antltfy il
e

: i
: i ;
s i
..........
. ‘ ‘
o I
N [
MHHIRE '
Hi
1 H
il
11
i

.

i

\Mnl‘ll\d \l\“ |

i iilm e

i
il mu”umwi il
it “mn--;;u il

L
“‘Virtual machines have finally arrived.
Dismissed for a number of years as
merely academic curiosities, they are
now seen as cost-effective techniques -
for organizing computer systems
resources to provide extraordinary

system flexibility and support for certain
unique applications.’’

Ry

i '

i

}H!‘ 1Iil‘ P”L ii!l

H]! y:,ilmllml‘: :

\
' :I\H'l”:“ .T

H’ i
" LI

1

g A

i nad o t
"’
|
Il
1|‘
i
Iy
i
I
] .
i
! !
(RO
i
Lfi
{
L

Survey of Virtual Machine Research

Robert P. Goldberg

Honeywell Information Systems
and Harvard University

Introduction

The complete instruction-by-instruction simulation of
one computer system on a different system isa well-known
computing technique. It is often used for software develop-
ment when a hardware base is being altered. For example, if
a programmer is developing software for some new special
purpose (e.g., aerospace) computer X which is under
construction and as yet unavailable, he will likely begin by
writing a simulator for that computer on some available
general-purpose machine G. The simulator will provide a
detailed simulation of the special-purpose environment X,
including its processor, memory, and I/O devices. Except
for possible timing dependencies, programs which Tun on
the “simulated machine X can later run on the_ ‘real
machine X”* (when it is finally built and checked out) with
identical effect. The programs running on X can be

-a

arbitrary — including code to exercise simulated I/O
devices, move data and instructions anywhere in simulated
memory, or execute any instruction of the simulated
machine. The simulator provides a layer of software
filtering which protects the resources of the machine G
from being misused by programs on X.

If several different programmers are developing software
for X concurrently, it may be possible to run a number of
copies of the simulator under an operating system on G.
Alternatively, a special, more powerful version of the
smulator may be developed which itself is a time-sharing
system and supports multiple users. In either case, the
result would be the illusion of multiple copies of the
hardware-software interface of machine X on machine G.

Since machines X and G may be arbitrarily chosen, they
may be significantly different in structure. This may imply
a very large simulation program and significant overhead for

'COMPUTER

R ——

PPN

the simulation of each of Xs instructions. As a result, it is

- possible to find the machine slowed down by as much as

1000 to 1. Consequently, simulation is generally used only

for software development and almost never in a production -

mode. p

While X and & may be arbitrarily different, it is also
possible to choose them to be identical — i.e., X=G. In this
case we would be supporting many copies of the hardware-
software interface of G on one machine G. Each user would
have his own private copy of a machine G and could select
the operating system of his choice to run on his “private”
computer. He could also choose to develop or debug his
own operating system. As before, since each instruction for
the simulated G is actually being interpreted by software on
the real G, there can be no way for one simulated machine
to interfere with another.

If the real and simulated machines are identical then it
may be possible to construct a simulator in which programs
run with a slow-down of only about 20 to 1.* While this
may be a considerable improvement over the more general
simulator, it seems odd that programs being run on native
hardware, i.e., the machines they were written for, should
have to be slowed down at all. Considerations of this kind
have led to the development of much more efficient
simulators for multiple copies of a machine on itself.** In
these systems, much of the software for the simulated
machine executes directly on the hardware without soft-
ware interpretation. Systems of this kind are called virtual
machine systems, the simulated machines are called virtual
machines (VMs), and the simulator software is called the
virtual machine monitor (VMM).

Whether or not it is possible to construct a VMM
depends upon the subject machine’s architecture. Even for
systems in which virtual machine monitors have been
constructed, there still remain many interesting questions
concerning performance and use.

IBM’s improved virtual machine support for System/370
(i.e., VM/370 Release 2),°2:** the application of virtual
machine systems to significant problems in data security/
reliability,*>'*+5! %% and the use of virtual machine tech-
niques to reduce software development costs' 27 are just

some of the reasons for the widespread current interest in

virtual machines.

In this paper we will take up these issues in connection
with some of the recent work on virtual machine principles,
performance, and practice. In particutar, we shall examine
the rationale for virtual machines, discuss the implications
of virtual machines on new architectural designs, consider
virtual machine performance costs, and finally explore
some of the unigue applications which virtual machines
make possible. The tutorial papers by Buzen and
Gagliardi,'®*'” Parmelee et al,®° "and Meyer and
Seawright,” 7 as well as Chapters 1-3 of the author’s Ph.D.

- dissertation®> may be read for additional background .

material. Finally, the recent textbook by Madnick and
Donovan®? includes an excellent introduction to virtual
machines as part of a course on operating systems.

*The simulator is typically oriented around the use of an
execute-type instruction for simulating each central processor
instruction.

