
CongJie Huang
CS162

4/8/09

Naming

 *Any system has file descriptors, a data structure or record to
describe a
 file.
 *File descriptor information has to be stored on disk so it will stay
around
 even when the operating system doesn't. (Assuming the disk contents
are
 permanent.)
 *In Unix, the file description is stored in a fixed-size array on disk.
File
 descriptors also contain protection and accounting information.
 *A special area of disk is used for this, so that it won't be
overwritten.

Inode Fields

 *Reference count (# time open) - how many processes open.
 *Number of links to file
 *Owner's user ID, owner's group ID
 *Number of bytes in file
 *Time file was last accessed, time last modified, last time Inode
changed
 *Disk block address, indirect blocks
 *Flags: Inode is locked, modified, or waiting on another lock.
 *File mode: (type of file: char, special, directory, block special,
regular,
 symbolic link, socket)
 *Protection information: (set user ID on execution , set group ID on
 execution, read, write, execute permission, sticky bit)
 *Count of shared locks in Inode
 *Count of exclusive locks on Inode
 *Unique identifier
 *File system associated with this Inode.
 *Quota structure controlling this file
Of course, users want to use text names to refer to files. Special
disk
structures called directories are used to tell what descriptor indices
correspond to what names.

Approach #1: Have a single directory for the whole disk. Use a special
area
of disk to hold the directory.
 *Directory contains <name, index> pairs.
 *Problems
 **If one user uses a name, no one else can.
 **If you can't remember the name of a file, you may have to look
through a
 very long list.
 **Security problem - people can see you file names (which can be
dangerous)
 *Old personal computers (pre-Windows) work this way.

Approach #2: Have a separate directory for each user (TOPS-10 approach).
This
is still clumsy: names form a user's different projects get confused.
Still
can't remember names of files.
 *IBM's VM is similar to this. Files have 3 part names: <name, type,
 location>, where location A,B,A, etc. (i.e. which disk) Very
painful.
 (Also file names limited to 8 characters).

Approach #3: Unix Approach: Generalize the directory structure to a
tree.
 *Directories are stored on disk just like regular files (i.e. file
descripto
 with 13 pointers, etc)
 **User programs can manipulate directories almost like any other file.
Only
 special system programs may write directories.
 *Each directory contains <name, file descriptor index (Inode#)> pairs.
The
 file pointed to by the index may be in another directory. Hence, get
 hierarchical tree structure. Names have slashes separating the
levels of
 the tree.
 *There is one special directory, called the root. This directory has
no
 name, and it the file pointed to by descriptor 2 (descriptors 0 and 1
have
 other special purposes).
 **Note that we need ROOT. Otherwise, we would have no way to reach
any
 files. From root, we can get anywhere in the file system,
 *Full name is the path name=, i.e. full name from root.
 **A directory consists of some number of blocks of DIRBLKSIZ bytes,
where
 DIRBLKSIZ (Directory BLock Size) is chosen such that it can be
transferred
 to disk in a single atomic operation (e.g. 512 bytes on most
machines)
 **Each directory block contains some number directory entry structures,
which
 are of variable length. Each directory entry has info at the front
of it,
 containing its Inode number, the length of the entry, and the length
of the
 name, contained in the entry. These are followed by the name padded
to a
 4-byte boundary with null bytes. All names are guaranteed null
 terminated.
 *Note that in a Unix, a file name is not the name of a file. It is
only a
 name by which the kernel can search for the file. The Inode is
really the
 "name" of the file.
 **Each pointer from a directory to a file is called a hard link.

 **In some systems, there is a distinction between a "branch" and a
"link"
 where the link is a secondary access path, and the branch is the
primary
 one (goes with ownership).
 **You "erase" a file by removing a link to it. In reality, a count is
kept
 of the number of links to a file. It is only really erased when the
last
 link is removed.
 **To really erase a file, we put the blocks of the file on the free
list.

