
Raluca Ada Popa
Spring 2018

CS 161
Computer Security Project 2

Part 1 Due: March 5, 2018, 11:59 PM

Part 2 Due: March 19, 2018, 11:59 PM

Part 3 Due: April 2, 2018, 11:59 PM

Version 1.1: February 22, 2018

Contents
Introduction 2

Getting Started . 2
Secure File Store . 2

Part 1: A simple, but secure client 5
Simple Upload/Download . 5

Testing your submission . 6
Submission and Grading . 7
Submission Summary . 7

Part 2: Sharing and revocation 8
Sharing . 8
Revocation . 9
Design Document for Part 2 . 11
Submission and Grading . 12
Submission Summary . 12

Part 3: Efficient Updates 13
Efficient Updates . 13
Design Document for Part 3 . 14
Submission and Grading . 15
Submission Summary . 15

Errata 16

Appendix 16
Reference Implementation . 16
Example Workflow . 16

Page 1 of 17

Introduction

Storing files on a server and sharing them with friends and collaborators is very useful.
Commercial services like Dropbox or Google Drive are popular examples of a file store
service (with convenient filesystem interfaces). But what if you couldn’t trust the server you
wanted to store your files on? What if you wanted to securely share and collaborate on files,
even if the owner of the server is malicious?

In this project, you’ll use the cryptographic tools we’ve taught you to build a file storage
client that’s secure and efficient despite storing all of your data on a malicious storage server.

Getting Started

Documentation for this project will be hosted on the course website; for how you can
get started on this project: http://inst.eecs.berkeley.edu/~cs161/sp18/projects/2/
docs/gettingstarted.html

For an example of how to work on this project, refer to the Example Workflow Section.

Secure File Store

Your task is to design and implement a secure file store. This file store can be used to store
your own files securely, or to share your files with other people you trust.

Your implementation should have two properties:

Confidentiality. Any data placed in the file store should be available only to you and
people you share the file with. In particular, the server should not be able to learn any
bits of information of any file you store, nor of the name of any file you store.

Integrity. You should be able to detect if any of your files have been modified while
stored on the server and reject them if they have been. More formally, you should only
accept changes to a file if the change was performed by either you or someone with whom
you have shared access to the file.

Note on security parameters. It is sufficient that these properties hold with very high
probability (i.e., no more risk than arises from brute forcing well-chosen cryptographic keys).

You are given access to two servers:

1. A storage server, which is untrusted, where you will store your files. It has three
methods:

• put(id, value), which stores value at id

Project 2 Page 2 of 17 CS 161 – Sp 18

http://inst.eecs.berkeley.edu/~cs161/sp18/projects/2/docs/gettingstarted.html
http://inst.eecs.berkeley.edu/~cs161/sp18/projects/2/docs/gettingstarted.html

• get(id), which returns the value stored at id

• delete(id), which deletes the value stored at id

2. A public key server, which is trusted, that allows you to receive other users’ public
keys. You have a secure channel to the public key server. It has four methods:

• get encryption key(username), which returns the public encryption key for
username

• put encryption key(username, pubkey), which sets the public encryption key
for your username

• get signature key(username), which returns the public signature key for
username

• put signature key(username, pubkey), which sets the public signature key for
your username

You are not to change the code for either server. If you do, your code will not work
with our autograder and you will get no credit.

The storage server is, in practice, just a key-value store. The files you upload to the server
are strings of text data. The storage server is untrusted—it can perform arbitrary malicious
actions to any data you store there. You should protect the confidentiality and integrity of
any data you store on either server.

The storage server has one namespace, so anything written by one user can be read or
overwritten by any other user who knows the id. Clients interacting with the storage server
must take care to ensure that their own files are not overwritten by other clients. Other
users or clients might be malicious.

We provide you a framework off of which to build; the documentation for all these files is
available online at http://inst.eecs.berkeley.edu/~cs161/sp18/projects/2/docs/.