**Somewhat different considerations have led to the development
of emulators which are efficient hardware or f;nnqware assisted
simulators for dissimilar machines. See Mallach.5+5

June 1974

Principles

Virtual machine systems were originally developed to
correct some of the shortcomings of the typical third-
generation architectures and multi-programming operating
systems — e.g., 05/360.2? The principal architectural char-
acteristics of these systems was the dual-state hardware
organization with a privileged and a non-privileged mode. In
privileged mode all instructions are available to software,
whereas in non-privileged mode they are not. The operating
systen provided a small resident program called the
privileged software nucleus. User programs could execute
the non-privileged hardware instructions or make super-
visory calls — e.g., SVCs — to the privileged software
nucleus in order to have privileged functions — e.g., 1/O —
performed on their behalf. The set of non-privileged
instructions together with the supervisory calls effectively
defines an exrended machine which is similar to but rot
identical to the bare machine. (See Figure 1.) The extended
machine is, in theory, better human-engineered and easier
to program than the original bare machine.

The extended machine approach has been quite suc-
cessful in many computer systems instaliations, but there
stili are a number of problems associated with it. While
Figure 1 illustrates multiple extended machine interfaces,
only one bare machine interface is provided. Thus, only one
privileged software nucleus can be run at a given time.
Consequently, it is not possible to run other operating
systems, certain diagnostic programs, or any software which
requires a bare machine interface instead of an extended
machine interface. This rigidity may have significant impact
on the transportability of user software (written for other

" operating systems), modification and testing of the oper-

ating system (privileged software), and the running of test
and diagnostic (T & D) programs. In the face of these
obstacles the installation’s management usually solves this
problem with shift scheduling: operating system debugging,

BARE
MACHINE BASIC
—— MACHINE
e CESED| INTERFACE
SOFTWARE
NUCLEUS

EXTENCED
MACHINES

EXTENDED
MACHINE
INTERFACE

N

USER USER
PROGRAM PROGRAM

Figure 1. Conventional Extended Machine Organization
35

*

T&D, unusual or old release operating systems, ‘and
normal system use scheduled for separate blocks of time
during the day (and night).

The major innovation of virfual machines {VMs) was to -

solve the above problem. The heart of a VM system is the
virtual machine monitor (VMM) software which transforms
the single machine interface into the illusion of many. Each
of these interfaces (virtual machines) is an efficient replica
of the original computer system, complete with all of the
processor instructions' (i.e., both privileged and non-
privileged instructions) and system resources (i.e., memory
and IO devices). By running each operating system on its
own virtual machine it becomes possible to run several
different operating systems (privileged software nuclei)
concurrently. (See Figure 2.) '
Perhaps the best known virtuzl machine system is IBM’s
VM/370.%%#* On each virtual 370 a user may run any of
the System/360 or System/370 operating systems, such as
DOS/360, 08/VS1, 08/VS2, or any version of 08/360. The
user may also run the Conversational Monitor System
(CMS), a simple monoprogramming operating systern which
was developed specifically for use on virtual machines.
Other virtual machine and virtual machine-like systems
which have been developed include:
o M44/44X — A virtual machine-like system devel-
oped for a specially modified IBM 7044.5%-6¢-¢7

e CP-40 — A virtual machine system developed for a
specially modified IBM 360/40, forerunner of
CP -671 40) .

e CP-67 — A virtual machine system developed for
the IBM 360/67, forerunner of VM/370.8:2457

e 360/30 — A single virtual machine supported on a

specially modified 1BM 360/30, used for system

measurement.* $

e HITAC 8400 — A single virtual machine supported
on a HITAC 8400 (RCA Spectra 70/45), used for
special software development.”® .

e UMMPS — One or several virtual machines (360)
supported concurrently with UMMPS on 360/67,
normally used to provide 0S/360 support. *417°

e PDP-10 — A virtual machine-like system running
under the ITS operating system on a special
PDP-10 at MIT .2*

Other virtual machine systems currently under devel-
opment include:

e UCLA-VM — A virtual machine system being
developed for specially modified PDP-1 1/45. Will
be used for data security studies.®****

o Newcastie Recursive VM — Burroughs B1700 is
being microprogrammed to define a machine
architecture for which a VMM is being
written.*7+*®

BARE

MACHINE

INTERFACE

Figure 2. Virtusl Machine Organization

R

BASIC
MACHINE
INTERFACE

EXTENDED
MACHINES

COMPUTER

' ==

.

[—

While virtual machines, multiprogramming, and virtual
storage are independent concepts,®' they form a very
powerful construct when combined together.®® A virtual
machine provides an efficient, isolated replica of a com-
puter system’s environment. With multiprogramming it
becomes possible to maultiplex among several virtual
machines concurrently on a single hardware system.*°
Finally, with virtual storage, it is possible to support virtual
machines whose memory requirements exceed the actual
resources available.??

Despite the power of the virtual machine concept, only a
very limited number of virtual machine systems have
actually been implemented. This situation is in part due to
the architectural characteristics of third-generation
machines which were not designed to support virtual
machines.>®+326% Consequently, these systems do not
provide the appropriate architectural support and force the
existing VMMs to rely on somewhat contrived software
techniques.

