squash
their cherished Internet freedoms.

Yet in the enlightened city of Birkland, a flicker of hope remains. The brilliant University of
Caltopia alumnus Neo, famed for not only his hacking skills but also the excellent YouTube
videos he produces illustrating his techniques, has infiltrated the empire’s byzantine networks
and hacked his way to the very heart of the Calnet source code repository. As the emperor’s
dark lieutenant, Prof. Evil of Junior University, attempts to hunt him down, Neo feverishly
scours the Calnet source code hunting for weaknesses. He’s in luck! He realizes that Prof. Evil
enlisted ill-trained CS students from Junior University in writing Calnet, and unbeknownst
to the empire, the code is assuredly not memory-safe.

Alas, just as Neo begins to code up some righteous exploits to pwn Calnet’s components, a
barista at the coffeeshop where Neo gets his free WiFi betrays him to Prof. Evil, who brutally
deletes Neo’s YouTube account and swoops in with a SWAT team to make an arrest. As
the thugs smash through the coffeeshop’s doors, Neo gets off one final tweet for help. Such
are his hacking skillz that he crams a veritable boatload of key information into his final
140 characters, exhorting the University of Birkland’s virtuous computer security students
to carry forth the flame of knowledge, seize control of Calnet, and let freedom ring once more
throughout Caltopia . . .

Getting Started

Neo has determined that the correct mojo for this task is you must work on it in teams
of 2 students. He expects your team to develop exploits for 5 vulnerabilities in Calnet’s
components. As they topple you will move closer and closer towards p0wning the nefarious
botnet. All you have to go by are your wits, your grit, and Neo’s legacy: guidelines on how
to proceed, and, most precious, a virtual machine (VM) image that contains code samples
from the main Calnet components.

Page 1 of 9

You will be able to run and investigate the VM on your own computer. You will need the
following on your computer:

1. VirtualBox

2. A text editor

3. An SSH client (on Windows, Putty)

On Linux and Mac, you can install these programs from your package manager (e.g., apt or
brew).

NOTE: Only use these tools against your own infrastructure. You violate campus policy
when directing them against parties who do not provide their informed consent!

VM Setup

Open VirtualBox, and download and import the VM image (pwnable.ova)
via File -> Import Applicance.

Make sure your network is configured correctly by clicking your VM’s settings. Under
Network -> Adapter 1, make sure the first NAT adapter is enabled and open the advanced
settings.

Project 1 Page 2 of 9 CS 161 – Sp 16

https://www.virtualbox.org
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Click the Port Forwarding button and ensure that you have a rule to forward port 22, for
SSHing to the machine, to port 2222 on your host.

You can now start the VM, in which you will run the vulnerable programs and their exploits.
The image is a bare-bones Ubuntu Linux server installation on a 32-bit Intel architecture.

The first time you boot the image, you have to enter your class accounts in
the format cs161-x1x2,cs161-x3x4, where x1, . . . , x4 are the letters of your class
accounts. You need to list the accounts in alphabetical order. For example, if
a student with class account cs161-we teams with a student with class account
cs161-vv, then you would enter the string cs161-vv,cs161-we.1

The VM configures its addresses using this login so if it is not entered correctly, you and
your partner will fail the autograder tests. Before submitting you may want to check the
login you used for the VM by reading the file /etc/default/pwnable from the VM.

Don’t worry if the VM screen shows nothing but “Ready for pwning” or eventually the screen
turns off. Since it’s your job to gain access to it from your host machine over the network,
you won’t need the VM’s GUI.

An Important Note on Execution Environments

Exploit development can lead to serious headaches if you don’t adequately account for fac-
tors that introduce non-determinism into the debugging process. In particular, the stack

1 If you want to do some initial exploration by yourself before you’ve finalized your team, you can start
off using just your class account for this configuration step. Once you have your team in place, you’ll need
to start again with a clean VM image configured as mentioned here. Any exploits you’ve developed for your
private VM image will require porting (re-determination of the addresses to use in them). This should go
quickly once you’ve learned how to figure out the addresses in the first place.

