
Lecture Notes: 4/6/09

-Midterm a week from this Wednesday, 7pm, 306 Soda

I/O optimization

-Sun and IBM made huge automated tape libraries, but most optimizations deal with
hard disks.
-A sector is normally 512 bytes, but you can treat it as part of a larger block.

Small blocks:

 good:
 -small I/O buffers (when doing i/o you have buffer usually controlled by operating
system. When reading, a block is copied into the buffer and accessed from there. No
longer an issue because memory is cheap).
 -Quickly transferred: A 512k block would be fast but 16k block would be slow.
 -read/write individually has a lot more CPU overhead. seek/latency overhead for
every block.
 -Less internal fragmentation. (not really an issue these days because memory/
disk is so large that loss of a few blocks is less than round-off error) e.g. a 2 tb disk is
now 300-400 dollars

 bad:
 -High overhead on disk: error correction bits, bits between blocks that identify
track and cylinder, etc... wasted space. Also, inter-record gaps (space between blocks)
 -More entries needed in file descriptor (file maps, tree structure, every block
needs a pointer to it).
 -Random allocation = more seeks. If they arenʼt all clustered youʼd have to seek
a lot.

 -Optimum block sizes range from 2K to 8K bytes. Probably bigger these days,
because these statistics are old. Not huge, because transfer time hasnʼt gotten that
must faster. perhaps 2k - 16k bytes now.
 -Bekreley Unix uses 8K blocks basic (hardware) block size in VAX is 512 bytes.
 -Berkeley Unix also uses fragments that are 1/4 the size of the logical block size.
Instead of just allocating blocks, you can also use “quarter blocks.” If a block isnʼt used it
can release a block in quarter-block increments. This allows you to allocate large blocks
but not waste space.

Disk Arm Scheduling:

-Suppose you have a queue of requests to the disk scattered around disk surface (see
figure 1.1).

Max Loh

head

 requested data

Fig. 1.1

Fig. 1.2 (scan): head seeks upwards, then downwards, like an elevator.

Fig. 1.3 (Cscan): head seeks in one direction only.

Algorithms:
FIFO - first come first serve (self-explanatory)
SSTF - shortest seek time first: handle nearest request first. Reduces arm
movement, results in greater overall disk efficiency.

-Problem: starvation, e.g. disk heavily loaded, 3 open files. Two files near
center of disk, other near edge. Disk ignores last file.

Scan - like an elevator, up and down. Move arm in one direction, servicing
requests, until there are no additional requests in that direction. Then, reverse
direction and continue (see figure 1.2)

Max Loh

-Problem: files near the center get visited twice as much as files located
near the edges.

 -Works well under heavy load but may not get shortest seek time.
 -Neglects files in periphery (edge) of disk

CScan - (circular scan) like a one-way elevator. Moves only in one direction.
When it finds no further requests in the scan direction it returns immediately to
the furthest request in the other direction, and it resumes the scan (see fig. 1.3).

-This treats all files equally, but somewhat higher mean access time than
Scan.

 -Someone did an experiment and assumed requests were scattered all randomly
around the disk surface and independent, and simulated this. They found that FIFO is
terrible, the other three same but SSTF a little better. Performance estimate: FIFO 1,
sstf 4.5, scan 4, cscan 4.
 -Whatʼs wrong with the studies? Accesses are more structured, not randomly
scattered. We should expect a lot of spatial locality. One 10 MB file allocated randomly
in 4k blocks is dumb. What we should do is lay out 2500 consecutive blocks, and read
sequentially. Also, we usually donʼt have hundreds of files open (3 or 4 at most). If we
just read a block, chances are the next block is the one we want next.

 Question: Has anyone ever done a smarter/adjusted version of the study?
 Answer: Some people traced the performances of the algorithms on a real
system. Similar results.

 Another problem: If you have 3-4 files and 2 processes, a queue of 50 disk
requests is unlikely (more like 2 or 3 disk requests at a time). Most of the time, disk
queue is low.
 However, imagine a database system doing query processing for a bank, 25
tellers all doing queries. Accesses are really all random. Itʼs modern so you have a 2TB
disk. In that case you really would have this circumstance and it would make sense to
make a better algorithm than SSTF (Traveling salesman problem).
 The distance would not be Euclidean (see picture). Youʼd have to take into
account rotational latency and head seek time. Unfortunately, only disk controller knows
location of head and everything, and it doesnʼt have information about pending
requests.

