
Block ciphers

CS 161: Computer Security
Prof. Raluca Ada Popa

February 26, 2016

Announcements

Last time
• Syntax of encryption: Keygen, Enc, Dec
• Security definition for known plaintext attack:

– attacker provides two messages m0, m1
– attacker receives one encrypted
– must guess which was encrypted

• Recall one-time pad:
– provides strong security, but can only be used once

Today: block ciphers

• Building blocks for symmetric-key
encryption schemes that can be reused

Block cipher
A function E : {0, 1}k×{0, 1}n → {0, 1}n. Once we fix
the key K, we get

EK : {0,1}n → {0,1}n defined by EK(M) = E(K,M).

Three properties:
• Correctness:

– EK(M) is a permutation (bijective function)
• Efficiency
• Security

Efficiency

• Can compute EK(M) efficiently
(polynomial-time)

• Can compute DK(C) efficiently, the
inverse of EK

DK(EK(M)) = M

Security

For an unknown key K, EK “behaves” like
a random permutation

For all polynomial-time attackers, for a
randomly chosen key K, the attacker
cannot distinguish EK from a random
permutation

Block cipher: security game
• Attacker is given two boxes, one for EK and one

for a random permutation
• Attacker does not know which is which
• Attacker can give inputs to each box, look at the

output
• Attacker must guess which is EK

input

output

output

input

??? Which is EK???

EK

rand
perm

Security game

For all polynomial-time attackers,

Pr[attacker wins game] <= ½+negl

Example block cipher:
AES (Advanced Encryption Standard)

• Joan Daemen & Vincent Rijmen, 1997
• Block size 128 bits
• Key can be 128, 192, or 256 bits (today use 256)
• You don’t need to understand how it works for

this class
– Just to get a sense of it: basically it has multiple rounds

during which it combines bits of plaintext with bits of the key,
substitution steps where bits are replaced with other bits
from a lookup table, bits are shifted, bits are mixed, etc.

• Not provably secure, but was not broken so far,
so people assume it is a secure block cipher

Block ciphers as encryption

How to use them as encryption?
First idea:
• Enc(K, M) = EK(M)
• Dec(K, C) = DK(C)

Desired security:
indistinguishability under chosen plaintext

attack (IND-CPA)
Challenger

K

M
C

EncK

M0, M1random bit b
Enck(Mb)

M
EncK C

Here is my guess: b’

IND-CPA

An encryption scheme is IND-CPA if
for all polynomial-time adversaries

Pr[Adv wins game] <= ½ + negligible

Note that IND-CPA requires that the encryption
scheme is randomized
(An encryption scheme is deterministic if it outputs the same
ciphertext when encrypting the same plaintext; a randomized
scheme does not have this property)

Difference from known-
plaintext attack from last time

• The extra queries to EncK

• The attacker gets to see encryptions for
ciphertexts of its choice

• Why is IND-CPA a stronger security?
– The attacker is given more capabilities so

the IND-CPA scheme resists a more
powerful attacker

Are block ciphers IND-CPA?

Recall: EK : {0,1}n → {0,1}n is a
permutation (bijective)

Are block ciphers secure under
chosen-plaintext attack?

• No, because they are deterministic
• Here is an attacker that wins the IND-CPA

game:
– Adv asks for encryptions of “bread”, receives Cbr

– Then, Adv provides (M0 = bread, M1 = honey)
– Adv receives C
– If C=Cbr, Adv says bit was 0 (for “bread”), else Adv

says says bit was 1 (for “honey”)
– Chance of winning is 1

Original image

Eack block encrypted with a block cipher

Later (identical) message again encrypted

Another insufficiency of block
ciphers:

• Can only encrypt a block!
• Blocks have a certain size n so the

plaintext can only be as long
• What do we do for longer strings?

