;login, April, 1997, 22, 2.

Attheend of a session, the filesystem is characterized by
performing a recursive checksum on all files and checksum-

tool and used by the comparison tool either on a file by file
basis or in a batch mode. '

Because the system was developed to employ only user level
tools (the only administrative changes were to allow NFs -
export of the home area on the work system), some pieces of
state live in the filesystem as regular files: The checksum
files and files to act as deleted file markers are distinguished
by naming convention only, being “invisible” 1o the user by
virtue of being dot files. Combined with the need not to inod-
ify the system, these features may have caused the system to
be described as a hack during the questions, but Dan does
have a systemi that allows him to work that he constructed .
with user-level tools.

Invited Talks

If Cryptography is So Great,
Why Isn't it Used More?

Matt Blaze, AT&T Labs

Summary by Gordon Galligher
<gorpong @psa.pencom.com>

This talk was based much more on the technical reasons for
not using cryptography than on the various political reasons
that abound, especially in the US. Matt spent some time (ten
minutes) covering the lowest level of information one needs
to know about cryptographic technology to understand the
rest of the talk. These are summarized below:. . =

Message Authentication Code (MAC) Functions provide
integrity checking and authentication basedona shared key
to compute a code for the message. This has been ali there
was for the past 3,900 years. Only in the past 100 years have
mathematicians been concerned with cryptography.

Secret-key Cryptography requires shared secret of the
encryption key. There are block ciphers, which encrypt
fixed-size blocks, and stream ciphers, which encrypt using a
sequence of “mask” bits,

Public Key Cryptosystems are based on two keys, one for
encryption and one for decryption. It is also based on the
assumption that one cannot calculate the private key based
on the public key only. This is a conceptually simple con-
cept, but it has some annoying details. Most systems use
large numbers (1,000 bits), so-the encryption is very slow
and care must be taken for small messages and the actual key
generation.

"The Usenix Association

CONFERENCE REPORTS

Newsletter,

Secure Hash Functions reduce a message toa fixed size, then
compute a signature. They are One-way operations and are
generally used as “fingerprints” for a particular message.

Matt then went right into his top ten cryptography problems,
First, you never needeg ctyptography before, but you do
now. “Important stuff” wag typically handled in petson, by
hand via contracts, letters, messengers, etc. Now it is done
electronically, and the best (i-e., cheapest, fastest) medium is
less secure and will gel worse. The Internet and cellylar
phones are prime examples,

Second, no one realizes this necessity. Everyone agrees that
security is a great thing, but no one wants to pay for it. There
is a slight cost investment, but cryptotechnology is fairly
inexpensive, There is decreased petformance, but this is also
1ot a major problem with faster and faster hardware. The
largest problem is that it is harder to use! To truly be effec-
tive, it must be transparent. As a example of this, he asked
the andience if they thought they could get their boss'to use
PGP- the moral being that it would be too difficult and the
boss would just not do it: '

Third, you cannot really put cryptography where you need it.
There are problems with performance vs, security vs. func-
tionality. There are some engineering issues such as caching,
memory (the plain text can still be seen in memoty}, and
compression. Using compression really screws up cryptogra-
phy, plus if something is encrypted, it is damaging to the
compression algorithm, Security often favors moving cryp-
tography close to the application to increase control, but
usability concerns usually end up pushing the cryptography

away from the application,

Fourth, secret keys often aren’t. There are some implicit
assumptions made in these systems: the key space is too
large to make an exhaustive search for the correct key a prac-
tical alternative; the key is truly random; and the key is kept
from the “bad guys.” Furthermore, weaknesses in this aspect
are extremely common,

The technology to search various keys typically improves
exponentially because historically the performance:cost ratio
of technology doubles approximately every 18 months
(Mocre’s Law). A recent study using this has shown that a
90-bit key should be sufficient as a secret key for the next 20
years. Unfortunately, the Data Encryption Standard (DES)
uses a key that is only 56 bits long, with the exportable ver-
sion limited fo 40 bits. This is clearly less than 90 bits, and
Matt mentioned that this is “wocfully insecure.”