As with the purely simulated machine discussed in the
introduction, support of a virtual machine requires faithful
reproduction of the processor, memory, [/O system, and
even the operator’s console. Furthermiore, to satisfy the
efficiency requirements which are an essential part of the
virtual machine concept, it is necessary to execute a
significant portion of the virtual CPU’s instructions directly
.on the host hardware. Since the instructions to be executed
on the virtual machine might include the privileged instruc-
tions which can alter the mode of the machine, perform
I/O, etc., complete direct execution of software by the
virtusl machine might permit it to interfere with the VMM
or other virtual machines. In order to prevent this situation
from occurring it is necessary for the VMM to maintain
proper control over the state of the real processor.

Third-Generation Implementation Issues The solution
that was adopted in third-generation architectures involved
running all software for virtual machines in the non-
privileged mode and having the virtual machine monitor
maintain a virtual mode bit in & software table.! ¢+ 7:3°
The virtual mode bit indicated the state which the machine
would be in if the software were executing directly on the
bare machine. Instructions which were insensitive to the
actual mode of the machine were allowed to execute
directly on the bare machine without VMM intervention.
All other instructions were trapped by the VMM and
simulated in software using the virtual mode bit to
determine the appropriate action in each case.

In general, the non-privileged instructions are executed
directly and certain privileged instructions must be trapped
and simulated. However, this cannot always be done since
there may be some instructions which are sensitive to the
processor mode mapping yet are not privileged — i.6., not
automatically trapped when executed in non-privileged
mode. As a result, it is often impossible to support virtual
machine sgrstems using this partial software
construction.3® 32533

On third-generation virtual machine systems, the virtual
machine’s memory is usually supported through use of the
system’s memory mapping mechanism. The memoiy of the
virtual machine must retain the properties of real memory,
such as linear addresses from zero and special meanings to
certain interrupt control locations. Memory mapping used
in current systems has been both simple relocation and
paging. If the host machine is paged, the virtual machines

June 1974

may include the paging mechanism as well.?®+*® In this
case, the VMM must manipulate the page tables in order to
map paged addresses within the virtual machines into their
corresponding real addresses. Current techniques utilize
some awkward and unnecessary software overhead but
recent advances have been made in this area.** **

Since 1/O instructions are usually privileged, atternpted
execution by software on a virtual machine causes a trap to
the VMM. At this point the VMM is able to translate device
and memory addresses before issuing an 1/O instruction on
behalf of the virtual machine. When an I/O completion
interrupt returns to the VMM, it is reflected back to the
appropriate virtual machine. Since /O operations may
occur with a “relatively low frequency,” the performance
degradation introduced by this VMM software intervention
should be tolerable. Current computer architectures require
VMM software intervention to maintain system integrity
since an improperly written channel program can interfere
with other virtual machines or the VMM itself.> A side
benefit of software intervention is the ability to map I/O
requests for one device into requests for another'»*© or to
provide a virtual machine with special devices which have
no real counterpart.*+2%

The considerations of how the virtual machine maps are
constructed for various systems and which machines admit
of such a ma?ping has been discussed in the liter-
ature.16:1720:31:33 A recent study has even used formal
mathematical techniques to establish sufficient architec-
tural conditions for third-generation virtual machine
support.® These results have led a number of researchers
to make hardware modifications to current machines in
order to support virtual machines.®®%*

Virtualizable Architectures Recently, a number of
researchers have proposed new architectures — i.e., virtual-
izable architectures — which provide features to directly
support virtual machines.?®+23:34+47:48 The arguments for
these architectures include:

o System hygiene. There is no intrinsic reason why
virtual machine support must be based on the trap
and -simulation approach since it is clumsy and
awkward. i

"o Software simplicity. Virtualizable architectures
would make the VMM an even smaller and simpler
program and further contribute to the reliabilityf
security appeal of VM’s.

e System performance. Machines designed to sup-
port virtual machines should operate even more
efficiently than third-generation VM systems.

IBM has recently announced VM/370 Release 2 which
in¢ludes a firmware modification, called VM-assist, to the

" standard System/370.1*+25** While very little information

is currently available about VM-assist, it seems to have some
of the characteristics of the virtualizable architectures.

The Hardware Virtualizer In order to illustrate the
principles of virtualizable architectures, we will sketch the
design of the author’s Hardware Virtualizer which has been
described in detail in the literature.>3-*%3® The theory is
based on the following arguments:

e The key issue involved in VM’s is the instantan-
eous relationship between the resources of the
virtual and real machines.

37

e We must identify the sets of resources of the
virtual machine and the real machine and define a
map between them, called an {-map.

¢ The f-map transforms a virtual resource name into
its corresponding real resource name.

e The f-map must be invisible to all software
executing on the virtual machine. .

e The VMM software running on the real machine
manipulates and invokes the f-map, and is given
control on an f-map violation, called a VM-fault.

o The design extends directly for recursion, in which
case the f-map maps adjacent levels of virtual
resources. In order to run a VM it is necessary to
compose — ie., combine — all the maps together.
Faults must be passed to the VMM at the
appropriate level.

e Any other structure — eg., privileged/non-
privileged modes — is independent of virtualizatiott
and behaves as it would on the original machine.

