
DNSSEC

CS 161: Computer Security
Prof. David Wagner

April 11, 2016

DNSSEC

•  Last lecture, you invented DNSSEC.
Well, the basic ideas, anyway:
– Sign all DNS records. Signatures let you verify

answer to DNS query, without having to trust
the network or resolvers involved.

•  Remaining challenges:
– DNS records change over time
– Distributed database: No single central source

of truth
•  Today: how DNSSEC works

Securing DNS Lookups

•  How can we ensure that when clients look up
names with DNS, they can trust the answers they
receive?

•  Idea #1: do DNS lookups over TLS (SSL)

requesting host
xyz.poly.edu www.mit.edu

root DNS server (‘.’)

local DNS server
(resolver)

dns.poly.edu

1

2
3

4
5

6
authoritative DNS server

ns.mit.edu

7 8

TLD DNS server
(‘.edu’)

Securing DNS Using SSL/TLS
Host at xyz.poly.edu

wants IP address for
www.mit.edu

Idea: connections
{1,8}, {2,3}, {4,5}
and {6,7} all run
over SSL / TLS

Securing DNS Lookups
•  How can we ensure that when clients look up

names with DNS, they can trust the answers they
receive?

•  Idea #1: do DNS lookups over TLS (SSL)
–  Performance: DNS is very lightweight. TLS is not.
–  Caching: crucial for DNS scaling. But then how do we

keep authentication assurances?
–  Security: must trust the resolver.

Object security vs. Channel security
•  Idea #2: make DNS results like certs

–  I.e., a verifiable signature that guarantees who
generated a piece of data; signing happens off-line

 Operation of DNSSEC
•  DNSSEC = standardized DNS security

extensions currently being deployed
•  As a resolver works its way from DNS root down

to final name server for a name, at each level it
gets a signed statement regarding the key(s)
used by the next level

•  This builds up a chain of trusted keys
•  Resolver has root’s key wired into it

•  The final answer that the resolver receives is
signed by that level’s key

•  Resolver can trust it’s the right key because of chain of
support from higher levels

•  All keys as well as signed results are cacheable

www.google.com A?
Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?
Client’s
Resolver k.root-servers.net

Ordinary DNS:

We start off by sending the query to one of the root name
servers. These range from a.root-servers.net
through m.root-servers.net. Here we just picked one.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

The reply didn’t include an answer for www.google.com.
That means that k.root-servers.net is instead telling
us where to ask next, namely one of the name servers
for .com specified in an NS record.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

This Resource Record (RR) tells us that one of the name
servers for .com is the host a.gtld-servers.net.
(GTLD = Global Top Level Domain.)

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

(The line above shows com. rather than .com because
technically that’s the actual name, and that’s what the Unix
dig utility shows; but the convention is to call it “dot-com”)

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

This RR tells us that an Internet address (“A” record)
for a.gtld-servers.net is 192.5.6.30. That
allows us to know where to send our next query.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

The actual response includes a bunch of
NS and A records for additional .com name
servers, which we omit here for simplicity.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?
Client’s
Resolver a.gtld-servers.net

We send the same query to one of the .com
name servers we’ve been told about

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

That server again doesn’t have a direct
answer for us, but tells us about a
google.com name server we can try

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

www.google.com A?

www.google.com. A 74.125.24.14
…

Client’s
Resolver ns1.google.com

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

www.google.com A?

www.google.com. A 74.125.24.14
…

Client’s
Resolver ns1.google.com

Trying one of the google.com name servers then gets us
an answer to our query, and we’re good-to-go …
… though with no confidence that an attacker hasn’t led
us astray with a bogus reply somewhere along the way :-(

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

Up through here is the same as before …

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

This new RR (“Delegation Signer”) lists .com’s public key

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS description-of-com’s-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

The actual process of retrieving .com’s public key
is complicated (actually involves multiple keys) but
for our purposes doesn’t change how things work

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

This new RR specifies a signature over another RR
… in this case, the signature covers the above DS
record, and is made using the root’s private key

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

The resolver has the root’s public key
hardwired into it. The client only proceeds
with DNSSEC if it can validate the signature.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

Note: there’s no signature over the NS or A information! If an
attacker has fiddled with those, the resolver will ultimately find
it has a record for which it can’t verify the signature.

www.google.com A?
Client’s
Resolver a.gtld-servers.net

DNSSEC (with simplifications):

The resolver again proceeds to trying one of
the name servers it’s learned about.

Nothing guarantees this is a legitimate name
server for the query!

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com. A 216.239.32.10
…
google.com. DS google.com’s-public-key
google.com. RRSIG DS signature-
 of-that-DS-record-using-com’s-key

Client’s
Resolver a.gtld-servers.net

DNSSEC (with simplifications):

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com. A 216.239.32.10
…
google.com. DS google.com’s-public-key
google.com. RRSIG DS signature-
 of-that-DS-record-using-com’s-key

Client’s
Resolver a.gtld-servers.net

DNSSEC (with simplifications):

Back comes similar information as before: google.com’s public
key, signed by .com’s key (which the resolver trusts because
the root signed information about it)

www.google.com A?
Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

The resolver contacts one of the google.com
name servers it’s learned about.