AR 1997 clogin: A7



CONFERENCE REPORTS

Fifth, public key infrastructure does not exist yet. In theory,
the use of public key algorithms eliminates the need for a
pre-agreement between people who want to share informa-
tion. The fact is that if there is no central authority, it is diffi-
cult to find the person’s public key; and once we find a key,
how do we know it is the “real” one? One answer is to use a
certificate authority to “bind” a particular key to its owner.
This authority must, however, be very well known with a
very well known key. This requires a certificate infrastruc-
ture that is just not available today. This does not even begin
to touch the situation that certification is not the same as
trust. “Trust management” is an open research area,

‘Sixth, cipher algorithms are amazingly hard to design. Most

of the secret key ciphers are just ad hoc. Many times they are
designed specifically to resist known attacks, which may or
may not have them susceptible to new attacks. Public key
ciphers attempt to reduce some of the “harder” problems,
such as factoring; but the proofs of this “secureness” are hard
to come by. The world has remained relatively safe only
because most people do not know how to create these
algorithms. '

Seventh, cryptography protocols are really, really hard to
design. The algorithms are merely the building blocks to cre-
ate the actual protocols. It is incredibly hard, but it looks
quite easy, so people try to design their own constantly. This,
by the way, is one of the things that keeps the “bad guys” in
business.

Eighth, designing a secure application is even harder. The
protocol is merely a mathematical abstraction, wheréas the
designer of the application must pick the most appropriate
protocol and must figure out the assumptions in the protocol
and be sure to meet them. Even simple examples are difficult
because no one really knows if any crypto application is
truly secure in practice. All we know is that no one has come
forward with information on how it was broken, This com- -
ment really chilled me. It is not even “no one has broke it
but simply “no one has claimed to have broken it,” and we
really do not know. ’ e -

Ninth, cryptography implementation is hard as well. No one
really knows how to write correct software. There are always
things such as data type mismatch errors, endian errors,
especially when cross-platform development occurs. In some
cases important steps of the protocol are left out, possibly
resulting in sending cleartext instead of ciphertext. Matt
mentioned that there was a fairly popular implementation
that made a subroutine call and did not check the return
code. That subroutine was to set the cipher key to use for the
ensuing communication, There was a certain set of situations
that could cause a null key to be generated, which is the
same as no key. Because the return code was not checked,
the program had no way of knowing that there was no

48 ;login: voL22 . NO.2

encryption being performed. Furthermore, generic security
bugs do not cause obvious failures in the application.

Tenth, cryptography does not magically make insecure plat-
forms secure. Examples of standard security problems
include network breakins, viruses, sendmail, users, etc. Even
most of the “secure” platforms are not truly secure, because
they may have the information left in their memory cache or
paging areas. The casiest attacks to use typically do not
attack the areas that are easiest to protect with cryptography.
This means that cryptography really does not address most
of the security threats that exist today.

Problem ten was not the last one. There are many other tech-
nical problems, such as security bugs not behaving like other
bugs and the crucial ene that no one is allowed to make a
mistake when designing/running applications! There are also
a number of social, political, and economic issues with intro-
ducing encryption technology to regular use. As an example
of this, Matt asked who bought the first FAX machine. When
this person bought it, to whom were the FAXes sent? There
are also “crazy government regulations” that keep crypto- -
graphic techniques classified as a munition, thus limiting the
export possibilities of the technology. When faced with try-
ing to get around the crazy hoops of the US Government to
export encryption technology, many companies just give up
and do not include encryption technology in their products.

Matt further mentioned that what cryptography does is really
close to what we need, in terms of security, and that it is very
tempting to pretend that it does solve the problem. He closed
with a very appropriate quote: “in theory, theory and practice
are the same, but in practice, they’re different” Nowhere is it
truer than in cryptography.

The Inktomi Search Engine
Eric Brewer, University of California, Berkeley

Summary by Jerry Peek -
<jpéek@jpeek.com>'

Inktomi is one of several popular search engines on the
World Wide Web. Like other search engines, Inktomi lets
Web users hunt for Web pages that contain a word or phrase.
The world of search engines is competitive, and Eric Brewer
didn’t miss many chances to say where Inktomi is superior to
other search engines, especially to AltaVista. His talk also
had plenty of technical information, including some about
AltaVista that wasn't covered in the AltaVista session. [Also
see the next session report.]

In general, search engines have three parts. A crawler
searches the Web for pages (documents) by following hyper-
text links from other pages. A database stores information
about the pages. And an HTTP interface (basically, a Web
server) handles users’ queries on the database.



