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DNSSEC

» Last lecture, you invented DNSSEC.
Well, the basic ideas, anywaly:

— Sign all DNS records. Signatures let you verity
answer to DNS query, without having to trust
the network or resolvers involved.

 Remaining challenges:
— DNS records change over time

— Distributed database: No single central source
of truth

* Today: how DNSSEC works



Securing DNS Lookups

 How can we ensure that when clients look up
names with DNS, they can the answers they
receive?

* |dea #1: do DNS lookups over TLS (SSL)
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Securing DNS Lookups

How can we ensure that when clients look up
names with DNS, they can trust the answers they
receive?

ldea #1: do DNS lookups over TLS (SSL)

— Performance: DNS is very lightweight. TLS is not.

— Caching: crucial for DNS scaling. But then how do we
keep authentication assurances?

— Security: must trust the resolver.
Object security vs. Channel security

|dea #2: make DNS results like certs

— l.e., a verifiable signature that guarantees who
generated a piece of data; signing happens off-line



Operation of DNSSEC

« DNSSEC = standardized DNS security
extensions currently being deployed

- As a resolver works its way from DNS root down
to final name server for a name, at each level it
gets a signed statement regarding the key(s)
used by the next level

- This builds up a chain of trusted keys
- Resolver has root’s key

- The final answer that the resolver receives is
signed by that level's key

- Resolver can trust it's the right key because of chain of
support from higher levels

* All keys as well as signed results are



Ordinary DNS:
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Ordinary DNS:

www.google.com A?
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(The line above shows com. rather than .com because
technically that’s the actual name, and that’'s what the Unix
dig utility shows; but the convention is to call it “dot-com”)
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Ordinary DNS:
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The actual response includes a bunch of
NS and A records for additional . com name
servers, which we omit here for simplicity.
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DNSSEC (with simplifications):
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DNSSEC (with simplifications):

www.google.com A?

Client's
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Up through here is the same as before ...




DNSSEC (with simplifications):
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This new RR (“Delegation Signer”) lists . com’s public key




DNSSEC (with simplifications):
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com. DS description-of-com’s-key
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The actual process of retrieving . com’'s public key
iIs complicated (actually involves multiple keys) but
for our purposes doesn’t change how things work




DNSSEC (with simplifications):
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com. DS com’s-public-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

This new RR specifies a signature over another RR
... in this case, the signature covers the above DS
record, and is made using the root’s private key




DNSSEC (with simplifications):

www.google.com A?
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The resolver has the root’s public key
hardwired into it. The client only proceeds
with DNSSEC if it can validate the signature.
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DNSSEC — Mallory attacks!
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Issues With DNSSEC ?

* Issue #1: Replies are Big
— E.g., “dig +dnssec berkeley.edu” can return 2100+ B
— DoS amplification
— Increased latency on low-capacity links
— Headaches w/ older libraries that assume replies < 512B

 Issue #2: Partial deployment
— Suppose not signing, though IS
— Major practical concern. What do we do?
— Can wire additional key into resolver (doesn’t scale)

— Or: outsource to trusted third party (“lookaside™)
« Wire their key into resolver, they sigh numerous early adopters



Issues With DNSSEC, cont.

* |Issue #1: Partial deployment

— Suppose not signing, though is. Or,
suppose and are signing, but
iIsn't. Major practical concern. What do we do?

— What do you do with unsigned/unvalidated results?

— If you trust them, weakens incentive to upgrade
(man-in-the-middle attacker can defeat security even for
google.com, by sending forged but unsigned response)

— If you don't trust them, a whole lot of things break



Issues With DNSSEC, cont.

 |ssue #2: Negative results (“no such name”)
— What statement does the nameserver sign?
— If “gabluph.google.com” doesn’t exist, then have to do
dynamic key-signing (expensive) for any bogus request
— Instead, sign (off-line) statements about order of names

« E.g., sign “gabby.google.com is followed by gabrunk.google.com”
* Thus, can see that gabluph.google.com can'’t exist

— But: now attacker can enumerate all names that exist :-(



Summary of TLS & DNSSEC Technologies

 TLS: provides (for communication over TCP)
— Confidentiality, integrity, authentication
— Client & server agree on crypto, session keys

— Underlying security dependent on:
« Trust in Certificate Authorities / decisions to sign keys
 (as well as implementors)

« DNSSEC.: provides (for DNS results)

— Just integrity & authentication, not confidentiality
— No client/server setup “dialog”
— Tailored to be caching-friendly

— Underlying security dependent on trust in Root Name Server's
key, and all other signing keys
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Takeaways

« Channel security vs object security

* PKI organization should follow existing line of
authority

« Adoption: two-sided adoption requirement makes
tech transition tough; network effects



A Tangent:
How Can | Prove | Am Rich?

THISNOTEIS LEGALTENDER FOR ALLDEBTS,

PUBLIC AND PRIVATEAND IS REDEEMABLE IN
LANFULMONEYAYT THEUNITED STATES TREASURY,
ORATANY FEODERALRESERVE BANK,




Math Puzzle — Proof of Work

 Problem. To prove to Bob I'm not a spammer,
Bob wants me to do 10 seconds of computation
before | can send him an email. How can | prove
to Bob that | wasted 10 seconds of CPU time, in a

way that he can verify in milliseconds?



Math Puzzle — Proof of Work

 Problem. To prove to Bob I'm not a spammer,
Bob wants me to do 10 seconds of computation
before | can send him an email. How can | prove
to Bob that | wasted 10 seconds of CPU time, in a
way that he can verify in milliseconds?

* Hint: Computing 1 billion SHA256 hashes might
take 10 seconds.