Again, nothing guarantees this is a legitimate
name server for the query!

www.google.com A?

www.google.com. A 74.125.24.14
…
www.google.com. RRSIG A
 signature-of-the-A-records-using-
 google.com’s-key

Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

www.google.com A?

www.google.com. A 74.125.24.14
…
www.google.com. RRSIG A
 signature-of-the-A-records-using-
 google.com’s-key

Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

Finally we’ve received the information we
wanted (A records for www.google.com)! …
and we receive a signature over those records

www.google.com A?

www.google.com. A 74.125.24.14
…
www.google.com. RRSIG A
 signature-of-the-A-records-using-
 google.com’s-key

Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

Assuming the signature validates, then because we believe
(due to the signature chain) it’s indeed from google.com’s
key, we can trust that this is a correct set of A records …
Regardless of what name server returned them to us!

www.google.com A?

 www.google.com. A 6.6.6.6
Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

www.google.com A?

 www.google.com. A 6.6.6.6
Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

Resolver observes that the reply didn’t
include a signature, rejects it as insecure

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 evil.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 evil.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

(1) If resolver didn’t receive a signature
from .com for evil.com’s key, then it
can’t validate this signature & ignores
reply since it’s not properly signed …

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 evil.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

(2) If resolver did receive a signature from .com
for evil.com’s key, then it knows the key is for
evil.com and not google.com … and ignores it

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 google.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 google.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

If signature actually comes from google.com’s key,
resolver will believe it …
… but no such signature should exist unless either:
(1) google.com intended to sign the RR, or
(2) google.com’s private key was compromised

Issues With DNSSEC ?

•  Issue #1: Replies are Big
–  E.g., “dig	+dnssec	berkeley.edu” can return 2100+ B
–  DoS amplification
–  Increased latency on low-capacity links
–  Headaches w/ older libraries that assume replies < 512B

•  Issue #2: Partial deployment

–  Suppose .com not signing, though google.com is
–  Major practical concern. What do we do?
–  Can wire additional key into resolver (doesn’t scale)
–  Or: outsource to trusted third party (“lookaside”)

•  Wire their key into resolver, they sign numerous early adopters

Issues With DNSSEC, cont.
•  Issue #1: Partial deployment

–  Suppose .com not signing, though google.com is. Or,
suppose .com and google.com are signing, but cnn.com
isn’t. Major practical concern. What do we do?

–  What do you do with unsigned/unvalidated results?
–  If you trust them, weakens incentive to upgrade

(man-in-the-middle attacker can defeat security even for
google.com, by sending forged but unsigned response)

–  If you don’t trust them, a whole lot of things break

Issues With DNSSEC, cont.
•  Issue #2: Negative results (“no such name”)

–  What statement does the nameserver sign?
–  If “gabluph.google.com” doesn’t exist, then have to do

dynamic key-signing (expensive) for any bogus request
–  Instead, sign (off-line) statements about order of names

•  E.g., sign “gabby.google.com is followed by gabrunk.google.com”
•  Thus, can see that gabluph.google.com can’t exist

–  But: now attacker can enumerate all names that exist :-(

Summary of TLS & DNSSEC Technologies
•  TLS: provides channel security (for communication over TCP)

–  Confidentiality, integrity, authentication
–  Client & server agree on crypto, session keys
–  Underlying security dependent on:

•  Trust in Certificate Authorities / decisions to sign keys
•  (as well as implementors)

•  DNSSEC: provides object security (for DNS results)
–  Just integrity & authentication, not confidentiality
–  No client/server setup “dialog”
–  Tailored to be caching-friendly
–  Underlying security dependent on trust in Root Name Server’s

key, and all other signing keys

Summary of TLS & DNSSEC Technologies
•  TLS: provides channel security (for communication over TCP)

–  Confidentiality, integrity, authentication
–  Client & server agree on crypto, session keys
–  Underlying security dependent on:

•  Trust in Certificate Authorities / decisions to sign keys
•  (as well as implementors)

•  DNSSEC: provides object security (for DNS results)
–  Just integrity & authentication, not confidentiality
–  No client/server setup “dialog”
–  Tailored to be caching-friendly
–  Underlying security dependent on trust in Root Name Server’s

key, and all other signing keys

Takeaways
•  Channel security vs object security
•  PKI organization should follow existing line of

authority
•  Adoption: two-sided adoption requirement makes

tech transition tough; network effects

A Tangent:
How Can I Prove I Am Rich?

Math Puzzle – Proof of Work
•  Problem. To prove to Bob I’m not a spammer,

Bob wants me to do 10 seconds of computation
before I can send him an email. How can I prove
to Bob that I wasted 10 seconds of CPU time, in a
way that he can verify in milliseconds?

Math Puzzle – Proof of Work
•  Problem. To prove to Bob I’m not a spammer,

Bob wants me to do 10 seconds of computation
before I can send him an email. How can I prove
to Bob that I wasted 10 seconds of CPU time, in a
way that he can verify in milliseconds?

•  Hint: Computing 1 billion SHA256 hashes might
take 10 seconds.