In conclusion, SSTF has best mean access time. Scan or CScan can be used if there is
danger of starvation, but SSTF is mostly preferable. Note that in many circumstances,
the disk arm scheduling algorithm has little effect on performance, especially if seeks
are seldom required (as in whenever there is contiguous allocation of data on hard
disk).

Of or related to real-world business (professor going off on tangent, probably not on
exam):

Max Loh

 -Problem with disk companies: Comprised of physicists and mechanical
engineers. Mechanical engineers know about spinning heads. physicists know about
magnetism. no one knows about computer/operating systems. All they know is the
signals coming over that wire. They turn their product 4 times a year, always their best
technology, but no understanding of systems, canʼt think higher-level of optimization in
context of a system.

 -Disk companies suffer from Oligopsony -- economy dictated by a small number
of buyers. Make a popular disk, make a small amount of money. Make an unpopular
product, go bankrupt. I/O business is sketchy.

Rotational Scheduling

 -Most of the time, no one bothers. It is rare to have more than one request
outstanding for a given cylinder.
 -SRLTF (shortest rotational latency first) works well.
 -Useful for writing data, if we donʼt have to write back to the same location. Letʼs
suppose you read a bunch of blocks on disk and want to rewrite them. Two choices:
write them back to where they were, or write somewhere else and change File
Descriptors. In the latter case, we can choose to write directly under the head as disk
spins. No rational latency.

 -Rotational scheduling is difficult using logical block address (LBA): modern
disks, at the level of the connector, do not know the arm or rotational position or block
number. So you can guess, but thatʼs about all you know.
 -However, rotational and seek scheduling can be usefully combined (shortest
time to next block) if done inside disk controller.

Skip-sector or Interleaved disk allocation
 -Imagine you are reading the blocks of a file sequentially and quickly, and file is
allocated sequentially/contiguously.
 -Problem: usually, you will tend to read a block just after start of the next block
has already passed (see figure 2.1).
 -Solution is to allocate file block to alternate disk blocks or sectors. That way the
block wonʼt have passed before we want to read it. See figure 2.2.

Max Loh

Block 2 Block 2
Block 1 Block 1

Track offset for head and cylinder switching
 -It takes time to switch between heads on different tracks or cylinders. Thus we
may want to skip several blocks when moving sequentially between tracks, to allow the
head to be selected. See figure 3.

Figure 3: Switching from the top disk to the bottom disk in illustration takes time. Instead
of having the next block continue at the same location we left off (illustrated by gray
dot), skip some blocks to allow for switching latency (illustrated by black dot). This
avoids a situation in which we “miss” the next block and the head must wait an entire
disk rotation before continuing.

File Placement
 -Seek distances will be minimized if commonly used files are located near the
“center” of disk. See figure 4.
 -Even better results if reference patterns are analyzed, and files that are
frequently referenced together are placed near each other.

Max Loh

Figure 2.1: The head reads block one but an
interrupt prevents it from reading block 2. By
the time the interrupt completes, the disk has
spun past block 2. Now we must wait for an
entire spin cycle.

Figure 2.2: If we alternate the
numbers of the blocks, it will
accommodate for interrupt
disruptions while reading the disk.

 -Frequency of seeks and queueing for disks will be reduced if commonly used
files (or files used concurrently) are located on different disks. E.g. spreading the paging
data sets and operating systems data sets over several disks.

Figure 4 (the red circle illustrates the “center” of the disk)

Q: disks with multiple heads?
A: cylinders have one head per surface. There are disks with multiple heads running in
parallel, reading 8 tracks at once, 8x bandwidth. I donʼt think anyone has had a disk
where you have multiple arms serving the same set of platters. If so, made long time
ago. Did have one case: One arm serving multiple sets of platters. See fig 5. The
benefit of this model is that it is cheap (heads are expensive, platters are cheap).

Figure 5: one head serving four platters.

