Jingtao Wang — Security
4/22/09
Adam Kauk

The phase 4 implementation doesn’t need threads because read and accept are non-blocking.

Review: Authentication vs. authorization. Authentication is verifying who a user is;
authorization is allowing a user to perform an operation.

Access control matrix: Whether a user can read or write a file is controlled by the access control
matrix, except that it isn’t actually implemented with a a matrix, because the matrix would be so
sparse that it wouldn’t be worth it. Instead it is either implemented with an access control list
(associated with a file) or a capability list (associated with a user).

An access control list is used more that access control list, because it makes it easier to revoke
capabilities.

Challenges to access enforcement

Abuse of privileges

Imposter of Trojan Horse

Listeners

Spoilers (using up all of the resources)

Doctored versions of standard program (this is especially easy with open source soft-
ware, e.g. firefox)

Penetration: phishing, fake shells, fake software, people forgetting to log out.

Buffer overflow
Strepy is vulnerable to buffer overflow, as are other functions that use buffers

Possible alleviations:

Signatures — put a signature after the stack variables, so that if the signature is modified,
we know that a buffer overflowed. Problem: People can avoid overwriting signatures;
thus, this method is not fool-proof.

New functions (instead of strcpy). Problem: good, but nobody uses them.

Checking the length of buffers. Problem: same as last.

Don’t use C. Problem: this idea is 30 years too late.

Program scanners. These programs will warn you when you might be opening your
program to buffer overflows. Problem: not all warnings are actual vulnerabilities. Also,
there may be hundreds of these warnings.

Famous stack overflow example: Morris Internet Worm



Timing attack: Tenex password checking: Store the guessed password in such a way that it
overlaps pages in memory. How long the authentication takes will tell whether the first part of
the password was correct or not. In this way, a password can be discovered one letter at a time by
brute force. This problem has since been solved by making programs waiting a set amount of
time before responding to a password authentication with true or false.

Once a system is penetrated, it is often impossible to resecure.
Countermeasures to password stealing:

e Call backs: When a user logs in, the server drops the call and then calls back to the
number where the server is supposed to be. If it was a false user that signed it, it is thus
stranded.

e Being a non-privileged user: When you are a non-privileged user, a virus that you
somehow allow in also does not have privileged user status.

e Use plausibility checks on money transfers

e Get humans involved (e.g. humans have to approve money transfers)

Inference Control (i.e. how do we make sure that people can’t figure out private information
from public information):

e There is no good solution

e Possible solution: randomize data—i.e. introduce small error

e Possible solution: restrict queries that are allowed of the public data

Confinement problem: How do we protect users and businesses who are both suspicious of each
other.

e Some services leak information

e Some services collect information over time, which can be dangerous

e Sometimes, confidential information is encoded in bills.

Viruses (they are bad)

Antivirus techniques:
e Scan for virus signatures (this may need to involve decryption).
e Run on virtual machine, then search for virus signatures again.
e There are no good solutions (is this problem NP complete? Is it harder?)



