
Software Security:
Defenses & Principles

CS 161: Computer Security
Prof. David Wagner

January 25, 2016

Announcements
•  Discussion sections start this week
•  Set up your class account, join Piazza
•  Homework 1 out later today, due next

Monday

Why does software have
vulnerabilities?

•  Programmers are humans.
And humans make mistakes.
–  Use tools

•  Programmers often aren’t security-aware.

–  Learn about common types of security flaws.

•  Programming languages aren’t designed well
for security.
–  Use better languages (Java, Python, …).

Why does software have
vulnerabilities?

•  Programmers are humans.
And humans make mistakes.
–  Use tools

•  Programmers often aren’t security-aware.

–  Learn about common types of security flaws.

•  Programming languages aren’t designed well
for security.
–  Use better languages (Java, Python, …).

Why does software have
vulnerabilities?

•  Programmers are humans.
And humans make mistakes.
–  Use tools.

•  Programmers often aren’t security-aware.

–  Learn about common types of security flaws.

•  Programming languages aren’t designed well
for security.
–  Use better languages (Java, Python, …).

Testing for Software Security Issues

•  What makes testing a program for security problems
difficult?
–  We need to test for the absence of something

•  Security is a negative property!
–  “nothing bad happens, even in really unusual circumstances”

–  Normal inputs rarely stress security-vulnerable code
•  How can we test more thoroughly?

–  Random inputs (fuzz testing)
–  Mutation
–  Spec-driven

•  How do we tell when we’ve found a problem?
–  Crash or other deviant behavior

•  How do we tell that we’ve tested enough?
–  Hard: but code-coverage tools can help

Testing for Software Security Issues

•  What makes testing a program for security problems
difficult?
–  We need to test for the absence of something

•  Security is a negative property!
–  “nothing bad happens, even in really unusual circumstances”

–  Normal inputs rarely stress security-vulnerable code
•  How can we test more thoroughly?

–  Random inputs (fuzz testing)
–  Mutation
–  Spec-driven

•  How do we tell when we’ve found a problem?
–  Crash or other deviant behavior

•  How do we tell that we’ve tested enough?
–  Hard: but code-coverage tools can help

Testing for Software Security Issues

•  What makes testing a program for security problems
difficult?
–  We need to test for the absence of something

•  Security is a negative property!
–  “nothing bad happens, even in really unusual circumstances”

–  Normal inputs rarely stress security-vulnerable code
•  How can we test more thoroughly?

–  Random inputs (fuzz testing)
–  Mutation
–  Spec-driven

•  How do we tell when we’ve found a problem?
–  Crash or other deviant behavior; now enable expensive checks

Working Towards Secure Systems
•  Along with securing individual components, we

need to keep them up to date …
•  What’s hard about patching?

–  Can require restarting production systems
–  Can break crucial functionality
–  Management burden:

•  It never stops (the “patch treadmill”) …

Working Towards Secure Systems
•  Along with securing individual components,

need to keep them up to date …
•  What’s hard about patching?

–  Can require restarting production systems
–  Can break crucial functionality
–  Management burden:

•  It never stops (the “patch treadmill”) …
•  … and can be difficult to track just what’s needed where

•  Other (complementary) approaches?
–  Vulnerability scanning: probe your systems/networks

for known flaws
–  Penetration testing (“pen-testing”): pay someone to

break into your systems …
•  … provided they take excellent notes about how they did it!

Reasoning About Safety

•  How can we have confidence that our code executes in a
safe (and correct, ideally) fashion?

•  Approach: build up confidence on a function-by-function /
module-by-module basis

•  Modularity provides boundaries for our reasoning:
–  Preconditions: what must hold for function to operate correctly
–  Postconditions: what holds after function completes

•  These basically describe a contract for using the module
•  Notions also apply to individual statements (what must

hold for correctness; what holds after execution)
–  Stmt #1’s postcondition should logically imply Stmt #2’s

precondition
–  Invariants: conditions that always hold at a given point in a

function

	
	
int	deref(int	*p)	{	
				return	*p;	
}	

Precondition?

/*	requires:	p	!=	NULL		
													(and	p	a	valid	pointer)	*/	
int	deref(int	*p)	{	
				return	*p;	
}	

Precondition: what needs to hold
for function to operate correctly

	
void	*mymalloc(size_t	n)	{	
				void	*p	=	malloc(n);	
				if	(!p)	{	perror("malloc");	exit(1);	}	
				return	p;	
}	

Postcondition?

/*	ensures:	retval	!=	NULL	(and	a	valid	pointer)	*/	
void	*mymalloc(size_t	n)	{	
				void	*p	=	malloc(n);	
				if	(!p)	{	perror("malloc");	exit(1);	}	
				return	p;	
}	

Postcondition: what the function
promises will hold upon its return

	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				total	+=	a[i];	
		return	total;	
}	

Precondition?

	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access?
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	??	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires?
(3) Propagate requirement up to beginning of function

int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	a	!=	NULL	&&	
																	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	a	!=	NULL	&&	
																	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	a	!=	NULL	&&	
																	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

Let’s simplify, given that a never changes.

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

✓

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

✓

The 0	<=	i part is clear, so let’s focus for now on the rest.

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

?

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety:
(1)  Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

?

/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

How to prove our candidate invariant?
n	<=	size(a) is straightforward because n	never changes.

/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

What about i	<	n ?

/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

What about i	<	n ? That follows from the loop condition.

/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

At this point we know the proposed invariant will always hold...

/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant:	a	!=	NULL	&&	
							0	<=	i	&&	i	<	n	&&	n	<=	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

… and we’re done!

/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant:	a	!=	NULL	&&	
							0	<=	i	&&	i	<	n	&&	n	<=	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

A more complicated loop might need us to use induction:
 Base case: first entrance into loop.

 Induction: show that postcondition of last statement of
 loop plus loop test condition implies invariant.

Questions?

Coming Up …
•  Attend discussion section this week
•  Set up your class account, join Piazza
•  Homework 1 due next Monday
•  Hopefully: C review session, Thursday,

January 28, evening (time tbd)