You must use our provided crypto.py API for all of your security-critical operations. Do
not implement your own versions of symmetric (or asymmetric) key operations. This API
has access to all the raw primitives we have taught you. Do not create a new instance of the
Crypto object: use the one passed to you during initialization. It also has a secure random-
bytes generator and other accessory methods. You should inspect it to see how it calls into
PyCrypto, to understand what security properties you can expect out of this module. We
have provided this API to you as a cleaner interface than the hundred possible methods in
PyCrypto, and one that operates on strings for easier debugging. But we expect that you
will understand the consequences of how this code behaves. You must NOT call into
PyCrypto yourself.

The skeleton provided in client.py calls BaseClient. init (), which sets up the client
attributes, and calls the method generate public key pairs(). This method will auto-
matically put the asymmetric keys on the public key server, and save a copy of your private
keys to your filesystem. This is the only persistent state that your client can use (you can

Project 2 Page 3 of 17 CS 161 – Sp 18

http://inst.eecs.berkeley.edu/~cs161/sp18/projects/2/docs/

assume that for the same username, a client will have the same public/private keys even if
restarted). Your client code should call this method exactly once.

Your code must not spawn other processes, read or write to the file system, open any network
connections, or otherwise attack the autograder. We will run your code in an isolated
sandbox. Any adversarial behavior will be seen as cheating.

The only exception your code may raise is an IntegrityError. Your code should handle all
other exceptions.

Project 2 Page 4 of 17 CS 161 – Sp 18

Part 1: A simple, but secure client

You may focus first on Part 1 and start later parts only after you’ve completed Part 1. Part 1
is designed to get you familiar with the API and crypto operations.

Part 1 is due March 5, 2018, 11:59 PM.

Simple Upload/Download

Implement a file store with a secure (but possibly inefficient) upload/download interface.This
will require you to implement the methods upload and download.

The methods must ensure the following properties hold.

Property 1 (Secure Download) When not under attack by the storage server or another
user, download(name) MUST 1 return the last value stored at name by the current user, or
None if no such file exists. It MUST NOT raise IntegrityError or any other error when
not under attack. However, download(name) MUST NOT ever return an incorrect value.
A value (excluding None) is “incorrect” if it is not one of the values currently or previously
stored at name by the current user.

download(name) MAY raise IntegrityError or return None if under any attack by the
server or other users. download(name) MUST NOT raise any other errors.

It SHOULD raise IntegrityError if the file has been tampered with. It SHOULD return
None if it appears that no value for name exists for the user.

Property 2 (Secure Upload) upload(name, value) MUST place the value value at
name so that future downloads for name return value.

This function SHOULD return True. It MAY return False if the upload fails due to a
malicious server.

Any person other than the owner of name MUST NOT be able to learn even partial infor-
mation about value or name with probability better than random guesses.

You may assume filenames are alphanumeric (they match the regex [A-Za-z0-9]+). File-
names will not be empty. This will be the case for all parts of this project. The contents of
the file can be arbitrary: you must not make any assumptions there, but they are provided
as Python Unicode strings (for easier debugging). You may assume usernames consist solely
of lowercase letters ([a-z]+).

The autograder does not look at the return value of the upload method.

You do not need to implement any capabilities for sharing files between users (this is Part 2).
We have provided an implementation of the storage server—do not change it.

1See RFC 2119 for the definitions of MUST, MUST NOT, SHOULD, and MAY.

Project 2 Page 5 of 17 CS 161 – Sp 18

https://www.ietf.org/rfc/rfc2119.txt

Note that we require you to protect the confidentiality and integrity of both the contents of
the file you store and the name it is stored under. A malicious storage server must not be able
to learn either, or change them. The length of the file doen’t need to be kept confidential.

When used in a non-adversarial manner, different users should be allowed to have files with
the same name: they should not overwrite each other’s files. An adversary may be able to
overwrite a user’s valid data, but any changes should be reported as an IntegrityError.

Confidentiality for this project follows from the IND-CPA game, but with minor alterations.
The adversary choses two files with values of the same size F0 = (name0, value0), F1 =
(name1, value1) to be stored, where the client will choose one randomly. Then the adversary
can ask for a polynomial amount of arbitrary files Fi = (namei, valuei) to be stored where
namei cannot be equal to name0 or name1. If the adversary can figure which of F0 or F1 was
stored on the server, then we have lost confidentiality.