The resource sets relevant to the virtual machine model
are represented by the shaded areas of Figure 2, shown
earlier. These sets are the real resource set and the two
virtual resource sets. The corresponding f-maps are not
illustrated in the figure.

Figure 3 illustrates the extension of the virtual machine
model to include recursion. The model indicates how a
VMM may be run on the basic machine interface of a
virtual machine — e.g., V1. This VMM in tumn creates two

BASIC
MACHINE

virtusl machines, V1.1 and V)2, on which are running
conventional operating systems — ie., privileged software
nuclei.

The virtual machine model identifies the five shaded
areas of the figure as distinct resource sets and indicates the
mapping relationship among them. Thus a resource name of
V3 must be mapped by f2 to be transformed into a real
resource of R. On the other hand, a resource of V1.1 must
be mapped consecutively by both f].1 and f1 in order to be
transformed into its corresponding resource of R. If there is
a violation in applying the mapping of f1.1, 2 VYM-fault
passes control to the VMM in V. Similarly, a violation of.
f faults to the VMM in R. Asin the nonrecursive model,
local mapping structure pertaining to user programs is
hidden within the resource sets and is ignored.

Direct application of this theory yields the design of the
Hardware Virtualizer. Goldberg discusses in detail the
development of a generic Hardware Virtualizer with arbi-
trary choices of target architecture and virtual machine
map. There are a number of subtle issues which arise in
the design but the key concept is the direct mirroring
in hardware of the virtual machine model presented
above. This requires hardware/firmware support to:

o represent the f-maps,.

e activate a virtual machine,

o compose the f-maps (and possibly local maps)
together during resource referencing, and

e pass contzol to the correct VMM ona VM-fault.

INTERFACE

fy

f2

MACHINE ———:

VIRT
MACI-'iJIﬁES

 MACHINE
INTERFACE

EXTENDED
MACHINES

~

EXTENOED
MACHINE
INTERFACE
#1

Figure 3. Virtusl Machine Model with Recursion

-~

BASIC S

INTERFACE

COMPUTER

In Goldberg®3 the map composer is sketched using 2 small
number of scratchpad and associative registers which
“remember” the most recently composed (mapped)
resource names. It is claimed that because of program
locality considerations,®® the hit ratios for these associative
registers will be high, and hence the instruction execution
rate with the Hardware Virtualizer should be comparable to
the real machine’s rate for a wide range of f-maps and target
architectures.

Performance

There have been numerous studies of the performance
characteristics of the virtual machine systems CP-67,°+'°
VM/f370,” and alse the virtual machine facility under
UMMPS.’® However, since these three systems are also
multiprogramming systems and virtual storage systems,
much of the work has related to these other characteristics,
rather than the purely virtual machine aspects.

In this section we will investigate some of the sources of
overhead in virtual machine systems. Then we will examine
some of the techniques that have been used to improve VM
performance. Finally, we will look at some interesting
petformance problems which are unique to virtual
machines.

Sources of Overhead There are demonstrable penalties
in running a jobstream on a virtual machine instead of a real
machine. These penalties include the extra resources — e.g.,
main memory and processor ¢ycles needed by the VMM —
and the potential drop in system throughput which results.
The extra CPU cycles are sometimes called processor
overhead, or just overhead, and the additional amount of
time to process a jobstream is called strerchout.®®$¢

Studies often run jobstreams under a single virtual
machine in order to separate out unusual multipro-
gramming effects. For example, Young has reported that a
measurement run of a System/360 DOS jobstream run under
control of VM/370 produced better throughput, due to
multiprogramming, than running the same jobs serially on
the same computing system.”?

Some of the principal sources of overhead in virtual
machine systems include: .

o Maintaining the status of the virtual processor. The
complete integrity of all visible registers, status
bits, and reserved memory (interrupt control)
locations must be preserved.

o Support of privileged instructions. Third-
generation virtual machine systerns have expended
processor overhead to trap and simulate privileged
instructions.

e Support of Paging Within Virtual Machines. Soft-

ware techniques are currently used to transform a

paged address in a VM into an address in the VM

and finally into a real memory address.

® Console Functions. The operator’s pan¢l and lights
are simulated in software. This overhead is not
invoked as frequently as the others cited above.

Additional sources of overhead include the reflection of
exceptions and I/O interrupts to the virtual machines,
support of virtual timers and clocks, and the translation of
I/O channel programs before the VMM initiates 1/0. For
virtual machines supported with paged memory mapping,
channel program translation can be a significant source of
overhead. '

June 1974

__—-—'-————

Improving Performance A number of techniques for
improving the performance of virtual machine systems have
been developed at various installations. While some are ad
hoc approaches aimed at reducing overhead arising from
third-generation architectural weaknesses, others have gen-
eral applicability to virtualizable architectures as well. The
techniques can roughly be divided into the following
classes:

e policies,
. ® compromises to virtual machine architecture,
e improved or new mechanisms.

Policy Policy approaches to performance improvement
have addressed both overhead and installation management
issues. For example, real system resources can be dedicated
in order to guarantee a certain performance level for a
particular preferred virtual machine.®’ Resources include
percentage of CPU time, a real I/O channel and its devices,
and page frames of main memory.

