
Memory Safety (cont’d)
Software Security

CS 161: Computer Security
Prof. Raluca Ada Popa

January 17, 2016

Some slides credit to David Wagner and Nick Weaver

Announcements
• Discussion sections and office hours start

next week
• Join Piazza
• Homework 1 out Monday, due next

Monday
• CS 61C Review session: Friday

(tomorrow) 6:30-8:30pm in Soda 306

Memory safety (cont’d)

main() {
 f();
}

f() {
 int x;
 g();
}

g() {
 char buf[80];
 gets(buf);
}

0xFFFF0000

ret

main()

retx

f()

retbuf

g()

Stack (return addresses and local variables)

Recall: code Injection

main() {
 f();
}

f() {
 int x;
 g();
}

0xFFFF0000

ret

main()

retx

f()

retbuf

g()

g() {
 char buf[80];
 gets(buf);
}

Stack (return addresses and local variables)

Recall: code Injection

attacker code

Basic Stack Exploit
• Overwriting the return address allows an

attacker to redirect the flow of program
control.

• Instead of crashing, this can allow arbitrary
code to be executed.

• Example: attacker chooses malicious code
he wants executed (“shellcode”), compiles to
bytes, includes this in the input to the
program or part of the buffer overflow so it
will get stored in memory somewhere, then
overwrites the return address to point to it.

Defenses

• Discuss with your partner some ideas

Defense #1

• The real solution to these problems is to avoid C or C++ if you can. Use
memory safe languages such as: Java, Python, Rust, Go, …, which
check bounds and don’t permit such overflows

• Still, a lot of code is written in C

– Performance
– Legacy code
– Low level control

Defense #2
• Insert a canary = a random value just before the

return address in each stack frame
– Before returning, check that the canary still has the

unmodified stored value

 Args

Return address

Canary

Local vars: buf

Q: Why below return address and not after?
A: to prevent return address overwrite without
modifying canary
Q: Why random and not a fixed value 0x324a0b?
A: so attacker does not know it
Q: Even with canary, how could an attacker read
the return address with a buffer overflow?
A: buffer overrun in inputs, args, that copies arg
value at negative indices into some buffer
returned to attacker

Defense #3:
Non-Executable Stack Space…

• Make stack non-executable
• The overwritten return address from the attacker

could point to code on stack which was similarly
injected via a buffer overflow attack. With the stack
nonexecutable, this code cannot execute

10

Q: does it protect against all buffer overflows?
A: No. For example, it does not protect against those that
overwrite variables such as passwords, and others.

Defense #4:
Data Execution Protection/ W^X (write or execute)

• Ensure each piece of memory is either writeable or executable
but not both
– Q: What does this stop?
– A: So an attacker can no longer inject code and execute it

• But some attacks are still possible: return oriented programming
when the return address points to an existing snippet of code
such as standard libraries like libc

• Set up a series of return statements to execute “gadgets” in
the code

• This is not easy to understand, we won’t go into detail but
there are tools to do this for you automatically: ROPgadget

• Open source:
https://github.com/JonathanSalwan/ROPgadget/tree/master

11

https://github.com/JonathanSalwan/ROPgadget/tree/master

Idea #4:
Lets make that hard to do

• Address Space Layout Randomization…
– Randomized where library code and other text segments are

placed in memory
– Q: Why?
– A: so the attacker does not know the address to “return” to

• Particularly powerful with W^X
– Since bypassing W^X requires only executing existing code,

which requires knowing the address of existing codes, but ASLR
randomizes where the existing code is.

• Good idea but…if you can get the address of a single function in
a library, you’ve defeated ASLR and can just generate your string
of ROP gadgets at runtime

12

Idea #5:
Write “Secure” code…

• Always bounds check, think of type
overflow

• Difficult in C..

13

If nothing works…
Just run machine learning…

[joking]

Software security

Why does software have
vulnerabilities?

• Programmers are humans.
And humans make mistakes.
– Use tools

• Programmers often aren’t security-aware.
– Learn about common types of security flaws.

• Programming languages aren’t designed well
for security.
– Use better languages (Java, Python, …).

Why does software have
vulnerabilities?

• Programmers are humans.
And humans make mistakes.
– Use tools

• Programmers often aren’t security-aware.
– Learn about common types of security flaws.

• Programming languages aren’t designed well
for security.
– Use better languages (Java, Python, …).

Why does software have
vulnerabilities?

• Programmers are humans.
And humans make mistakes.
– Use tools.

• Programmers often aren’t security-aware.
– Take CS 161 ;-P
– Learn about common types of security flaws.

