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Announcements 
•  Discussion sections start this week 
•  Set up your class account, join Piazza 
•  Homework 1 out later today, due next 

Monday 



Why does software have 
vulnerabilities? 

•  Programmers are humans. 
And humans make mistakes. 
–  Use tools 

 
•  Programmers often aren’t security-aware. 

–  Learn about common types of security flaws. 
 

•  Programming languages aren’t designed well 
for security. 
–  Use better languages (Java, Python, …). 
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Testing for Software Security Issues 

•  What makes testing a program for security problems 
difficult? 
–  We need to test for the absence of something 

•  Security is a negative property! 
–  “nothing bad happens, even in really unusual circumstances” 

–  Normal inputs rarely stress security-vulnerable code 
•  How can we test more thoroughly? 

–  Random inputs (fuzz testing) 
–  Mutation 
–  Spec-driven 

•  How do we tell when we’ve found a problem? 
–  Crash or other deviant behavior 

•  How do we tell that we’ve tested enough? 
–  Hard: but code-coverage tools can help 
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Testing for Software Security Issues 

•  What makes testing a program for security problems 
difficult? 
–  We need to test for the absence of something 

•  Security is a negative property! 
–  “nothing bad happens, even in really unusual circumstances” 

–  Normal inputs rarely stress security-vulnerable code 
•  How can we test more thoroughly? 

–  Random inputs (fuzz testing) 
–  Mutation 
–  Spec-driven 

•  How do we tell when we’ve found a problem? 
–  Crash or other deviant behavior; now enable expensive checks 



Working Towards Secure Systems 
•  Along with securing individual components, we 

need to keep them up to date … 
•  What’s hard about patching? 

–  Can require restarting production systems 
–  Can break crucial functionality 
–  Management burden: 

•  It never stops (the “patch treadmill”) … 





Working Towards Secure Systems 
•  Along with securing individual components, 

need to keep them up to date … 
•  What’s hard about patching? 

–  Can require restarting production systems 
–  Can break crucial functionality 
–  Management burden: 

•  It never stops (the “patch treadmill”) … 
•  … and can be difficult to track just what’s needed where 

•  Other (complementary) approaches? 
–  Vulnerability scanning: probe your systems/networks 

for known flaws 
–  Penetration testing (“pen-testing”): pay someone to 

break into your systems … 
•  … provided they take excellent notes about how they did it! 





Reasoning About Safety 

•  How can we have confidence that our code executes in a 
safe (and correct, ideally) fashion? 

•  Approach: build up confidence on a function-by-function / 
module-by-module basis 

•  Modularity provides boundaries for our reasoning: 
–  Preconditions: what must hold for function to operate correctly 
–  Postconditions: what holds after function completes 

•  These basically describe a contract for using the module 
•  Notions also apply to individual statements (what must 

hold for correctness; what holds after execution) 
–  Stmt #1’s postcondition should logically imply Stmt #2’s 

precondition 
–  Invariants: conditions that always hold at a given point in a 

function 



	
	
int	deref(int	*p)	{	
				return	*p;	
}	

Precondition? 



/*	requires:	p	!=	NULL		
													(and	p	a	valid	pointer)	*/	
int	deref(int	*p)	{	
				return	*p;	
}	

Precondition: what needs to hold 
for function to operate correctly 



	
void	*mymalloc(size_t	n)	{	
				void	*p	=	malloc(n);	
				if	(!p)	{	perror("malloc");	exit(1);	}	
				return	p;	
}	

Postcondition? 



/*	ensures:	retval	!=	NULL	(and	a	valid	pointer)	*/	
void	*mymalloc(size_t	n)	{	
				void	*p	=	malloc(n);	
				if	(!p)	{	perror("malloc");	exit(1);	}	
				return	p;	
}	

Postcondition: what the function 
promises will hold upon its return 



	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				total	+=	a[i];	
		return	total;	
}	
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General correctness proof strategy for memory safety: 
(1)  Identify each point of memory access 
(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function  
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int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	a	!=	NULL	&&	
																	0	<=	i	&&	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

Let’s simplify, given that a never changes. 
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/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
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✓

The 0	<=	i part is clear, so let’s focus for now on the rest. 
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/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
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}	

General correctness proof strategy for memory safety: 
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/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

General correctness proof strategy for memory safety: 
(1)  Identify each point of memory access 
(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function?  
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/*	requires:	a	!=	NULL	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

How to prove our candidate invariant? 
n	<=	size(a) is straightforward because n	never changes. 



/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?



/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

What about i	<	n ?   



/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

What about i	<	n ?  That follows from the loop condition. 



/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant?:	i	<	n	&&	n	<=	size(a)	*/	
				/*	requires:	i	<	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

?

At this point we know the proposed invariant will always hold... 



/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant:	a	!=	NULL	&&	
							0	<=	i	&&	i	<	n	&&	n	<=	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

… and we’re done! 



/*	requires:	a	!=	NULL	&&	n	<=	size(a)	*/	
int	sum(int	a[],	size_t	n)	{	
		int	total	=	0;	
		for	(size_t	i=0;	i<n;	i++)	
				/*	invariant:	a	!=	NULL	&&	
							0	<=	i	&&	i	<	n	&&	n	<=	size(a)	*/	
				total	+=	a[i];	
		return	total;	
}	

A more complicated loop might need us to use induction: 
 Base case: first entrance into loop. 

     Induction: show that postcondition of last statement of  
                  loop plus loop test condition implies invariant. 



Questions? 



Coming Up … 
•  Attend discussion section this week 
•  Set up your class account, join Piazza 
•  Homework 1 due next Monday 
•  Hopefully: C review session, Thursday, 

January 28, evening (time tbd) 