Project 1 Page 3 of 9 CS 161 – Sp 16

addresses in the debugger may not match the addresses during normal execution. This ar-
tifact occurs because the operating system loader places both environment variables and
program arguments before the beginning of the stack:

Stack

program arguments

environment vars

Kernel

0xc0000000

0xbffff???

variable
size

Already installed in the VM you’ll find a small helper utility, invoke, that makes sure
environment and arguments remain at the same location, regardless of whether using the
debugger or not. For example, instead of invoking the program foo directly via ./foo, you
should instead use invoke foo:

% ./foo arg1 arg2 # invocation dependent on environment state :-(

% invoke foo arg1 arg2 # deterministic invocation

% invoke -d foo arg1 arg2 # deterministic invocation in gdb

You may find it useful to pass an extra environment to the program. The -e switch serves
that purpose:

% invoke -e X=Y foo arg1 # sets environment variable X=Y in foo

You must always use invoke to launch (or debug via -d) the provided executables
because invoke additionally parameterizes the execution environment based on
the ID you entered during the first boot. More broadly, since our grading tool
uses the exact same VM that you downloaded, do not perform any system mod-
ifications, only add/upload new content. (For example, do not attempt to recompile
the given executables.) This way you ensure that your solutions will work with our grading
tool and you do not run the risk of losing unnecessary points.

The Task

Unfortunately Neo did not have enough time to figure all out the necessary login credentials.
It is up to you to break into the VM and continue his mission, with the ultimate goal to gain
root privileges on the machine to have full control over Calnet. Neo’s intelligence sources

Project 1 Page 4 of 9 CS 161 – Sp 16

revealed that, once broken in the system, the required login credentials necessary for further
access are located inside the system itself.

You know from having watched his YouTube channel that Neo advocates a three-step ap-
proach for breaking into a system:

Step 1: Reconnaissance. Investigate what software/which services is/are running. Deter-
mine if there is anything you can access. What can you discover about the software
(e.g., in terms of version; do you have the source code)? Using this information you
can seek out potential vulnerabilities.

Step 2: Development. After you have found a vulnerability, you can create an exploit using
the found bugs (generally, as an attacker, this means crafting a malicious input to the
buggy program).

Step 3: Profit.

Use Neo’s three-step plan to solve the following problems. Begin the project by SSHing into
vsftpd, using the password zMne62>V. Don’t forget that you should use port 2222 instead
of the default 22 to do so.

For each step, you can confirm that your solution works by running exploit, which should
launch a shell waiting for input, and then typing commands like whoami and looking for the
expected output, the username for the following problem, in this case.

Question 1 Behind the Scenes (40 points)
A tweet from Neo assures you that given its hasty development by poorly educated
programmers, Calnet’s components contain a number of memory-safety vulnerabilities.
In the VM that Neo provided, you will find the first code piece located in the directory
/home/vsftpd.2

You are to continue his work and write an exploit that spawns a shell, for which you can
use the following shellcode:

shellcode =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07" +

"\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d" +

"\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80" +

"\xe8\xdc\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68"

Note: Recall that x86 has little-endian byte order, e.g., the first four bytes of the above
shellcode will appear as 0x895e1feb in the debugger.

Neo already provided an exploit scaffold that takes your malicious buffer and feeds it to
the vulnerable program via a script called exploit:

#!/bin/sh

(./egg ; cat) | invoke dejavu

2The vulnerable binary has the setuid bit set and is owned by the user of the next stage, meaning it will
run with the effective privileges of user smith.

Project 1 Page 5 of 9 CS 161 – Sp 16

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Setuid

(As one of Neo’s tweets explains in a concise but strikingly lucid fashion, the expression
before the shell pipe is necessary so that if the attack input generated by egg succeeds,
then you will be able to interact with the shell that the exploit spawns by typing via
stdin.)

To get started, read “Smashing The Stack For Fun And Profit” by AlephOne [1]. Neo
recommended that you try to absorb the high-level concepts of exploiting stack overflows
rather than every single line of assembly. He also warned you that some of the example
codes are outdated and may not work as-is.