One specific attack you are not required to handle is that of a rollback attack: if Alice
uploads the file F to the server and then updates it later to F ′ with a second upload, Alice
does not need to detect if the server “rolls back” its state and returns F when Alice requests
the file back. This is why Property 1 is written as it is.

Why do we not require this? Without additional state, it would be impossible. The server
could always rollback to the “empty” state where it contains no data at all, and return None

for every get, and the client would not be able to detect this.

Your client must not assume it can keep any state other than its asymmetric keys that it was
created with. You must assume that your client can be killed and restarted, and everything
should still work. (For example: you cannot place a dictionary in your client, make upload

insert into the dictionary, make download get from the dictionary, and claim to be secure
because you send nothing to the StorageServer.)

Note that this means if you require temporary symmetric keys, you will need to be able to
save and restore them using only the two persistent asymmetric keys each client is given.

You do not need to handle the case where two users interact with the server concurrently :
you can assume only one user will interact with the server at any point in time. (That is,
you do not need to worry about implementing locking—if one user has issued an API call,
then no other user does so until that API call completes.)

Testing your submission: We have a set of tests which we will run on your code, for
both functionality and security. In the provided framework, a file called
run part1 tests.py contains all the functionality tests we will run on your code, but only
1 security test. (We have many more security tests!) To run these tests, run python3

run part1 tests.py. This will use your Client implementation from client.py. It will
output Pass/Fail for each test we have and a one-sentence explanation of what the test does
if it fails.2

2We will make minor modifications to the functionality tests before we run them (e.g., by changing the
names of keys and values) to ensure that solutions are not hard-coded to pass our tests.

Project 2 Page 6 of 17 CS 161 – Sp 18

We will not have any significantly new tests for functionality. If we add any new tests to the
framework, we will announce this and release an updated set.

These tests are provided to make sure that anyone who attempts the project will get full
points on functionality. This project is to test your ability to write secure code, not to
implement a key-value store.

There will be no performance tests for Part 1 (although your code should definitely termi-
nate!). Each test must complete in under one minute, but we expect tests to run in a few
seconds.

Submission and Grading

Using glookup with submit proj2-part1, you should submit your final version of
client.py file (and only that file) by March 5, 2018, 11:59 PM.

You are responsible for verifying that your code passes all functionality tests.

We plan to grade Part 1 shortly after the deadline. We will grade your last submission, and
provide:

• the raw score based on functionality tests

• the raw score based on a large set of security tests

• a one sentence summary of any security tests failed (so you have the chance to fix these
issues for Part 2 and Part 3)

Your final score on this part of the project will be the minimum of the functionality score
and security score. Each failed security test will lower the security score, weighted by the
impact of the vulnerability.

We will not accept regrade requests on the autograder results, except in cases where there
was a bug in the autograder. If you feel this has occurred, please post a private question on
Piazza to instructors and we will look at your code.

Submission Summary

In summary, you must submit the following directory tree for Part 1:

client.py

feedback.txt (optional)

Project 2 Page 7 of 17 CS 161 – Sp 18

Part 2: Sharing and revocation

Make sure you read instructions for Part 2 fully before starting. It is likely that the
design of your system for Part 2 will be significantly different from your previous solution.
A similar thing might happen for Part 3 as well, so you may choose to read Part 3 before
starting Part 2, and try to design your solution for both parts together.

Part 2 is due March 19, 2018, 11:59 PM.

Sharing

A file store becomes much more interesting when you can use it to share files with your
collaborators. Implement the sharing functionality by implementing the methods share()

and receive share().

When Alice wants to share a file with Bob, she will call msg = alice.share("bob",

filename) to obtain a sharing message. Alice will then pass Bob msg through an out-
of-band channel (e.g., via email). You must not assume that this channel is secure. A
man-in-the-middle might receive or modify the sharing message after Alice sends it but
before Bob receives it.

After Alice passes msg to Bob, if Bob wishes to accept the file, he will call
bob.receive share("alice", newfilename, msg).3 Bob should now be able to access
Alice’s file under the name newfilename. In other words, Alice accesses the file under the
name filename; Bob accesses it using the name newfilename.

msg must be a Python string. During grading, we will pass msg from one client to another
on your behalf. Sharing a document must not require any other communication between the
clients.

