Software Security:
Defenses & Principles

CS 161: Computer Security
Prof. David Wagner

Announcements

* Discussion sections start this week
* Set up your class account, join Piazza

« Homework 1 out later today, due next
Monday

Why does software have
vulnerabilities?

* Programmers are humans.
And humans make mistakes.

‘)
[o' e ‘
i i3 :
A)

I’ve:Made a
Huge Mistake

Why does software have
vulnerabilities?

* Programmers are humans.
And humans make mistakes.

 Programmers often aren’t security-aware.

* Programming languages aren’t designed well
for security.

Why does software have
vulnerabilities?

* Programmers are humans.
And humans make mistakes.

— Use tools.

* Programmers often aren’t security-aware.
— Learn about common types of security flaws.

* Programming languages aren’t designed well
for security.
— Use better languages (Java, Python, ...).

Testing for Software Security Issues

« What makes testing a program for security problems
difficult?
— We need to test for the of something

« Security is a negative property!
— “nothing bad happens, even in really unusual circumstances”

— Normal inputs rarely stress security-vulnerable code
« How can we test more thoroughly?

Testing for Software Security Issues

« What makes testing a program for security problems
difficult?
— We need to test for the absence of something

« Security is a negative property!
— “nothing bad happens, even in really unusual circumstances”

— Normal inputs rarely stress security-vulnerable code

« How can we test more thoroughly?
— Random inputs (fuzz testing)

Testing for Software Security Issues

« What makes testing a program for security problems
difficult?
— We need to test for the absence of something

« Security is a negative property!
— “nothing bad happens, even in really unusual circumstances”

— Normal inputs rarely stress security-vulnerable code

« How can we test more thoroughly?
— Random inputs (fuzz testing)
— Mutation
— Spec-driven
 How do we tell when we’ve found a problem?
— Crash or other deviant behavior; now enable expensive checks

Working Towards Secure Systems

* Along with securing individual components, we
need to keep them up to date ...

* What's hard about patching?
— Can require restarting production systems
— Can break crucial functionality

— Management burden:
* It never stops (the “patch treadmill”) ...

linfo security|

NeWS STRATEGY /// INSIGHT /// TECHNIGQUE

IT administrators give thanks for
light Patch Tuesday

07 November 2011

Microsoft is giving IT administrators a break for
Thanksgiving, with only four security bulletins
for this month’s Patch Tuesday.

Only one of the bulletins is rated critical by Microsoft, which
addresses a flaw that could result in remote code execution
attacks for the newer operating systems — Windows Vista,
Windows 7, and Windows 2008 Server R2.

The critical bulletin has an exploitability rating of 3, suggesting"

Working Towards Secure Systems

* Along with securing individual components,
need to keep them up to date ...

* What's hard about patching?
— Can require restarting production systems
— Can break crucial functionality

— Management burden:

* It never stops (the “patch treadmill”) ...
... and can be difficult to track just what's needed where

* Other (complementary) approaches?

— Vulnerability scanning: probe your systems/networks
for known flaws

— Penetration testing (“pen-testing”): pay someone to
break into your systems ...

... provided they take excellent notes about how they did it!

RISK ASSESSMENT * SECURITY & HACKTIVISM

Extremely critical Ruby on Rails bug
threatens more than 200,000 sites

Servers that run the framework are by default vulnerable to remote code attacks.

by Dan Goodin - Jan 8 2013, 4:35pm PST

HaRoeNinG § 38 |

Hundreds of thousands of websites are potentially at risk following the discovery of an extremely
critical vulnerability in the Ruby on Rails framework that gives remote attackers the ability to execute
malicious code on the underlying servers.

The bug is present in Rails versions spanning the past six years and in default configurations gives
hackers a simple and reliable way to pilfer database contents, run system commands, and cause
websites to crash, according to Ben Murphy, one of the developers who has confirmed the
vulnerability. As of last week, the framework was used by more than 240,000 websites, including
Github, Hulu, and Basecamp, underscoring the seriousness of the threat.

"It is quite bad,” Murphy told Ars. "An attack can send a request to any Ruby on Rails sever and then
execute arbitrary commands. Even though it's complex, it's reliable, so it will work 100 percent of the
time."

Murphy said the bug leaves open the possibility of attacks that cause one site running rails to seek
out and infect others, creating a worm that infects large swaths of the Internet. Developers with the
Metasploit framework for hackers and penetration testers are in the process of creating a module
that can scan the Internet for vulnerable sites and exploit the bug, said HD Moore, the CSO of
Rapid7 and chief architect of Metasploit.

Maintainers of the Rails framework are@s to update their systems as soon as possibleto

Reasoning About Safety

How can we have confidence that our code executes in a
safe (and correct, ideally) fashion?