Submission and Grading. For this problem you will submit the missing script egg,
which can be written in your favorite scripting language (e.g., Python, Ruby, Perl, Bash).
Your code should print the buffer used by the exploit script to spawn a shell. Make
sure it works by invoking ./exploit. Our grading tool will log into a clean VM image
as user vsftpd and put your submission into the directory /home/vsftpd. A script will
then invoke the script exploit exactly as given above and check for the existence of a
shell prompt with effective privileges of user smith (25 points).

You must also submit a file, q1.txt, that includes a brief description of the vulnerability,
how it could be exploited, how you determined which address to jump to, and a sketch
of your solution. This includes gdb output that very clearly demonstrates the effects of
your exploit (before/after). As before, keep it to no more than one page (15 points).

Question 2 Compromising Further (40 points)
Calnet uses a sequence of stages to protect intruders from gaining root access. The
inept Junior University programmers actually attempted a half-hearted fix to address
the overt buffer overflow vulnerability from the previous stage. In this problem you must
bypass these mediocre security measures and, again, inject code that spawns a shell.

In the home directory of this stage, /home/smith, you will find a small helper script
generate-file-contents. This script takes arbitrary input via stdin and prints the
first 127 bytes to stdout in the format that the program agent-smith expects (which is
an initial byte specifying the length of the input, followed by the input itself):

% ./generate-file-contents < anderson.txt

Neo realized that this helper script always generates safe files to be used with the buggy
agent-smith program—but nothing prevents you from instead feeding agent-smith an
arbitrary file of your choice. In particular, Neo started a script exploit representing an
initial exploit attempt:

#!/bin/sh

./egg > pwnzerized

invoke agent-smith pwnzerized

Submission and Grading. As in the previous question, you will submit a script egg,
written in your favorite scripting language, that integrates with the above displayed

Project 1 Page 6 of 9 CS 161 – Sp 16

script exploit. Your script should inject shellcode to spawn a shell. Make sure it works
by invoking ./exploit. Our grading tool will log into a clean VM image as user smith
and put your submission into the directory /home/smith. A script will then invoke
exploit and check for the existence of a shell prompt with effective privileges of user
brown (25 points).

You must also submit a file, q2.txt, that includes the same type of information as for
the previous Question (15 points).

Question 3 Deep Infiltration (50 points)
Calnet is a pernicious and invasive piece of malcode. But Prof. Evil undertook all of
his own studies at Junior University, and as such he never really learned how to count
without occasionally screwing it up. Find the subtle vulnerability in this code, and inject
code that spawns a shell.

Neo, again on top of it, started a scaffold called exploit that you can use:

#!/bin/sh

invoke -e egg=$(./egg) agent-brown $(./arg)

(Note that a shell expression like “$(foo)” means “run the command foo and substitute
its stdout output here.” So “egg=$(./egg)” means “run the command ./egg and assign
the output it generates to the variable $egg.”)

To solve this problem, you are pretty sure that a cryptic reference in Neo’s tweets
indicates you’d benefit from reading Section 10 of “ASLR Smack & Laugh Reference”
by Tilo Müller [2]. (Although the title suggests that you have to deal with ASLR, you
can ignore any ASLR-related content in the paper for this question.)

Hint: The VM will output a line saying “Check out the hint” while running the program
if you happen to have set your stack up so that it’s difficult to accomplish the exploit
with the addresses as they are. In this case, you may want to add bogus environment
variables to move the stack around and give yourself enough room to operate.

Submission and Grading. For this question, you will submit a script arg and a
script egg written in your favorite scripting language. Your code should integrate with
the script exploit as shown above. Make sure your scripts work by invoking ./exploit.
Our grading tool will log into a clean VM image as user brown and put your submission
into the directory /home/brown. A script will then invoke exploit and check for the
existence of a shell prompt with effective privileges of user jz (30 points).

As for the previous question, you must also submit a file, q3.txt, that includes a brief
description of the vulnerability, how it could be exploited, how you determined which
address to jump to, and a sketch of your solution. This includes gdb output that very
clearly demonstrates the effects of your exploit (before/after) (20 points).

