
Denial-of-Service (DoS), continued

CS 161: Computer Security
Prof. David Wagner

April 4, 2016

Transport-Level Denial-of-Service
• Recall TCP’s 3-way connection establishment

handshake
– Goal: agree on initial sequence numbers

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with
connection here
(buffers, timers,
counters) Attacker doesn’t

even need to
send this ack

Transport-Level Denial-of-Service
• Recall TCP’s 3-way connection establishment

handshake
– Goal: agree on initial sequence numbers

• So a single SYN from an attacker suffices to force
the server to spend some memory

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with
connection here
(buffers, timers,
counters) Attacker doesn’t

even need to
send this ack

TCP SYN Flooding
•  Attacker targets memory rather than network

capacity

•  Every (unique) SYN that the attacker sends
burdens the target

•  What should target do when it has no more
memory for a new connection?

•  No good answer!
– Refuse new connection?

o  Legit new users can’t access service
– Evict old connections to make room?

o  Legit old users get kicked off

TCP SYN Flooding Defenses

•  How can the target defend itself?

•  Approach #1: make sure they have tons of
memory!
– How much is enough?
– Depends on resources attacker can bring to bear

(threat model), which might be hard to know

TCP SYN Flooding Defenses

• Approach #2: identify bad actors & refuse their
connections
– Hard because only way to identify them is based on IP

address
o We can’t for example require them to send a password because

doing so requires we have an established connection!
– For a public Internet service, who knows which

addresses customers might come from?
– Plus: attacker can spoof addresses since they don’t

need to complete TCP 3-way handshake

• Approach #3: don’t keep state! (“SYN cookies”;
only works for spoofed SYN flooding)

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping
state locally, send it to the client …

• Client needs to return the state in order to
established connection

Server only saves
state here

Do not save state
here; give to client

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping
state locally, send it to the client …

• Client needs to return the state in order to
established connection

Server only saves
state here

Do not save state
here; give to client

Problem: the world isn’t so ideal!

TCP doesn’t include an easy way to
add a new <State> field like this.

Is there any way to get the same
functionality without having to
change TCP clients?

Practical Defense: SYN Cookies

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

• Server: when SYN arrives, encode connection
state entirely within SYN-ACK’s sequence # y
– y = encoding of state, MAC’ed using server secret

• When ACK of SYN-ACK arrives, server only
creates state if MAC is valid

Server only creates
state here

Do not create
state here

Instead, encode it here

SYN Cookies: Discussion

•  Illustrates general strategy: rather than holding
state, encode it so that it is returned when
needed. Use crypto to prevent tampering.

• For SYN cookies, attacker must complete
3-way handshake in order to burden server
– Can’t use spoofed source addresses

• Note #1: strategy requires that you have
enough bits to encode all the state
– (This is just barely the case for SYN cookies)

• Note #2: if it’s expensive to generate or check
the cookie, then it’s not a win

Application-Layer DoS

• Rather than exhausting network or memory
resources, attacker can overwhelm a
service’s processing capacity

• There are many ways to do so, often at little
expense to attacker compared to target
(asymmetry)

The link sends a request to the web server that
requires heavy processing by its “backend
database”.

Algorithmic complexity attacks
• Attacker can try to trigger worst-case complexity

of algorithms / data structures

• Example: You have a hash table.
Expected time: O(1). Worst-case: O(n).

• Attacker picks inputs that cause hash collisions.
Time per lookup: O(n).
Total time to do n operations: O(n^2).

• Solution? Use algorithms with good worst-case
running time.
– E.g., universal hash function guarantees that

Pr[hk(x)=hk(y)] = 1/2^b, so hash collisions will be rare.

Application-Layer DoS

•  Rather than exhausting network or memory resources,
attacker can overwhelm a service’s processing capacity

•  There are many ways to do so, often at little expense to
attacker compared to target (asymmetry)

•  Defenses against such attacks?

•  Approach #1: Only let legit users issue expensive requests
– Relies on being able to identify/authenticate them
– Note: that this itself might be expensive!