Property 3 After m = a.share("b", n1); b.receive share("a", n2, m), user b

MUST now have access to file n1 under the name n2. Every user with whom this file has
been shared (including the owner) MUST see any updates made to this file immediately. To
user b, it MUST be as if this file was created by them: they MUST be able to read, modify,
or re-share this file.

This also changes Property 1 and Property 2 from above. A download() operation MUST
return the last value written by anyone with access to the file (the owner, or anyone with
whom the file was shared). Only those with access to the file should be able to read or
modify it.

Sharing is tricky. Note that both filenames refer to the same underlying file, and any updates
performed by anyone who has access to the file should be immediately visible to all other
users with access to the file. By “update”, we are referring to the case where a user invokes

3Bob populates the first two arguments himself after he receives what he believes is a valid msg from
Alice. Consequently, these two arguments cannot be tampered with by the man-in-the-middle attacker.

Project 2 Page 8 of 17 CS 161 – Sp 18

upload(f, v2) on a file f that was previously uploaded and whose previous contents were
v1.

Sharing should be transitive. If Alice shares a file with Bob who shares it with Carol, any
changes to this file by any of the three should be visible to all three immediately. Sharing
a file with someone who has already received it results in unspecified behavior (you may
do whatever you choose). It is okay if the storage server learns which other users you have
shared a file with.

We require a minimal amount of efficiency: assuming a file of size m is shared with n users,
and Alice shares the file with a new user, you may perform a linear (in O(n+m)) number of
either public or private key encryption operations. This is simple to achieve: any reasonable
scheme should be at least this efficient. It is possible to do significantly better—and you are
free to do so if you choose—but we will not evaluate you on this.4

Your client may only keep state for performance reasons. Your implementation must work
if your client is restarted in between every operation. Any state maintained on your client
must be able to be reconstructed from data that exists on the server. Your clients may not
directly communicate with each other.

Again, you do not need to worry about rollback attacks with sharing. For example, the
server could rollback state and remove a client from receiving updates. You do not have to
mitigate this. But remember, if you do notice any discrepancy during operation, you should
throw an IntegrityError.

Grading: The security tests for this sub-part differ significantly from the previous tests.
You must ensure you respect all sharing requirements, and that only valid users are able to
read or edit a file. We will also test all functionality aspects, including all the tests from
Part 1.

If your implementation relies on more out-of-band messages than a single return value from
share(), you will get no credit for this sub-part (or revocation).

Revocation

Remote collaboration is a difficult thing, and, unfortunately, one of your collaborators has
betrayed you, and you can no longer trust them. You realize that you need to revoke their
access to your files.

Implement the revoke() method, which allows a user to revoke someone else’s access to
a given file. You can’t stop them from remembering whatever they’ve already learned or
keeping a copy of anything they’ve previously downloaded, but you can stop them from
learning any new information about updates to this file. Only the user who initially created
the file may call revoke().

4 Note that while you do not need to worry about the performance of sharing here, in Part 3 you will
be required to augment your design to make updates efficient (in terms of the number of bytes transferred
across the network).

Project 2 Page 9 of 17 CS 161 – Sp 18

Property 4 If the original creator of the underlying file calls revoke(otheruser, name),
then afterwards otheruser MUST NOT be able to observe new updates to name, and anyone
with whom otheruser shared this file MUST also be revoked. Except for knowing the previous
contents of name, to otheruser, it MUST be as if they never had received the file.

This single property has several hidden implications which may not be clear right away.
Suppose that in the past, Alice granted Bob access to file F , and now Alice revokes Bob’s
access. Then we want all the following to be true subsequently:

1. Bob should not be able to update F ,

2. Bob should not be able to read the updated contents of F (for any updates that happen
after Bob’s access was revoked), and

3. If Bob shared the file with Carol, Carol should also not be able to read or update F .

4. Bob should not be able to regain access to F by calling receive share() with Alice’s
previous msg.

Revocation must not require any communication between clients.