An interesting resource allocation policy concerns the
so-called “virtual = real” option which assigns virtual
addresses to identical real addresses even though page tables
are still used to establish and limit addressability.*3¢1-7¢
This option arises because existing virtual machine hard-
ware architectures feature CPUs which support paging but
1/O channels which do not. By allocating the same virtual
and real addresses, it may be possible to eliminate the
overhead normally incurred in channel program
translation.*

Other policy approaches to virtual machine performance
improvement affect the virtual machine definition and
system generation of an operating system for it. Paging
operations by the VMM are typically more efficient than
file I/O operations by the operating system on the virtual
machine.®+!® Thus, it is sometimes a good strategy to have
a very large virtua! machine memory definition even though
it would increase the amount of paging.*® This will
decrease the number of file I/O operations and may yield a
net performance improvement.

Another approach is to “streamline” the VM defini-
tion.*2+72 If it is known that software running on a virtual
machine will never use certain features, the VMM can be
informed and may be able to provide more efficient
support. In existing virtual machine systemis, which support
real-time interval timers, certain self:modifying channel
programs, or paging in the VM’s, is very costly. Perform-
ance is improved by ensuring that an operating system
running on a particular virtual machine will not use these
features.

Compromising the Interface Another performance
improvement approach compromises the VMM/OS inter-
face.”? The VM architecture is routinely altered for certain
specific operating systems by moving functions from that
operating system to the VMM.*® Thus, in addition to
providing pure VM’s for those applications which need it,
the VMM also provides a slightly extended virtual machine
which has a few new instructions which are effectively
supervisor calls to the VMM. In CP-67 these calls were
implemented via the customer engineering diggniose instruc-
tion, which is normally a model-dependent illegal instruc-
tion. A number of installations have experimented with
specialized console®® and file system*®~3 support pro-
vided via diagnose. '

*There still may be a need to check addresses for bounds violations.

39

The unfortunate consequence of this approach is that it
introduces the danger of producing a VMM with an
incompatible interface. Thus, an operating system written
for this interface may not run on any other “virtual
machine” or even on tlie real machine.* .

One proposed solition to this dilemma is to let the
software determine whether it is running on a real or virtual
machine.”? If an operating system believes it is on a real
machine, it behaves normally. If it discovers that it is ona
virtual machine, it can take shortcuts which might reduce
overhead. For example, it might ignore error codes which
the virtual machine. knows have been set by the VMM or
use diagnose-type support for certain functions.

The debate over “pure” vs. “impure” virtual machines
has been going on for several years.'®*7*° The “purists”
argue that an impure virtual machine will suffer the same
disadvantages as a conventional operating system’s non-
standard extended machine interface. The “impurists”
counter by pointing to the performance improvements over
conventional virtual machine systems. Furthermore, they
observe that the “impure” approach leads to clear, hierarch-
ically organized ogerating systems, even if they are not
virtual machines.’ =8

Improved or New Mechanisms Improved hardware

architectures for virtual machines arise from performance

considetations, as well as system organization. Much of the
overhead, identified above, is introduced because of an
inadequate hardware base in present machines. Some of the
techniques that have been developed are merely ad hoc
approaches to these difficulties. A particular source of
overhead in third-generation virtual machines is the trap
and simulation of privileged instructions normally per-
formed by the VMM. The System/370 virtual storage
operating systems make significantly heavier use of certain
privileged instructions than did their 0S/360 real memory
predecessors.”’? As a result, IBM has measured greater
processor overhead in running the virtual storage operating
gystems under VM/370 Release 1. The solution has been to
develop VM-assist, a firmware modification to the System/
370 which eliminates the need for much of the privileged
instruction software simulation.** Preliminary performance
mformation for VM/370 Release 2 indicates success in
_ reducing this processor overhead.! *»*2

Similar success is anticipated for virtualizable architec-
tures such as the Hardware Virtualizer®* or the Newcastle
Recursive Virtual Machine.®® For certain choices of
resource maps, these machines should eliminate other forms
“of processor overhead. In particular, page table composi-
tion, channel program absolutization, virtual timers, and
other virtual machine functions can be performed directly
by hardware/firmware.

Unique Performance Problems for Virtual Machines Even
if the direct overhead problems of VMs are solved (as
above) a number of unique virtual machine performance
problems may remain. Operating systems include algor-
ithms for effectively managing the real resources of the
computer system. In virtual machine systems these virtual
resources may not correspond precisely to real resources,
and consequently unusual performance problems may
arise.”? Two principal penalties are incurred in this case:
(1) CPU time and other resources are wasted utilizing an

*In contrast, an operating system for a streamlined interface can be
run on a real machine.

40

algorithm which cannot work effectively, and (2) the actual
results of the algorithm may be counterproductive — ie.,a
random allocation algorithm might be better.

Some example situations where this phenomenon has

* been observed are:

e disk optimization for a disk which itself is
mapped; -

e spooling of unit record 1/O in a virtual machine
and then additional spooling by the VMM;

e paging by an operating system on the VM and
paging by the VMM.