•  Approach #2: Force legit users to “burn” cash

•  Approach #3: massive over-provisioning ($$$)

DoS Defense in General Terms
• Defending against program flaws requires:
– Careful design and coding/testing/review
– Consideration of behavior of defense mechanisms

o  E.g. buffer overflow detector that when triggered halts
execution to prevent code injection ⇒ denial-of-service

• Defending resources from exhaustion can be
really hard. Requires:
– Isolation and scheduling mechanisms

o  Keep adversary’s consumption from affecting others
– Reliable identification of different users

• Watch out for amplification attacks

Firewalls

CS 161: Computer Security
Prof. David Wagner

April 4, 2016

Controlling Networks … On The Cheap
•  Motivation: How do you harden a set of systems against

external attack?
–  Key Observation:

•  The more network services your machines run, the greater the risk
–  Due to larger attack surface

•  One approach: on each system, turn off unnecessary
network services
–  But you have to know all the services that are running
–  And sometimes some trusted remote users still require access

Controlling Networks … On The Cheap
•  Motivation: How do you harden a set of systems against

external attack?
–  Key Observation:

•  The more network services your machines run, the greater the risk
–  Due to larger attack surface

•  One approach: on each system, turn off unnecessary
network services
–  But you have to know all the services that are running
–  And sometimes some trusted remote users still require access

•  Plus key question of scaling
–  What happens when you have to secure 100s/1000s of systems?
–  Which may have different OSs, hardware & users …
–  Which may in fact not all even be identified …

Taming Management Complexity
•  Possibly more scalable defense: Reduce risk by

blocking in the network outsiders from having
unwanted access your network services
–  Interpose a firewall the traffic to/from the outside must

traverse
–  Chokepoint can cover thousands of hosts

•  Where in everyday experience do we see such chokepoints?

Internet Internal
Network

Selecting a Security Policy
•  Firewall enforces an (access control) policy:

–  Who is allowed to talk to whom, accessing what service?

•  Distinguish between inbound & outbound connections
–  Inbound: attempts by external users to connect to services on

internal machines
–  Outbound: internal users to external services
–  Why? Because fits with a common threat model. There are

thousands of internal users (and we’ve vetted them). There are
billions of outsiders.

•  Conceptually simple access control policy:
–  Permit inside users to connect to any service
–  External users restricted:

•  Permit connections to services meant to be externally visible
•  Deny connections to services not meant for external access

How To Treat Traffic Not Mentioned in Policy?

•  Default Allow: start off permitting external
access to services
– Shut them off as problems recognized

How To Treat Traffic Not Mentioned in Policy?

•  Default Allow: start off permitting external
access to services
– Shut them off as problems recognized

•  Default Deny: start off permitting just a
few known, well-secured services
– Add more when users complain (and mgt.

approves)

How To Treat Traffic Not Mentioned in Policy?

•  Default Allow: start off permitting external
access to services
– Shut them off as problems recognized

•  Default Deny: start off permitting just a
few known, well-secured services
– Add more when users complain (and mgt.

approves)
•  Pros & Cons?

–  Flexibility vs. conservative design
–  Flaws in Default Deny get noticed more quickly / less

painfully

In general, use Default Deny

✓

Stateful Packet Filter
•  Stateful packet filter is a router that checks each

packet against security rules and decides to forward
or drop it
–  Firewall keeps track of all connections (inbound/outbound)
–  Each rule specifies which connections are allowed/denied

(access control policy)
–  A packet is forwarded if it is part of an allowed connection

Internet Internal
Network

Example Rule

allow	tcp	connection	4.5.5.4:*	->	3.1.1.2:80

•  Firewall should permit TCP connection that’s:
–  Initiated by host with Internet address 4.5.5.4 and
– Connecting to port 80 of host with IP address 3.1.1.2	

•  Firewall should permit any packet associated with
this connection

•  Thus, firewall keeps a table of (allowed) active
connections. When firewall sees a packet, it checks
whether it is part of one of those active connections.
If yes, forward it; if no, drop it.

Example Rule

allow	tcp	connection	*:*/int	->	3.1.1.2:80/ext

•  Firewall should permit TCP connection that’s:
–  Initiated by host with any internal host and
– Connecting to port 80 of host with IP address 3.1.1.2 on

external Internet	
•  Firewall should permit any packet associated with

this connection

•  The /int indicates the network interface.