You only need to implement functionality to revoke access from direct children. If Alice
shares a file with Bob, and Bob shares the file with Carol, you are not required to provide a
way for Alice to directly revoke Carol’s access. It must work for Alice to revoke Bob’s access,
and revoking Bob’s access should recursively revoke Carol’s access.

If Alice shares a file with Bob, and Bob shares the file with Carol, you don’t need to provide
a way for Bob to revoke Carol’s access. We will not test this situation: you only need to
ensure that the original creator of the file can revoke others.

If Alice shares a file with Bob, and then revokes Bob’s access, it may still be possible
(depending on the design of your system) for Bob to mount a denial of service (DoS) attack on
Alice’s file (for example, by overwriting it with all 0s, or deleting ids), but Alice should never
accept any changes Bob makes as valid. She should always either raise an IntegrityError,
or return None (if Bob deleted her files).

Similar to sharing we will not grade you on efficiency. You may make a linear number of
operations proportional to the size of the file, and the number of users who have received
this file.

All the requirements from the previous parts are carried over to this part. Recall that the
only state which you can keep in the client is your public and private key. Any other state
stored must be only an optimization: it must be recoverable from state stored on the server.

As before, you do not need to worry about rollback attacks with revocation. For example,
the server may rollback state and remove a client from receiving updates, or re-share with
an old client. You do not have to mitigate this. But if you do notice any discrepancy during
operation, you should throw an IntegrityError.

Grading: It will be very difficult for you to receive any credit on this part if your imple-
mentation does not pass the functionality and security tests from sharing. Since, in this case,

Project 2 Page 10 of 17 CS 161 – Sp 18

functionality and security are tightly bound (revocation is a security behavior), we will not
be providing you with difficult functionality tests. We have provided you with trivial tests,
but you should definitely implement your own (although we will not ask for your tests).
After submission, our autograder will apply some more difficult tests.

Design Document for Part 2

Write a clear, concise design document to go along with your code. Your design document
should be split into two sections. The first contains the design of your system, and the
choices you made; the second contains an analysis of its security. Your design document
should explain your complete solution, for Part 1 up to revocation.

In the first section, summarize the design of your system. Explain the major design choices
you made, including how data is stored on the server. The design should be written in a
manner such that an average 161 student could take it, re-implement your client, and achieve
a grade similar to yours. A well-written design receiving full points need not be longer than
two pages. You will lose points if your design is excessively verbose.5

The second part of your design document is a security analysis. Present at least three
concrete attacks that you have come up with (which were not released with the Part 1
autograder) and how your design protects against each attack. You should not need more
than one paragraph to explain how your implementation defends against each attack you
present.

You may use as reference the Part 1 design document we provided to you for our reference
solution. This is a design document which would receive full credit if we were grading it on
Part 1 alone.

Grading: The design document is worth 15 points, split roughly equally between the two
sections.

The first section is graded on your ability to explain your design to the reader effectively.
Be sure to include the following in the document:

• What state is stored on the server to allow for sharing, as well as the contents of the
sharing message.

• What state is changed to revoke a file, and how you meet all the revocation require-
ments.

The second section is graded on the attacks and defenses you present. You should have at
least three attacks and corresponding defenses to get full points. If you give more attacks,
we will grade your best three (we will grade them in order, so place your strongest attacks

5 If after writing your design document, you realize you have a 10-page document with 100 lines of code
and think to yourself “My 162 GSI would be proud of this,” you will be disappointed in your grade. That
is not a design document. That is an implementation with comments.

Project 2 Page 11 of 17 CS 161 – Sp 18

first to make it easier for the readers, so they can stop after finding three that suffice for full
credit). Do not give more than 4.

Submission and Grading

Using glookup with submit proj2-part2, for Part 2 you should submit your final version
of client.py with all of the functionality for Part 1 and sharing/revocation and optionally
feedback.txt by March 19, 2018, 11:59 PM. You will also submit your design document as
design.pdf on gradescope.

As in Part 1, we provide a set of functionality tests for Part 2, in run part2 tests.py. You
should also make sure that you still pass all the autograder tests we gave you for Part 1.

As in Part 1, your score on sharing and revocation will be based on all functionality and
security tests from Parts 1 and 2. Your final score for these sub-parts will be the minimum
of your functionality and security scores.

