L5161 Arnouncements Home work I was due yesterday. Project I will be released Wednesday morning Due 2/14/18 (Wednesday) Syntax of encr scheme Symetric key encrypton

Alèle

K

M

attacker

Attacker attacker (does not know K) Security: C keygen -> K does not reveal Enc(K, M) -> C Imag Taiphertext any information on Mother Dec (K,C) -> M than length Correctness: FK; FM, FC = Enc(K,M),

That Dec(K,C) > M

kerchoff's principle: attacker knows enc algorithm but not keys

Possible definition Pr [CA(C) -> M] = negl.

bad:

Idea: attacker does not learn any partial enformation about M, any f(M)

other than length

Security game: IND-KPA plantext attack indistriguishability under plantext M_0, M_1 Keygen() -> K. € random < {0,13 C = Enc(K, Mb)Fr[A(C) -> b] < 1 they

IND-KPA secure Show: Pr[cA(c) - b] = 1/2 Ch.

K random is bran CA Mo, M, C= Mh +k Given C, the message Mb could have been mo or m, with same probability. $C = M_0 \otimes (M_0 \otimes C)$ $C = M_1 \otimes (M_1 \otimes C)$ to prob/2 prob/2 > ti Pr[cA(c) +b] = 1/2 Limitations: - only use once - message site is < key site >> Bymmetric-key encryption fixes these.

- reuse the key for multiple encryptions Block uphers Alice Bob Block apher E: {0,13 x 40,13 -> {0,13^ Ex: 10,13" -> 10,13" $f_{K}(M)=C$; $D_{K}(C)=M$ 1) : E is a permutation (one-to-one/bijection) E(K, H) -> C
Scrawbles

ecunty: Ex "behaves like" a per randone permutation

Symmetric-Key Cryptography

CS 161: Computer Security

Prof. Raluca Ada Popa

Jan 30, 2018

Announcements

 Project 1 out this week, due 2 weeks from release date

Special guests

Alice

Bob

The attacker (Eve - "eavesdropper",
 Malice)

Sometimes Chris too

Cryptography

- Narrow definition: secure communication over insecure communication channels
- Broad definition: a way to provide formal guarantees in the presence of an attacker

Three main goals

- Confidentiality: preventing adversaries from reading our private data,
- Integrity: preventing attackers from altering some data,
- Authenticity: determining who created a given document

Modern Cryptography

- Symmetric-key cryptography
 - The same secret key is used by both endpoints of a communication
- Public-key (asymmetric-key) cryptography
 - Sender and receiver use different keys

Today: Symmetric-key Cryptography

Whiteboard & notes:

- Symmetric encryption definition
- Security definition
- One time pad (OTP)
- Block cipher

Advanced Encryption Standard (AES)

- Block cipher developed in 1998 by Joan Daemen and Vincent Rijmen
- Recommended by US National Institute for Standard and Technology (NIST)
- Block length n = 128, key length k = 256

AES ALGORITHM

Just giving you a sense, no need to understand why its so

Algorithm Steps - Sub bytes

- each byte in the state matrix is replaced with a SubByte using an 8-bit substitution box
- $b_{ij} = S(a_{ij})$

Shift Rows

- Cyclically shifts the bytes in each row by a certain offset
- The number of places each byte is shifted differs for each row

Why secure?

- Not provably secure
- By "educated" belief/assumption: it stood the test of time and of much cryptanalysis (field studying attacks on encryption schemes)
- Various techniques to boost confidence in its security
- If we were to even have something probably secure, P is not NP

Uses

- Government Standard
 - AES is standardized as Federal Information Processing Standard 197 (FIPS 197) by NIST
 - To protect classified information
- Industry
 - SSL / TLS
 - SSH
 - WinZip
 - BitLocker
 - Mozilla Thunderbird
 - Skype

But used as part of symmetric-key encryption or other crypto tools

Symmetric-key encryption from block ciphers

Why block ciphers not enough for encryption by themselves?

- Can only encrypt messages of a certain size
- If message is encrypted twice, attacker knows it is the same message

Original image

Eack block encrypted with a block cipher

Later (identical) message again encrypted

Symmetric key encryption scheme

- Can be reused (unlike OTP)
- Builds on block ciphers:
 - Can be used to encrypt long messages
 - Wants to hide that same block is encrypted twice
- Uses block ciphers in certain modes of operation

Electronic Code Book (ECB)

- Split message M in blocks P₁, P₂, ...
- Each block is a value which is substituted, like a codebook
- Each block is encoded independently of the other blocks

$$C_i = EK(Pi)$$

Encryption

Electronic Codebook (ECB) mode encryption

KeyGen = key gen of block cipher
break message M into P1|P2|...|Pn
Enc(K, P1|P2|...|Pn) = (C1, C2,..., Pn)
Dec(K, (C1,C2,...,Pn)) = (P1, P2, ..., Pn)

Decryption

Electronic Codebook (ECB) mode decryption

What is the problem with ECB?

Does this achieve IND-KPA?

No, attacker can tell if P_i=P_i

Original image

Encrypted with ECB

Later (identical) message again encrypted with ECB

CBC: Encryption

Cipher Block Chaining (CBC) mode encryption

IV may not repeat for messages with same $P_{1,}$ choose it at random; not secret, part of ciphertext

```
break message M into P1|P2|...|Pn
Enc(K, P1|P2|...|Pn) = (IV, C1, C2,..., Pn)
Dec(K, (IV,C1,C2,...,Pn)) = (P1, P2, ..., Pn)
```

CBC: Decryption

Cipher Block Chaining (CBC) mode decryption

Original image

Encrypted with CBC

CBC

Popular, still widely used Achieves IND-KPA, and more (IND-CPA)

Caveat: sequential encryption, hard to parallelize

CTR mode gaining popularity

CTR: Encryption

Enc(K, P1|P2|P3) = (nonce, C1, C2, C3)

Counter (CTR) mode encryption

Nonce is similar to IV for CBC, one should not use the same nonce for two messages; choose it at random

CTR: Decryption

$$Dec(K, (nonce, C1, C2, C3)) = (P1, P2, P3)$$

Counter (CTR) mode decryption

Note, CTR decryption uses block cipher's *encryption*, not decryption

CBC vs CTR

Security: Both IND-KPA, and even IND-CPA If you ever reuse the same nonce, CBC might leak some information about the initial plaintext blocks up to a first difference between two messages. CTR can leak information about various blocks in the message.

Speed: Both modes require the same amount of computation, but CTR is parallelizable

Summary

- Encryption protects confidentiality
- IND-KPA is a security game expressing message indistinguishability
- OTP is secure if used only once
- Block ciphers help build symmetric-key encryption schemes with reusable sizes and arbitrary message lengths by chaining them in cipher modes