Disk Caching:

 -By electronic standards, disks are slow (disk access takes milliseconds, memory
access takes nanoseconds).
 -We would like to keep a cache of recently used disk blocks in main memory.
When reading blocks, store them in the cache. When writing blocks, write to the cache
 -Recently read blocks are retained in cache until replaced.
 -Writes go to disk cache, and are later written back.
 -This scheme typically includes index blocks for an open file.

Max Loh

 -Problem: OS always makes the assumption that when writing to disk, itʼs stored
and safe. If it thinks itʼs on disk but really on cache/memory, then when you lose power
you have a problem.
 -Solution 1: power backup.
 -Solution 2: donʼt complete I/O until it is really on magnetic physical storage.
 -Solution 3 (really truly paranoid): write it to disk, read it back to compare if it got
written correctly. High-security bank records do this. There is a trade-off with
performance, of course.

 -Caches are used for read-ahead and write-behind. Just put the data into cache,
and cache writes to hard disk as fast as it can.
 -Disk caches work well with hit ratios of 70-90%
 -It is possible to cache in the disk controller itself, instead of main memory. Most
controllers these days 512k to 16MB of cache/buffer in the controller. Mostly useful as
buffer, not cache, since the main memory cache is so much larger.

Prefetching and Data reorganization:

 -A lot of files are read sequentially. To reduce seeks, we should therefore allocate
the files sequentially. If blocks are laid out sequentially, we can just keep reading the
disk quickly and continuously.
 -One approach: If the data is too fragmented, dump the whole disk and write it
back sequentially. However it can break, lose data.
 -It is useful to make sure that the physical layout of the data reflects the logical
organization of the data -- i.e. logically sequential blocks are also physically sequential.
Thus it is useful to periodically reorganize the data of the disk.

Data replication:
 -Frequently used data can be duplicated so you can just seek to the nearest one
and read it.
 -This means that on writes, extra copies must either be updated or invalidated.

ALIS - automatic locality improving storage:
 -Combines many techniques: writing data sequentially, data replication, etc.
 -Autonomic computing: computer system manages itself. Smart storage system.
 -Best results obtained when techniques are combined: reorganize to make
sequential, cluster, and replicate. Must make sure itʼs reliable. If system messes up, you
will lose a large amount of data.

RAID
 Observations:
 -Small disks cheaper than large ones (due to economies of scale)
 -1980ʼs small disks cost millions, large disks cost thousands. Most people just
bought numerous small disks.
 -However, failure rate is constant, independent of disk size. Mean time is 50
years for 1 disk. But 50 disks, 1 per year approximately.

Max Loh

 Solution:
 -Therefore, letʼs design a system where thereʼs redundancy so if

disk fails we can reconstruct data.
 -Interleave the blocks of the file across a set of smaller disks, and

add a parity disk. See fig 6: Mirror disks. Parity disk is the XOR of all the bits
on the other disks.

 -We presume only one disk failure, and we know which disk failed;
therefore, we can reconstruct the entire failed disk.

 -Advantage: Improves read bandwidth
 -Problem: This means that we have to write the parity disk on every

write. This becomes a bottleneck.
 -Solution: Interleave on a different basis than the number of disks.

That means that the parity disk varies, and the bottleneck is spread around.
 -Types of RAID:
 RAID 0 - ordinary disks
 RAID 1- replication (figure 6.1)
 RAID 4 - parity disk in fixed location (figure 6.2)
 RAID 5 - parity disk in varying location (figure 6.3)

“Berkeley invention” Log-structured file system:
 -Suppose you are doing a lot of disk caching, and it is working pretty well. Not
very many disk reads, because most reads can be read from the data cache.
 -However, there is a reliability issue: Every write is going to the surface of the
disk. So now, all disk traffic is writes. Every write typically requires a seek.
 -A log-structured file system writes all the blocks sequentially, and updates file
descriptors to point to the correct place. It is called “log” because it writes in the shape
of a log. This technique, although successfully implemented in some research projects,
is typically superfluous.

Max Loh

Figure 6.1: simply
have a replica disk
to supplement the
original.

Figure 6.2: Parity disk keeps XOR of interleaved disks

1 5 2 6 3 7 4 8 P1 P2

1 P1 2 5 3 6 4 7 8P2

Figure 6.3: Parity disk in varying location