Approach: build up confidence on a function-by-function /
module-by-module basis

Modularity provides boundaries for our reasoning:

— : what must hold for function to operate correctly
— : what holds after function completes

These basically describe a contract for using the module

Notions also apply to individual statements (what must
hold for correctness; what holds after execution)

— Stmt #1’s postcondition should logically imply Stmt #2's
precondition

. conditions that always hold at a given point in a
function

int deref(int *p) {
return *p;

}

/* requires: p != NULL
(and p a valid pointer) */
int deref(int *p) {
return *p;

}

Precondition. what needs to hold
for function to operate correctly

void *mymalloc(size t n) {
void *p = malloc(n);
if (!'p) { perror("malloc"); exit(1l); }
return p;

/* ensures: retval != NULL (and a valid pointer) */
void *mymalloc(size t n) {
void *p = malloc(n);
if (!'p) { perror("malloc"); exit(1l); }
return p;

Postcondition: what the function
promises will hold upon its return

int sum(int a[], size t n) {
int total = 9;
for (size t i=0; i<n; i++)
total += a[i];
return total;

}

int sum(int a[], size t n) {
int total = 9;
for (size t 1=0; i<n; i++)
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) ldentify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function

int sum(int a[], size t n) {
int total = 9;
for (size t 1=0; i<n; i++)
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access?

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function

int sum(int a[], size t n) {
int total = 9;
for (size t 1=0; i<n; i++)
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) ldentify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function

int sum(int a[], size t n) {
int total = 9;
for (size t i=0; i<n; i++)
[* 22 */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires?

(3) Propagate requirement up to beginning of function

int sum(int a[], size t n) {
int total = ©;
for (size t 1=0; i<n; i++)
/* requires: a != NULL &&
O <= 1 && 1 < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function

int sum(int a[], size t n) {
int total = ©;
for (size t 1=0; i<n; i++)
/* requires: a != NULL &&
O <= 1 && 1 < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

int sum(int a[], size t n) {
int total = ©;
for (size t 1=0; i<n; i++)
/* requires: a != NULL &&
O <=1 & & 1 < size(a) */
total += a[i];
return total;

}

Let's simplify, given that a never changes.

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 9;
for (size t i=0; i<n; i++)
/* requires: 0 <= 1 && 1 < size(a) */
total += a[i];
return total;

}

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 9;
for (size t i=0; i<n; i++)
/* requires: 0 <= 1 && 1 < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = @; ‘)
for (size t i=0; i<n; i++))
/* requires: @ <=1 && 1 < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 0; v
for (size t i=0; i<n; i++)
/* requires: @ <=1 && 1 < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 0; v
for (size t i=0; i<n; i++)
/* requires: O <= 1 & & i < size(a) */
total += a[i];
return total;

}

The @ <= 1i partis clear, so let's focus for now on the rest.

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 9;
for (size t i=0; i<n; i++)
/* requires: i < size(a) */
total += a[i];
return total;

}

/* requires: a != NULL */
int sum(int a[], size t n) { I
int total = 0; y
for (size t i=0; i<n; i++)
/* requires: 1 < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 9;)
for (size t i=0; i<n; i++) ’
/* invariant?: i < n & n <= size(a) */
/* requires: 1 < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 9;)
for (size t i=0; i<n; i++) ’
/* invariant?: i < n & n <= size(a) */
/* requires: 1 < size(a) */
total += a[i];
return total;

}

How to prove our candidate invariant?
n <= size(a) is straightforward because n never changes.

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 9; ‘)
for (size t i=0; i<n; i++) ’
/* invariant?: i < n & & n <= size(a) */
/* requires: i < size(a) */
total += a[i];
return total;

}

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 9; ‘)
for (size t i=0; i<n; i++) ’
/* invariant?: i < n & & n <= size(a) */
/* requires: i < size(a) */
total += a[i];
return total;

}

What abouti < n?

/* requires: a != NULL & & n <= size(a) */
int sum(int a[], size t n) {
int total = 9; ‘)
for (size t i=0; i<n; i++))
/* invariant?: i < n & & n <= size(a) */
/* requires: i < size(a) */
total += a[i];
return total;

}

What about 1 < n ? That follows from the loop condition.

/* requires: a != NULL & & n <= size(a) */
int sum(int a[], size t n) {
int total = 9; ‘)
for (size t i=0; i<n; i++))
/* invariant?: i < n & & n <= size(a) */
/* requires: i < size(a) */
total += a[i];
return total;

}

At this point we know the proposed invariant will always hold...

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 9;
for (size t i=0; i<n; i++)
/* invariant: a != NULL &&
O <=1 && 1 < n && n <= size(a) */
total += a[i];
return total;

}

... and we’re done!

/* requires: a != NULL & n <= size(a) */
int sum(int a[], size t n) {
int total = 9;
for (size t i=0; i<n; i++)
/* invariant: a != NULL &&
O <=1 && 1 < n && n <= size(a) */
total += a[i];
return total;

}

A more complicated loop might need us to use induction:
Base case: first entrance into loop.

Induction: show that postcondition of last statement of
loop plus loop test condition implies invariant.

Questions?

Coming Up ...

Attend discussion section this week
Set up your class account, join Piazza
Homework 1 due next Monday

Hopefully: C review session, Thursday,
January 28, evening (time tbd)