Example Ruleset

allow	tcp	connection	*:*/int	->	*:*/ext	
allow	tcp	connection	*:*/ext	->	1.2.2.3:80/int

•  Firewall should permit outbound TCP connections
(i.e., those that are initiated by internal hosts)	

•  Firewall should permit inbound TCP connection to our
public webserver at IP address 1.2.2.3

Stateful Filtering
Discussion question:

Suppose you want to allow inbound connection to a
FTP server, but block any attempts to login as “root”.
How would you build a stateful packet filter to do that?
In particular, what state would it keep, for each
connection?

Discuss with a partner.

State Kept
•  No state – just drop any packet with root in

them

•  Is it a FTP connection?
•  Where in FTP state (e.g. command, what

command)
•  Src ip addr, dst ip addr, src port, dst port
•  Inbound/outbound connection
•  Keep piece of login command until it’s

completed – only first 5 bytes of username

Beware!
•  Sender might be malicious and trying to

sneak through firewall
•  “root” might span packet boundaries

…….….ro1

Packet #1

ot………..…………
2

Packet #2

Beware!
•  Packets might be re-ordered

ot………..…………
2

…….….ro1

Firewall

r r
seq=1, TTL=22

n
seq=1, TTL=16

X

o o
seq=2, TTL=22

i
seq=2, TTL=16

X

o o
seq=3, TTL=22

c
seq=3, TTL=16

X

t t
seq=4, TTL=22

e
seq=4, TTL=16

X

Se
nd

er
 /

 A
tt

ac
ke

r
Receiver

r~~~

~~~~ r~~~ ro~~ roo~ root 

~~~~ 
r~~~?

n~~~?

ri~~?

ni~~?

ri~~? ro~~?

ni~~? no~~?
ric~? roc~? rio~? roo~?
nic~? noc~? nio~? noo~?

rice? roce? rict? roct? riot?
root? rioe? rooe? nice?
noce? nict? noct? niot?
noot? nioe? nooe?

Packet discarded in transit due
to TTL hop count expiring

TTL field in IP header
specifies maximum

forwarding hop count

Assume the Receiver
is 20 hops away

Assume firewall is 15 hops away

Beware!

Other Kinds of Firewalls
•  Stateless packet filter

– No state in the packet filter. Rules specify
whether to drop packet, without history.

– Problem: requires hacks to handle TCP
connections (e.g., an inbound packet is OK if it is
associated with a TCP connection initiated by an
inside host to an outside host).

•  Application-level firewall
– Firewall acts as a proxy. TCP connection from

client to firewall, which then makes a second TCP
connection from firewall to server.

– Only modest benefits over stateful packet filter.

Secure External Access to Inside Machines

•  Often need to provide secure remote access to a
network protected by a firewall
–  Remote access, telecommuting, branch offices, …

•  Create secure channel (Virtual Private Network, or VPN)
to tunnel traffic from outside host/network to inside
network
–  Provides Authentication, Confidentiality, Integrity
–  However, also raises perimeter issues
 (Try it yourself at http://www.net.berkeley.edu/vpn/)

Internet Company

Yahoo

User
VPN server

Fileserver

Why Have Firewalls Been
Successful?

•  Central control – easy administration and update
–  Single point of control: update one config to change

security policies
–  Potentially allows rapid response

•  Easy to deploy – transparent to end users
–  Easy incremental/total deployment to protect 1000’s

•  Addresses an important problem
–  Security vulnerabilities in network services are rampant
–  Easier to use firewall than to directly secure code …

Attacks Firewalls Don’t Stop?
Discussion question:

Suppose you wanted to attack a company protected by
a firewall. What attacks might you try?

Discuss with a partner.

Attacks Firewalls Don’t Stop
•  tbd

Firewall Disadvantages?
Discussion question:

What are the limitations of firewalls?
Why have firewalls become less effective over time?

Discuss with a partner.

Firewall Disadvantages
•  Functionality loss – less connectivity, less risk

–  May reduce network’s usefulness
–  Some applications don’t work with firewalls

•  Two peer-to-peer users behind different firewalls

•  The malicious insider problem
–  Assume insiders are trusted

•  Malicious insider (or anyone gaining control of internal machine) can
wreak havoc

•  Firewalls establish a security perimeter
–  Like Eskimo Pies: “hard crunchy exterior, soft creamy

center”
–  Threat from travelers with laptops, cell phones, …

Takeaways on Firewalls
•  Firewalls: Reference monitors and access

control all over again, but at the network level
•  Attack surface reduction
•  Centralized control