Modes of operation

Chain block ciphers in certain modes of
operation

– Certain output from one block feeds into
next block

Need some initial randomness IV
Why? To prevent the encryption scheme
from being deterministic

How would you chain a block cipher to
encrypt long strings?

(initialization
vector)

Electronic Code Book (ECB)

• Split message in blocks P1, P2, …
• Each block is a value which is substituted,

like a codebook
• Each block is encoded independently of

the other blocks
𝐶𝑖	 = 	𝐸𝐾(𝑃𝑖)

P1 P2 P3

C1 C2 C3

Encryption

P1 P2 P3

C1 C2 C3

Decryption

What is the problem with ECB?

Deterministic per block

Original image

Encrypted with ECB

Later (identical) message again encrypted with ECB

P1 P2 P3

C1 C2 C3

CBC: Encryption
Enc(K, plaintext):
• If n is the block size of the block cipher, split the

plaintext in blocks of size n: P1, P2, P3,..
• Choose a random IV
• Now compute this:

• The final ciphertext is (IV, C1, C2, C3)

P1 P2 P3

C1 C2 C3

CBC: Decryption
Dec(K, ciphertext):
• Take IV out of the ciphertext
• If n is the block size of the block cipher, split the ciphertext

in blocks of size n: C1, C2, C3,..
• Now compute this:

• Output the plaintext as the concatenation of P1, P2, P3, ...

Original image

Encrypted with CBC

CBC

Popular, still widely used

Caveat: sequential encryption, hard to
parallelize

CTR mode gaining popularity

(Nonce = Same as IV)

C1 C2 C3

P1 P2 P3

CTR: Encryption

Important that nonce does not repeat across different encryptions

Choose at random

Note, CTR decryption uses block cipher’s encryption, not
decryption

C1 C2 C3

P1 P2 P3

CTR: Decryption

Speed: Both modes require the same amount of
computation, but CTR is parallelizable

Security: If no reuse of nonce, both are IND-CPA.

If you ever reuse the same nonce, CTR leaks more
information than CBC. Consider two plaintexts with
blocks P1, P2, P3 and P1’, P2’, P3’. Consider
P1=P1’, P2 not equal to P2’, and P3=P3’. When
using the same IV for encrypting these two plaintexts,
the attacker can see that P1=P1’ for both, and that
P3=P3’ for CTR, but not for CBC.

CBC vs CTR

Stream ciphers

Stream ciphers

• Another way to construct encryption
schemes

• Similar in spirit to one-time pad: it XORs
the plaintext with some random bits

• But random bits are not the key (as in
one-time pad) but are output of a
pseudorandom generator PRG

Pseudorandom Generator
(PRG)

• Given a seed, it outputs a sequence of
random bits

PRG(seed) -> random bits
• It can output arbitrarily many random

bits

PRG security

• Can PRG(K) be truly random?

No. Consider key length k. Have 2^k
possible initial states of PRG.
Deterministic from then on.

• A secure PRG suffices to “look” random
to an attacker (no attacker can
distinguish it from a random sequence)

Stream cipher

Enc(K, M):
– Choose a random value IV
– Enc(K,M) = PRG(K, IV) XOR M

Can encrypt any message length because
PRG can produce any number of random
bits

Example of PRG: using block
cipher in CTR mode

If you want m random bits, and a block
cipher with Ek has n bits, apply the block
cipher ceil(m/n) times and concatenate
the result:

PRG(K, IV) = Ek(IV, 1), Ek(IV, 2), Ek(IV, 3)
… Ek(IV, ceil(m/n))

Example of stream cipher:
using block cipher in CTR

Enc(K, M):
• Choose IV at random
• Compute PRG(K, IV) xor M, where PRG

is defined as before and it has size of M

Summary

• Desirable security: IND-CPA
• Block ciphers have weaker security than

IND-CPA
• Block ciphers can be used to build IND-

CPA secure encryption schemes by
chaining in careful ways

• Stream ciphers provide another way to
encrypt, inspired from one-time pads