Project 1 Page 7 of 9 CS 161 – Sp 16

Question 4 The Last Bastion (50 points)
To protect the Calnet source from advanced hackers, Prof. Evil’s minions persuaded him
that he must enable address layout randomization (ASLR) as a final layer of defense for
the VM. They assured him that it was inconceivable that anyone even of super-human
intelligence would possess the uber-h4x0r skillz required to overcome this. Once you
have started this part of the project ASLR will be enabled on your VM so
you’ll need to restart your VM if you’d like to go back to the previous parts.
Also note that the account jz exists just to emphasize this discontinuity, and you can
read the information for jones immediately after logging into jz’s account.

Yo, Birkland! Your mission, should you choose to accept it, is to bypass the ASLR
protection and spawn a shell with root privileges. Full control of the box . . . and thus
Calnet itself awaits you! Neo didn’t dare hope you might hack your way this far and this
deeply . . . but he could never abandon his dream of freedom, and to that end provided
an exceedingly cryptic clue in his final tweet that after a caffeine-fueled all-nighter you
eventually realize suggests you should consider reading Section 8 of “ASLR Smack &
Laugh Reference” by Tilo Müller [2].

One detail Neo could figure out for you is that the service to exploit listens locally on
TCP port 42000. It turns out that the operating system watches the service and restarts
it shortly when it crashes. You have to send the malicious shellcode to that service to
successfully complete this task. Looking through Neo’s past tweets, you find guidance
to develop this in the form of a TCP “bind shell” listening on 127.0.0.1:6666.

Linux (x86) TCP shell binding to port 6666.

bind_shell =

"\x31\xdb\xf7\xe3\x53\x43\x53\x6a\x02\x89\xe1\xb0\x66\xcd" +

"\x80\x5b\x5e\x52\x68\x02\x00\x1a\x0a\x6a\x10\x51\x50\x89" +

"\xe1\x6a\x66\x58\xcd\x80\x89\x41\x04\xb3\x04\xb0\x66\xcd" +

"\x80\x43\xb0\x66\xcd\x80\x93\x59\x6a\x3f\x58\xcd\x80\x49" +

"\x79\xf8\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3" +

"\x50\x53\x89\xe1\xb0\x0b\xcd\x80"

This should finally suffice to pull off the Final Stage! Somehow you must code up the
program egg so that Neo’s exploit script can launch the final, fatal strike:

#!/bin/sh

echo "sending exploit"

./egg | nc 127.0.0.1 42000 &

sleep 1

nc 127.0.0.1 6666

The freedom of cybercitizens throughout Caltopia rests in your hands . . .

Submission and Grading. For this question question, you will submit a script egg,
written in your favorite scripting language, that prints the exploit buffer to standard
output and pipes it to netcat. Make sure your scripts work by invoking ./exploit.

Project 1 Page 8 of 9 CS 161 – Sp 16

Our grading tool will log into a clean VM image as user jones and put your submission
into the directory /home/jones. A script will then invoke exploit and check for the
existence of a shell prompt with effective privileges of user root (30 points).

You must also submit a file, q4.txt, in the same fashion as for the previous question
(20 points).

Question 5 Feedback (optional) (0 points)
If you wish, submit a text file, feedback.txt, with any feedback you may have about
this project. What was the hardest part of this project in terms of understanding? In
terms of effort? (We also, as always, welcome feedback about other aspects of the class.)
Your comments will not in any way affect your grade.

Submission Summary

In summary, you must submit the following directory tree:

q1/egg

q1/q1.txt

q2/egg

q2/q2.txt

q3/arg

q3/egg

q3/q4.txt

q4/egg

q4/q4.txt

feedback.txt (optional)

References

[1] Aleph One. Smashing The Stack For Fun And Profit. Phrack, 7(49), November 1996.
http://www-inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf.

[2] Tilo Müller. ASLR Smack & Laugh Reference. http://www.icir.org/matthias/

cs161-sp13/aslr-bypass.pdf, February 2008.

Project 1 Page 9 of 9 CS 161 – Sp 16

http://www-inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf
http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf

