DNSSEC

CS 161: Computer Security
Prof. David Wagner

DNSSEC

» Last lecture, you invented DNSSEC.
Well, the basic ideas, anywaly:

— Sign all DNS records. Signatures let you verity
answer to DNS query, without having to trust
the network or resolvers involved.

 Remaining challenges:
— DNS records change over time

— Distributed database: No single central source
of truth

* Today: how DNSSEC works

Securing DNS Lookups

 How can we ensure that when clients look up
names with DNS, they can the answers they
receive?

* |dea #1: do DNS lookups over TLS (SSL)

Securing DNS Using SSL/TLS

root DNS server (‘)
Host at xyz .poly.edu ;

wants IP address for
) 2
www.mit.edu
TLD DNS server

4 (‘.edu’)
local DNS server n

(resolver) 5 u
dns.poly.edu

|dea: connections
{1,8}, {2,3}, {4,5}
and {6,7} all run
over SSL/TLS

| n authoritative DNS server
ns.mit.edu

requesting host
xyz.poly.edu @ www.mit.edu

Securing DNS Lookups

How can we ensure that when clients look up
names with DNS, they can trust the answers they
receive?

ldea #1: do DNS lookups over TLS (SSL)

— Performance: DNS is very lightweight. TLS is not.

— Caching: crucial for DNS scaling. But then how do we
keep authentication assurances?

— Security: must trust the resolver.
Object security vs. Channel security

|dea #2: make DNS results like certs

— l.e., a verifiable signature that guarantees who
generated a piece of data; signing happens off-line

Operation of DNSSEC

« DNSSEC = standardized DNS security
extensions currently being deployed

- As a resolver works its way from DNS root down
to final name server for a name, at each level it
gets a signed statement regarding the key(s)
used by the next level

- This builds up a chain of trusted keys
- Resolver has root’s key

- The final answer that the resolver receives is
signed by that level's key

- Resolver can trust it's the right key because of chain of
support from higher levels

* All keys as well as signed results are

Ordinary DNS:

www.google.com A?

Client’s

k.root-servers.net
Resolver

Ordinary DNS:

www.google.com A?

Client’s g
k.root-servers.net]
Resolver

Ordinary DNS:

www.google.com A?

Client's |+
Resolver |[com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30

k.root-servers.net

Ordinary DNS:

www.google.com A?

Client's |« >
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?
Client’s
Resolver

A

[k.root-servers.net]

a.gtld-servers.net A 192.5.6.30

Ordinary DNS:

www.google.com A?

Client's |+
Resolver [com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30

k.root-servers.net

(The line above shows com. rather than .com because
technically that’s the actual name, and that’'s what the Unix
dig utility shows; but the convention is to call it “dot-com”)

Ordinary DNS.:

www.google.com A?
Client’s
Resolver

A

com. NS a.gtld-servers.net [k.root-servers_net]

Ordinary DNS:

www.google.com A?

Client's
Resolver | |com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30

k.root-servers.net

The actual response includes a bunch of
NS and A records for additional . com name
servers, which we omit here for simplicity.

Ordinary DNS:

www.google.com A?

A

Client’s > o t
Resolver | |com. NS a.gtld-servers.net OOESEIVETS.ME

a.gtld-servers.net A 192.5.6.30

www.google.com A?

. , >
[Cllents] ﬁ a_gtld-servers.net]]

Resolver —

Ordinary DNS:

www.google.com A?

Client's |+
Resolver | [com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30

k.root-servers.net

www.google.com A?

Client's
Resolver | | google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10

a.gtld-servers.net

Ordinary DNS:

www.google.com A?

A

Client’s > o t
Resolver | |com. NS a.gtld-servers.net OOESEIVETS.ME

a.gtld-servers.net A 192.5.6.30

www.google.com A?

Client's |+
Resolver a.gtld-servers.net

Ordinary DNS:

www.google.com A"

Client's |+
Resolver | [com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30

k.root-servers.net

www.google.com A"

Client's |
Resolver | | google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10

a.gtld-servers.net

www.google.com A?

>

Client's |+
Resolver | | www.google.com. A 74.125.24.14

ns1.google.com

Ordinary DNS.:

www.google.com A?

A

Client’s i’ o t
Resolver | | com. NS a.gtld-servers.net (IOOESEIVETS.ME

a.gtld-servers.net A 192.5.6.30

www.googleéom A?

7 >

Client's |«
oo —[stageom

DNSSEC (with simplifications):

Client’s
Resolver

www.google.com A?

<

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

com. DS com’s-public-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

k.root-servers.net

DNSSEC (with simplifications):

www.google.com A?

Client's
Resolver |com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS com’s-public-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

Up through here is the same as before ...

DNSSEC (with simplifications):

www.google.com A?

Client's
Resolver | |com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS com’s-public-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

This new RR (“Delegation Signer”) lists . com’s public key

DNSSEC (with simplifications):

www.google.com A?

Client's
Resolver | |com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS description-of-com’s-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

The actual process of retrieving . com’'s public key
iIs complicated (actually involves multiple keys) but
for our purposes doesn’t change how things work

DNSSEC (with simplifications):

www.google.com A?

Client's
Resolver | |com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS com’s-public-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

This new RR specifies a signature over another RR
... in this case, the signature covers the above DS
record, and is made using the root’s private key

DNSSEC (with simplifications):

www.google.com A?

Client's
Resolver | |com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS com’s-public-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

The resolver has the root’s public key
hardwired into it. The client only proceeds
with DNSSEC if it can validate the signature.

DNSSEC (with simplifications):

www.google.com A?

Client's <
Resolver [com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS com’s-public-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

DNSSEC (with simplifications):

www.google.com A?

Client’s g
[a.gtld-servers.net]
Resolver

)

DNSSEC (with simplifications):

www.google.com A?

Client's |+
Resolver | | google.com. NS ns1.google.com
ns1.google.com. A 216.239.32.10

a.gtld-servers.net

google.com. DS google.com’s-public-key
google.com. RRSIG DS signature-
of-that-DS-record-using-com’s-key

DNSSEC (with simplifications):

www.google.com A? .
[Client’s]4 [

Resolver

d-servers.net]

DNSSEC (with simplifications):

www.google.com A?

Client’s ’[1 |]
Resolver ns1.google.com

)

DNSSEC (with simplifications):

Client’s
Resolver

www.google.com A?

<

>

www.google.com. A 74.125.24.14

www.google.com. RRSIG A
signature-of-the-A-records-using-
google.com’s-key

ns1.google.com

DNSSEC (with simplifications):

www.google.com A?

Client's <
[ResolverJ ‘[ns1.google.com J

DNSSEC (with simplifications):

www.google.com A?

Client's <
[Resolver] ‘[ns1.google.com]

DNSSEC — Mallory attacks!

Client’s
Resolver

www.google.com A?

<

www.google.com. A 6.6.6.6

ns1.evil.com

DNSSEC — Mallory attacks!

www.google.com A?

Client's < > e
Resolver [www.google.com. A6.6.6.6 | nsti.evi.com

DNSSEC — Mallory attacks!

www.google.com A?

Client's
Resolver | | www.google.com. A 6.6.6.6
www.google.com RRSIG A
signature-of-the-A-record-using-
evil.com’s-key

ns1.evil.com

DNSSEC — Mallory attacks!

www.google.com A?

Client's < > e
Resolver = |www.google.com. A 6.6.6.6 nsi.evil.com

DNSSEC — Mallory attacks!

www.google.com A?

Client's < > e
Resolver = |www.google.com. A 6.6.6.6 nsi.evil.com

DNSSEC — Mallory attacks!

www.google.com A?

Client's
Resolver | | www.google.com. A 6.6.6.6
www.google.com RRSIG A
signature-of-the-A-record-using-
google.com’s-key

ns1.evil.com

DNSSEC — Mallory attacks!

www.google.com A?

Client's < —
Resolver = |www.google.com. A 6.6.6.6 nsi.evil.com

Issues With DNSSEC ?

* Issue #1: Replies are Big
— E.g., “dig +dnssec berkeley.edu” can return 2100+ B
— DoS amplification
— Increased latency on low-capacity links
— Headaches w/ older libraries that assume replies < 512B

 Issue #2: Partial deployment
— Suppose not signing, though IS
— Major practical concern. What do we do?
— Can wire additional key into resolver (doesn’t scale)

— Or: outsource to trusted third party (“lookaside™)
« Wire their key into resolver, they sigh numerous early adopters

Issues With DNSSEC, cont.

* |Issue #1: Partial deployment

— Suppose not signing, though is. Or,
suppose and are signing, but
iIsn't. Major practical concern. What do we do?

— What do you do with unsigned/unvalidated results?

— If you trust them, weakens incentive to upgrade
(man-in-the-middle attacker can defeat security even for
google.com, by sending forged but unsigned response)

— If you don't trust them, a whole lot of things break

Issues With DNSSEC, cont.

 |ssue #2: Negative results (“no such name”)
— What statement does the nameserver sign?
— If “gabluph.google.com” doesn’t exist, then have to do
dynamic key-signing (expensive) for any bogus request
— Instead, sign (off-line) statements about order of names

« E.g., sign “gabby.google.com is followed by gabrunk.google.com”
* Thus, can see that gabluph.google.com can'’t exist

— But: now attacker can enumerate all names that exist :-(

Summary of TLS & DNSSEC Technologies

 TLS: provides (for communication over TCP)
— Confidentiality, integrity, authentication
— Client & server agree on crypto, session keys

— Underlying security dependent on:
« Trust in Certificate Authorities / decisions to sign keys
 (as well as implementors)

« DNSSEC.: provides (for DNS results)

— Just integrity & authentication, not confidentiality
— No client/server setup “dialog”
— Tailored to be caching-friendly

— Underlying security dependent on trust in Root Name Server's
key, and all other signing keys

Summary of TLS & DNSSEC Technologies

 TLS: provides (for communication over TCP)
— Confidentiality, integrity, authentication
— Client & server agree on crypto, session keys

— Underlying security dependent on:
« Trust in Certificate Authorities / decisions to sign keys
 (as well as implementors)

« DNSSEC.: provides (for DNS results)

— Just integrity & authentication, not confidentiality
— No client/server setup “dialog”
— Tailored to be caching-friendly

— Underlying security dependent on trust in Root Name Server's
key, and all other signing keys

Takeaways

« Channel security vs object security

* PKI organization should follow existing line of
authority

« Adoption: two-sided adoption requirement makes
tech transition tough; network effects

A Tangent:
How Can | Prove | Am Rich?

THISNOTEIS LEGALTENDER FOR ALLDEBTS,

PUBLIC AND PRIVATEAND IS REDEEMABLE IN
LANFULMONEYAYT THEUNITED STATES TREASURY,
ORATANY FEODERALRESERVE BANK,

Math Puzzle — Proof of Work

 Problem. To prove to Bob I'm not a spammer,
Bob wants me to do 10 seconds of computation
before | can send him an email. How can | prove
to Bob that | wasted 10 seconds of CPU time, in a

way that he can verify in milliseconds?

Math Puzzle — Proof of Work

 Problem. To prove to Bob I'm not a spammer,
Bob wants me to do 10 seconds of computation
before | can send him an email. How can | prove
to Bob that | wasted 10 seconds of CPU time, in a
way that he can verify in milliseconds?

* Hint: Computing 1 billion SHA256 hashes might
take 10 seconds.