We will not accept re-grade requests on the autograder results, except in cases where there
was a bug in the autograder. If you feel this has occurred, please post a private question on
Piazza to instructors and we will look at your code.

Submission Summary

In summary, you must submit the following for Part 2 on glookup:

client.py

feedback.txt (optional)

and the following on Gradescope:

design.pdf

Project 2 Page 12 of 17 CS 161 – Sp 18

Part 3: Efficient Updates

Make sure you read instructions for Part 3 fully before starting. It is possible that
the design of your system for Part 3 will be significantly different from your solution for the
previous parts. However, your system must continue to support all of the functionality from
Parts 1 and 2.

Part 3 is due April 2, 2018, 11:59 PM.

Efficient Updates

Design and implement a solution for efficiently updating files that are already stored on the
server. For this sub-part, you must efficiently handle very large files—potentially multiple
gigabytes long. This makes maintaining confidentiality and integrity more difficult. Be
aware that when the server is malicious, it can perform arbitrary actions at arbitrary points
in time during your execution. For example, you cannot assume that two consecutive calls
to server.get(f) will return the same value.

The requirements are exactly the same as Part 1 and Part 2, except that now we want your
solution to be efficient when making a small update to a large file.

By efficiency, we are referring to the amount of data that must be transferred over the
network connection to the storage server. By “update”, we are referring (as before) to the
case where the user invokes upload(f, v2) on a file f that was previously uploaded and
whose previous contents were v1. Your solution only needs to be efficient for updates that
replace the file with another file of the same length. You should efficiently handle changes
anywhere in the file, from a few bytes to the whole file. (Other kinds of updates, e.g., those
that insert data somewhere or delete data somewhere, do not have to be especially efficient.)

Your client may store state (including, for example, the previous version of a file). But,
this must only be an optimization: your client must still work correctly if it loses all of its
state except for its asymmetric keys for encryption and signatures. If your client loses all of
its state, we do not require that it still performs efficient updates; but it must still behave
correctly.

If you store state, be careful to validate that your state is current. For example, suppose
Alice uploads a file with some value, and saves a copy of the file locally. She then shares it
with Bob, who updates the file’s value. If Alice subsequently wants to update the value on
the server, her client must make sure to override Bob’s changes (if required) so that the final
value on the server is the same as what Alice intends it to be, instead of simply uploading
the parts that differ from her local copy. You should be able to still perform efficient updates
correctly if other users make updates to different parts of the file.

Keep state in memory—you do not need to worry about serialization to disk. Let S be the
total number of bytes of data a client has saved on the server. As long as you keep only O(S)

Project 2 Page 13 of 17 CS 161 – Sp 18

bytes of data in the client, we guarantee our autograder tests will not cause your program
to run out of memory.6

Grading: In run part3 tests.py we have provided you with a server that counts the
total number of bytes you send and receive across the network. We have provided four
performance test cases alongside functionality tests for Part 3.

One of performance tests tests algorithmic performance for single-byte updates when not
changing the size of the file. You should strive to update in logarithmic size, i.e., the number
of bytes transferred on a single-byte update should be logarithmic in the size of the file.
However, we will not use this test for grading.

The other three performance tests report the number of bytes transferred and a score based on
example thresholds. We will use these three tests for grading the performance of your system.
As a guideline, for an efficient implementation, a reasonable amount of data transferred
for test z01 SimplePerformanceTest is ∼10 KB, and for z03 SharingPerformanceTest is
∼100 KB.

You should not worry about O(1) constants in updates until after your code is algorithmically
faster (for example, do not worry about keys being hex encoded, or using JSON). These
constants award a few points, but much less than the algorithmic portion.

Our autograder will also run additional security tests on your system, as in the previous
parts.

Design Document for Part 3

Write a clear, concise design document to go along with your code. The design document
should have only one section, explaining your final and complete solution for Part 1 through
Part 3.

Write the design document in the same manner as you wrote the first section of the design
document for Part 2, such that an average 161 student could take it, re-implement your
client, and achieve a grade similar to yours for Parts 1-3.