The last situation arises, for example, when the IBM
OS/VS2 operating system is run on a virtual machine under
VM/370. In that case there are two independent page
replacement algorithms — one on the virtuzl machine and
one by the VMM. In a recent analysis®’ it has been
demonstrated that there are operating regions (i.e., sizes of
memory) and page replacement algorithms for which each
page fault handled in the VM will cause a second page fault
which must be handled by the VMM. Furthermore, the
well.known “least recently used” (LRU) page replacement
algorithm is susceptible to this phenomenon.

Practice

The versatility and flexibility of virtual machine systems
is only beginning to be understood. Virtual machines have
been successfully utilized in a number of application areas
on small, medium, and large-scale computer systems. We
will examine a few of these uses.

Installation Management Virtual machines allow sig-
nificant scheduling flexibility by permitting privileged -
software development, test and diagnostic functions, and
multiple operating system execution concurrently with
production uses of the systemi. The individual operating
systems need not be identical (e.g., IBM’s 08/360 and
DOS/360 under VM{370). They may also be different
versions of the same system (e.g., Releasen and
Release n+1). In the first case, VM's can aid in unifying
installation procedures. In the second case they can greatly
simplify the new release installation and conversion period.

An example of installation unification is the integration
of & batch operating system and an interactive terminal
system on common hardware.*® Srodowa and Bates”® have
reported on their success in using VM techniques to unify
IBM’s 0S/360 with the Michigan Terminal System (MTS)
under UMMPS? at Wayne State University. VM/370 has
been used to unify DOS/VS with CMS.*? _

Virtual machines can alleviate the new release “‘trauma”
by permitting system generation and testing of the new
release simultaneously with production uses of the old
release, and by permitting the old and new releases to be
run concurrently for an extended time period to permit
users to convert their programs. In addition, when most
users are finally converted to the new release, it is still
possible to run the old release for the user who runs a
program so infrequently that conversion is not justified.®

Figure 4 illustrates how user population shift from an
old release to a new release can be accomplished using
virtual machine techniques. As time advances, the relative
percentage of the user population running under the new
release increases (as represented by the larger “new” boxes

to the right of the figure).
COMPUTER

TIME *
NEW New | CONvertep NEWER
RELEASE | SYSTEM PROGRAMMERS | priease | PRODUCTION USERS RELEASE { 5YSTEM PROGRAMMERS
C ONVERTED
PRODUCTION USERS
oL
NEW
RELEASE New
OLD
RELEASE
PRODUCTION USERS PRODUCTION USERS
ODUCTION US ooy v RELEASE | R ODUCTION USERS
NEW RELEASE "NEW RELEASE NEWER RELEASE
BEING TESTED INSTALLED BEING TESTED

Figure 4. Virtual Machine Support for Multiple Releases of an
QOperating System

Virtual machines can also be used to refrofit old
operating systems with new features. For example a new
peripheral can be introduced into 2 computer system
without changing the operating system software by making
the VMM transform the new device into a virtual device
which is already known to the operating system. As a

result, the user will be able to take advantage of the new

device’s characteristics — e.g., technological improvement
or lower cost — but will not have to add.a new device
handler to the operating system. While this approach may
require a modification to the VMM, it should be a much
less complex task since the VMM is z significantly simpler
and smaller software construct. (See Figure 5.) This subject
is studied in detail in Buzen and Goldberg.'®

-

’:—-- —’a

| i
EXISTING i i
OPERATING | ———! JRICE
SY

o ——— o

T - o

OLD
DEVICE

Figure 5. Virtual Device Support
June 1974

Another system retrofit that has been performed is
adding virtual storage through VMM support rather than by
modifying the operating system itself. This is effectively
what was done in running CMS under CP67.57

Privileged Software Development and Testing The
improved testing of privileged software is 2 virtual machine
application appropriate to any size system.®® Since mini-
computers are often used in OEM applications as part of
larger systems, a great deal of “user” software produced for
minicomputers includes privileged 1/O routines. With the
ingrease in size and power of minicomputers there have
been a number of pro;)osals for VM’s for minicomputer
software development.? 48563

< =

NEW
DEVICE

1 ' Software development applications on larger systems are SYSTEM/370
Do well-known.?”'"! IBM uses VM/370 intemnally to develop
and maintain VM/370 and the IBM VS operating sys-
tems.' > This approach eliminates much stand-alone debug-
ging, with its inherently poor resource utilization and val
inelegant debugging tools. Before System/370 hardware was
available, IBM used a similar technique with the CP-67 WA/TD
system on the 360/67. Since System/370 is so similar to
System/360, it was possible to modify the standard CP-67 VIRTUAL VIRTUAL
software to produce virtual 370’ instead of 360%." 3 e 20
Another software development possibility concerns the P |
testing of computer network software on a single physical .
machine. Virtual machine systems make it possible to
configure a network of virtual machines in which messages f)
are sent between virtual machines. These messages may be
routed over simulated transmission control umits (see
Figure 6a) or they may even be sent out over physical
communication lines before getting to the receiving virtual ' SYSTEM /370
machine (see Figure 6b). The geographical locality of such a
system provides unique aid in checking out network
software. Virtual machines have also been used in a number
of other network®®:’! and multiple processor® 32
applications.
~ User software and particularly system software develop- W70
ment activities have been aided by the availability of
unusually powerful debugging and performance monitoring VIRTUAL
tools. These tools have ranged from facilities as simple as a

