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Announcements



Last time
• Syntax of encryption: Keygen, Enc, Dec
• Security definition for known plaintext attack: 

– attacker provides two messages m0, m1 
– attacker receives one encrypted 
– must guess which was encrypted

• Recall one-time pad: 
– provides strong security, but can only be used once



Today: block ciphers

• Building blocks for symmetric-key 
encryption schemes that can be reused



Block cipher
A function E : {0, 1}k×{0, 1}n → {0, 1}n. Once we fix 
the key K, we get 

EK : {0,1}n → {0,1}n defined by EK(M) = E(K,M).

Three properties:
• Correctness:

– EK(M) is a permutation (bijective function)
• Efficiency
• Security



Efficiency

• Can compute EK(M) efficiently 
(polynomial-time)

• Can compute DK(C) efficiently, the 
inverse of EK 

DK(EK(M)) = M



Security

For an unknown key K, EK “behaves” like 
a random permutation

For all polynomial-time attackers, for a 
randomly chosen key K, the attacker 
cannot distinguish EK from a random 
permutation



Block cipher: security game 
• Attacker is given two boxes, one for EK and one 

for a random permutation
• Attacker does not know which is which
• Attacker can give inputs to each box, look at the 

output
• Attacker must guess which is EK

input

output

output

input

??? Which is EK???

EK

rand 
perm



Security game

For all polynomial-time attackers, 

Pr[attacker wins game] <= ½+negl



Example block cipher: 
AES (Advanced Encryption Standard)

• Joan Daemen & Vincent Rijmen, 1997 
• Block size 128 bits
• Key can be 128, 192, or 256 bits (today use 256) 
• You don’t need to understand how it works for 

this class
– Just to get a sense of it: basically it has multiple rounds 

during which it combines bits of plaintext with bits of the key, 
substitution steps where bits are replaced with other bits 
from a lookup table, bits are shifted, bits are mixed, etc.

• Not provably secure, but was not broken so far, 
so people assume it is a secure block cipher



Block ciphers as encryption

How to use them as encryption?
First idea:
• Enc(K, M) = EK(M)
• Dec(K, C) = DK(C) 



Desired security:
indistinguishability under chosen plaintext 

attack (IND-CPA)
Challenger

K

M
C

EncK

M0, M1random bit b
Enck(Mb)

M
EncK C

Here is my guess: b’



IND-CPA

An encryption scheme is IND-CPA if
for all polynomial-time adversaries 

Pr[Adv wins game] <= ½ + negligible

Note that IND-CPA requires that the encryption 
scheme is randomized
(An encryption scheme is deterministic if it outputs the same 
ciphertext when encrypting the same plaintext; a randomized 
scheme does not have this property)



Difference from known-
plaintext attack from last time

• The extra queries to EncK

• The attacker gets to see encryptions for 
ciphertexts of its choice

• Why is IND-CPA a stronger security?
– The attacker is given more capabilities so 

the IND-CPA scheme resists a more 
powerful attacker



Are block ciphers IND-CPA?

Recall: EK : {0,1}n → {0,1}n is a 
permutation (bijective)



Are block ciphers secure under 
chosen-plaintext attack?

• No, because they are deterministic
• Here is an attacker that wins the IND-CPA 

game:
– Adv asks for encryptions of “bread”, receives Cbr

– Then, Adv provides (M0 = bread, M1 = honey) 
– Adv receives C
– If C=Cbr, Adv says bit was 0 (for “bread”), else Adv

says says bit was 1 (for “honey”)
– Chance of winning is 1
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Eack block encrypted with a block cipher



Later (identical) message again encrypted 



Another insufficiency of block 
ciphers:

• Can only encrypt a block! 
• Blocks have a certain size n so the 

plaintext can only be as long
• What do we do for longer strings?



Modes of operation

Chain block ciphers in certain modes of 
operation

– Certain output from one block feeds into 
next block

Need some initial randomness IV
Why? To prevent the encryption scheme 
from being deterministic

How would you chain a block cipher to 
encrypt long strings?