If your design has not changed from Part 2, you may reuse the first section of your design
document from Part 2, but you must submit a new design document per these instructions.

Grading: The design document is worth 10 points. The design document is graded on
your ability to explain your design to the reader effectively. Be sure to include (a) how you
perform efficient updates, and (b) a short performance analysis.

6 We introduce this requirement solely for your benefit, so you don’t have to worry about memory
management. In practice, it would be bad to assume that all of the bytes fit in memory, since very likely it
would be possible to store many more bytes on the server than you have room for on your client.

Project 2 Page 14 of 17 CS 161 – Sp 18

Submission and Grading

For Part 3, you should submit your final version of client.py with all of the functionality
for Part 1 and Part 2 and the optional feedback.txt by April 2, 2018, 11:59 PM, 11:59PM
using glookup with submit proj2-part3. You will also submit your design document as
design.pdf, plus optional feedback.

You should also make sure that you still pass all the autograder tests we gave you for Part 1
and Part 2.

You can submit your project multiple times. As before, we will grade your latest submission.

As in previous parts, your score on Efficient Updates will be based on the performance of
your implementation as well as all functionality and security tests from Parts 1, 2, and 3.
Your final score for this sub-part will be the minimum of your performance, functionality,
and security scores.

Submission Summary

In summary, you must submit the following for Part 3 on glookup:

client.py

feedback.txt (optional)

and the following on gradescope:

design.pdf

Project 2 Page 15 of 17 CS 161 – Sp 18

Errata

Update 1 (February 27):

1. Clarification to the IND-CPA game where both files must have contents of equal size.

Appendix

Reference Implementation

We have written an inefficient, insecure implementation of a client. We have provided this to
you in insecure client.py. This code is also an example of how to extend the BaseClient

class. This implementation provides all the functionality requirements of this project, but
has no security properties at all.7

This client gives each user their own “namespace” within the master server by concatenating
the username, a slash, and then the filename and using that as the id for the storage server.

The client works by maintaining two types of objects on the server storage: pointers and
data. A data object has the contents of a file. A pointer acts as a reference to the file. (If
you’ve taken operating systems, you can think of pointers as symlinks.) When a user updates
a file that is a pointer, she follows the pointers until a data file is reached, and then updates
the corresponding data file. Sharing works by providing the other user with a pointer to
the file, and revocation removes the pointer. This satisfies the revocation properties that
sub-children are also revoked.

Example Workflow

An example workflow for developing on your personal machine is as follows:

• Copy the framework code into a folder named project2.

• Sync changes to your class account using scp:

scp -r project2/ cs161-xxx@hiveXX.cs.berkeley.edu:~/project2

This will copy the project2 folder and its contents to your home directory.

• SSH into a Hive machine with your class account.

• Do all Python console work using python3 or ipython3 in your SSH session.

7While insecure client.py will pass all functionality tests, it does not satisfy any of the security
requirements, so submitting it will earn you a score of 0 on the project. As detailed in each part’s “Submission
and Grading” section, your score is the minimum of your security, functionality, and (in part 3) performance
scores, so a security/performance score of 0 will earn you 0.

Project 2 Page 16 of 17 CS 161 – Sp 18

• Run all Python code using python3, e.g. python3 client.py.

You can also do all of this while seated at a machine in the instructional labs, or inside an
SSH session using vim or emacs.

While not officially supported by course staff, it is also possible to set up Python3 and
install PyCrypto on your own machine. You should double check your code by re-running
the functionality tests against your code on Hive. Remember to follow all the steps in
the submission instructions for each part of this project!

Project 2 Page 17 of 17 CS 161 – Sp 18

	Table of Contents
	Introduction
	Getting Started
	Secure File Store

	Part 1: A simple, but secure client
	Simple Upload/Download
	Testing your submission

	Submission and Grading
	Submission Summary

	Part 2: Sharing and revocation
	Sharing
	Revocation
	Design Document for Part 2
	Submission and Grading
	Submission Summary

	Part 3: Efficient Updates
	Efficient Updates
	Design Document for Part 3
	Submission and Grading
	Submission Summary

	Errata
	Appendix
	Reference Implementation
	Example Workflow