simulated VM operator console (called “console func-

tions”)?!#*3+57 jllustrated in Figure 7a, to complex debug- \ /
ging languages and systems, such as the SPY system!?2+°
shown in Figure 7b. With virtual machine recursion, it is /
even possible to debug an operating system under a
specially enhanced “debugger™ version of the VMM which - REAL 2701
itself is running on a virtual machine under the standard /' \
VMM (see Figure 7c).>3**#® Galley has incorporated ’

some of these virtual machine debugging tools into an DATA SET DATA SET
interactive graphics package to produce an unusually COMMUNICATIONS LINE
powerful operating system debugging environment for the

DEC PDP-10.2° The power and flexibility of virtual (b

machine systems is, in part, mirrored by the variety of

debugging styles and tools which are available. Figure 6. Virtusl Machine Network with VM/370

VIRTUAL
701

VMM
CONSOLE VMM VMM

FUNCTIONS

VM VMl VM2

DEBUG SPY \sr.r rerc AL VMM
| __SPY. H
os . SYSTEM — 0s C POWERFUL
‘ : DEBUG FEATURES

(o) &)

Os

Figure 7. Virtual Machine Debugging Styles ‘ {c}

; 42 . COMPUTER
#

Education Virtual machines provide a unique oppot-
umity to revolutionize computer systems architecture and
systems programming education. It now becomes possible
to construct sample student operating systems which must
run and interface with the bare hardware. Students will be
able to gain practical experience in changing an I/O device
handler, modifying a page replacement algorithm or even
developing a computer network (see above).

Software Reliability From the standpoint of reliability
one of the most important aspects of virtual machine
systems is the high degree of isolation .that a virtual
- machine monitor provides for each virtual machine oper-
ating under its control. In particular, a programming error
in one operating system will not affect the operation of
another operating system running on an independent virtual
machine controlled by the same monitor. Thus virtual
machine monitors can localize and control the impact of
operating system errors in much the same way that
conventional systems localize and control the impact of
user program errors. In multiprogramming applications
where both high availability and graceful degradation in the
midst of failures are required, virtual machine systems can,
for a large class of utility functions, be shown to have a
quantifiable advantage over conventionally organized
systems.}4+15,16 .

A key principle in the analysis of software reliability is
that the VMM is likely to be correct — i.e., probability of
failure is near zero. This assumption is reasonable because
the VMM is likely to be a very small program with limited
functionality and can be largely checked out by running the
system diagnostics. Furthermore, advanced architectural
developments such as the Hardware Virtualizer discussed
above will further reduce the amount of VMM software.

-Data Security Virtual machine techniques for data
security is a topic of considerable current interest.®?»5*
Some of the reasons for the pursuit of work in this field are
related to the isolation and “system hygiene” discussion
presented above for reliability.®*? Madnick and
fhovan®! have suggested that independent redundant
security mechanisms contribute to the empirically observed
“good” security of VM/370. For example, in VM/370 the
Dypamic Address Translation (DAT) set by the VM/370
control program (VMM) and the storage locks and keys set
by O8/360 provide redundant main memory security
mechanisms.

[EvrY

Conclusion

“Wirtual machines have finally arrived. Dismissed for a
number of years as merely academic curiosities, they are
now seen as cost-effective techniques for organizing com-
pufer systems resources to provide extraordinary system
flexibility and support for certain unique applications.?”
Virtual machines have been endorsed by IBM (in the
continuing support provided for VM/370)*3#% and are
under active study by the various data-security-conscious
organizations.®* In March 1973, 100 specialists attended an
ACM sponsored Workshop on Virtual Computer Systems® 5
and in June 1973, 500 individuals attended the Virtual
Machines session at the Nationa! Computer Conference. As
a result of the substantial interest in the field shown by
manufacturers, computer scientists, and users, we feel

June 1974

certain that there will be a further spread of virtual machine
systems, a development of more efficient virtualizable
architectures, and a succession of significant new
applications.

Acknowledgments

The author would like to thank the many people (some
of whose names appear in the bibliography) with whom he
has discussed virtual machine research over the years.
Special thanks are due to U. O. Gagliardi,). P. Buzen, S. E.
Madnick, G.J. Popek, and H.S. Schwenk. Finally, the
author would like to acknowedge the cooperation and
support of the guest editor, R.R. Muntz, during the
preparation of this paper.

Robert P. Goldberg is a member of the
Honeywell Information Systems Technical
Office in Waltham, Massachusetts, and also a
Lecturer on Computer Science at Harvard Uni-
versity. His current research interests include
computer architecture, operating systems
design and evalvation, and data management
systems.

. From 1966 to 1971 he was a member of the
N research staff at MIT, first at Lincoln Labora-
tory and then at Project MAC. From 1971 to 1972, Dr. Goldberg
served as consultant to the Director of Engineering at Honeywell’s
Boston Computer Operations. His teaching experience also includes
kectureships at Brandeis University and Northeastern University.