• Programming languages aren’t designed well
for security.
– Use better languages (Java, Python, …).

Testing for Software Security Issues

• What makes testing a program for security problems
difficult?
– We need to test for the absence of something

• Security is a negative property!
– “nothing bad happens, even in really unusual circumstances”

– Normal inputs rarely stress security-vulnerable code
• How can we test more thoroughly?

– Random inputs (fuzz testing)
– Mutation
– Spec-driven

• How do we tell when we’ve found a problem?
– Crash or other deviant behavior

• How do we tell that we’ve tested enough?
– Hard: but code-coverage tools can help

Testing for Software Security Issues

• What makes testing a program for security problems
difficult?
– We need to test for the absence of something

• Security is a negative property!
– “nothing bad happens, even in really unusual circumstances”

– Normal inputs rarely stress security-vulnerable code
• How can we test more thoroughly?

– Random inputs (fuzz testing)
– Mutation
– Spec-driven

• How do we tell when we’ve found a problem?
– Crash or other deviant behavior

• How do we tell that we’ve tested enough?
– Hard: but code-coverage tools can help

Testing for Software Security Issues

• What makes testing a program for security problems
difficult?
– We need to test for the absence of something

• Security is a negative property!
– “nothing bad happens, even in really unusual circumstances”

– Normal inputs rarely stress security-vulnerable code
• How can we test more thoroughly?

– Random inputs (fuzz testing)
– Mutation: change certain statements in the source code and

see if the tests find the errors
– Spec-driven: test code of a function matches spec of that

function
• How do we tell when we’ve found a problem?

– Crash or other deviant behavior; now enable expensive checks

Working Towards Secure Systems
• Along with securing individual components, we

need to keep them up to date …
• What’s hard about patching?

– Can require restarting production systems
– Can break crucial functionality
– Management burden:

• It never stops (the “patch treadmill”) …

Working Towards Secure Systems
• Along with securing individual components,

need to keep them up to date …
• What’s hard about patching?

– Can require restarting production systems
– Can break crucial functionality
– Management burden:

• It never stops (the “patch treadmill”) …
• … and can be difficult to track just what’s needed where

• Other (complementary) approaches?
– Vulnerability scanning: probe your systems/networks

for known flaws
– Penetration testing (“pen-testing”): pay someone to

break into your systems …

Reasoning About Safety

• How can we have confidence that our code executes in a
safe (and correct, ideally) fashion?

• Approach: build up confidence on a function-by-function /
module-by-module basis

• Modularity provides boundaries for our reasoning:
– Preconditions: what must hold for function to operate correctly
– Postconditions: what holds after function completes

• These basically describe a contract for using the module
• These notions also apply to individual statements (what

must hold for correctness; what holds after execution)
– Stmt #1’s postcondition should logically imply Stmt #2’s

precondition
– Invariants: conditions that always hold at a given point in a

function

int deref(int *p) {
 return *p;
}

Precondition?
(what needs to hold at the time of entering the function for
the function to operate correctly)

/* requires: p != NULL
 (and p a valid pointer) */
int deref(int *p) {
 return *p;
}

Precondition?
(what needs to hold at the time of entering the function for
the function to operate correctly)

void *mymalloc(size_t n) {
 void *p = malloc(n);
 if (!p) { perror("malloc"); exit(1); }
 return p;
}

Postcondition?

/* ensures: retval != NULL (and a valid pointer) */
void *mymalloc(size_t n) {
 void *p = malloc(n);
 if (!p) { perror("malloc"); exit(1); }
 return p;
}

Postcondition: what the function
promises will hold upon its return

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += a[i];
 return total;
}

Precondition?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access?
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* ?? */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires?
(3) Propagate requirement up to beginning of function

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: a != NULL &&
 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: a != NULL &&
 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: a != NULL &&
 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

Let’s simplify, given that a never changes.

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

?

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

�

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

�

The 0 <= i part is clear, so let’s focus for now on the rest.

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

?

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

?

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

?

How to prove our candidate invariant?
n <= size(a) is straightforward because n never changes.

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

?

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

?

What about i < n ?

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

?

What about i < n ? That follows from the loop condition.

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

?

At this point we know the proposed invariant will always hold...

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant: a != NULL &&
 0 <= i && i < n && n <= size(a) */
 total += a[i];
 return total;
}

… and we’re done!

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant: a != NULL &&
 0 <= i && i < n && n <= size(a) */
 total += a[i];
 return total;
}

A more complicated loop might need us to use induction:
Base case: first entrance into loop.

 Induction: show that postcondition of last statement of
 loop plus loop test condition implies invariant.

Questions?