(initialization 
vector) 



Electronic Code Book (ECB)

• Split message in blocks P1, P2, …
• Each block is a value which is substituted, 

like a codebook
• Each block is encoded independently of 

the other blocks 
𝐶𝑖	 = 	𝐸𝐾(𝑃𝑖)



P1 P2 P3

C1 C2 C3

Encryption



P1 P2 P3

C1 C2 C3

Decryption

What is the problem with ECB?

Deterministic per block
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Encrypted with ECB



Later (identical) message again encrypted with ECB



P1 P2 P3

C1 C2 C3

CBC: Encryption
Enc(K, plaintext):  
• If n is the block size of the block cipher, split the 

plaintext in blocks of size n: P1, P2, P3,..
• Choose a random IV
• Now compute this:

• The final ciphertext is (IV, C1, C2, C3)



P1 P2 P3

C1 C2 C3

CBC: Decryption
Dec(K, ciphertext):  
• Take IV out of the ciphertext
• If n is the block size of the block cipher, split the ciphertext

in blocks of size n: C1, C2, C3,..
• Now compute this:

• Output the plaintext as the concatenation of P1, P2, P3, ...
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Encrypted with CBC



CBC

Popular, still widely used

Caveat: sequential encryption, hard to 
parallelize

CTR mode gaining popularity



(Nonce = Same as IV)

C1 C2 C3

P1 P2 P3

CTR: Encryption

Important that nonce does not repeat across different encryptions

Choose at random 



Note, CTR decryption uses block cipher’s encryption, not 
decryption

C1 C2 C3

P1 P2 P3

CTR: Decryption



Speed: Both modes require the same amount of 
computation, but CTR is parallelizable

Security: If no reuse of nonce, both are IND-CPA. 

If you ever reuse the same nonce, CTR leaks more 
information than CBC. Consider two plaintexts with 
blocks P1, P2, P3 and P1’, P2’, P3’. Consider 
P1=P1’, P2 not equal to P2’, and P3=P3’. When 
using the same IV for encrypting these two plaintexts, 
the attacker can see that P1=P1’ for both, and that 
P3=P3’ for CTR, but not for CBC.

CBC vs CTR



Stream ciphers



Stream ciphers

• Another way to construct encryption 
schemes 

• Similar in spirit to one-time pad: it XORs 
the plaintext with some random bits

• But random bits are not the key (as in 
one-time pad) but are output of a 
pseudorandom generator PRG



Pseudorandom Generator 
(PRG)

• Given a seed, it outputs a sequence of 
random bits

PRG(seed) -> random bits
• It can output arbitrarily many random 

bits



PRG security

• Can PRG(K) be truly random?

No.  Consider key length k.  Have 2^k 
possible initial states of PRG.        
Deterministic from then on.

• A secure PRG suffices to “look” random 
to an attacker (no attacker can 
distinguish it from a random sequence)



Stream cipher

Enc(K, M):
– Choose a random value IV
– Enc(K,M) = PRG(K, IV) XOR M

Can encrypt any message length because 
PRG can produce any number of random 
bits



Example of PRG: using block 
cipher in CTR mode

If you want m random bits, and a block 
cipher with Ek has n bits, apply the block 
cipher ceil(m/n) times and concatenate 
the result:

PRG(K, IV) = Ek(IV, 1), Ek(IV, 2), Ek(IV, 3) 
… Ek(IV, ceil(m/n))



Example of stream cipher: 
using block cipher in CTR

Enc(K, M):
• Choose IV at random
• Compute PRG(K, IV) xor M, where PRG 

is defined as before and it has size of M



Summary

• Desirable security: IND-CPA
• Block ciphers have weaker security than 

IND-CPA 
• Block ciphers can be used to build IND-

CPA secure encryption schemes by 
chaining in careful ways

• Stream ciphers provide another way to 
encrypt, inspired from one-time pads