Dr. Goldberg is a member of the ACM. He was the organizer of
the Virtual Machines session at the 1973 National Computer
Conference, was the Program Chairman and Proceedings Editor for
the ACM SIGARCH-SIGOPS Workshop on Virtual Computer
Systems, 1973, and has written and lectured extensively on many
different aspects of virtual machine systems.

_ Dr. Goldberg recejved the BS degree in Mathematics from MIT in
1965 and the MA and Ph.D. degrees in Applied Mathematics from
Harvard University, in 1969 and 1973, respectively. :

References and Bibliography

This bibliography lists many of the papers which have
been written about virtual machines, but it is by no means
an exhaustive list.

i. Adair, R, R. U. Bayles, L. W. Comeau, and R. J. Creasy, A
Virtual Machine System for the 360/40.” Cambridge Scien-
tific Center Report No. G320-2007, May 1966.

2. Alexander, M. T., Time Sharing Supervisor Programs. Univer-
sity of Michigan Comp. Center, May 1969, revised May 1970.

3. Ancilotti, R., R. Cavina, and N. Lijtmaer, “Virtuat Input-
Qutput in a Virtual Environment.” ACM AICA International
Computer Symposium Proceedings, Venice, ltaly, April 12-
14, 1972, pp. 302-312.

4. Attansio, C. K., “Virtual Machines and Data Security.”
Proceedings ACM SIGARCH-SIGOPS Workshop on Virtual
Computer Systems, Cambridge, MA, 1973.

5. Auroux, A. and C. Hans, “Le Concept de Machines Vir-
. tuelles.” Revue Francaise d’Informatique et de Recherche
Operationelle, 2e annee, 15, 1968, pp. 45-51.

., 43

10.

i1.

12.

13.

14.

15,

16.

A7

18.

19.

21.

23,

Bard, Y., “Performance Criteria and Measurement for a
Time-Sharing System.” IBM Systems Journal, Vol. 10, No. 3,
1971, pp. 193-216.)

Bard, Y., “An Analytic Model of CP-67 — VM/370.”
Proceedings ACM SIGARCH-SIGOPS Workshop on Virtual
Computer Systems, Cambridge, MA, 1973.

Bairstow, J. N., “Many From One: The Virtual Machine
Arrives.” Computer Decisions, January 1970, pp. 29-31.

Bellina, J., and C. Hans, “Virtual Machine or Virtual
Operating System.” Proceedings ACM SIGARCH-SIGOPS
Workshop on Virtual Computer Systems, Cambridge, MA,
1973.

Bellino, 1., Mecanismes de Base Dans Les Systemes Super-
viseurs: Conception et Realisation d'un Systeme a Acces
Multiples. These, L'Universite Scientifique et Medicale de
Grenoble, September 28, 1973,

Bellino, J., and Ph. Potin, “Mechanismes d’un Hyperviseur.”
Repore of IBM Scientific Center, Grenoble, France.

Berthaud, M., M. Jacolin, Ph. Potin, and H. Savary, “Coupli-
ing Virtual Machines and System Construction.” Proceedings
ACM SIGARCH-SIGOPS Workshop on Virtual Computer
Systems, Cambridge, MA, 1973.

Bury, C., Conversations with R. P. Goldberg, 1973-1974.

Buzen, I. P, P. P. Chen, and R.P. Goldberg, *Virtoal
Machine Techniques for Improving Software Reliability.”
Proceedings IEEE Symposium on Computer Software Relia-
bility, New York, 1973.

Buzen, J. P., P. P. Chen, and R.P. Goldberg, “A Note on
Virtual Machines and Software Reliability.” Proceedings
ACM SIGARCH-SIGOPS Workshop on Virtual Computer
Systems, Cambridge, MA, 1973.

Buzen, J. P, and U. O. Gagliardi, “The Evolution of Virtual
Machine Architecture.” AFIPS Conference Proceedings, 1973
NCC, AFIPS Press, Montvale, N. J.

Buzen, !. P., and U. O. Gagliardi, “Introduction to Virtual
Machines.” Honeywell Computer Journal, Vol.7, No.4,
1973.

Buzen, I. P., and R. P. Goldberg, ‘“Virtual Machine Tech-
niques for Introducing Peripherals into Computer Systems.”
Computer Peripherals — Benefactor or Bottleneck? Digest of
Papers COMPCON 74, San Francisco, February 1974, pp-
157-160. ’

Calloway, P. H. “Performance Considerations for the Use of
the Virtual Machine Capability.” Report RC.3360, IBM
Corporation, T.J. Watson Research Laboratory, Yorktown
Heights, NY, May 12, 1971.

Calloway, P. H., J. P. Considine, and C. H. Thompson, “Uses
of Virtual Storage Systems in a Scientific Environment.” /BM
Systems Journal, Vol. 11, Na. 3, 1972, pp. 200-218.

Casarosa, V., and C. Paoli, “VHM: A Virtual Hardware
Monitor.™ Proceedings ACM SIGARCH-SIGOPS Workshop
on Virtual Computer Systems, Cambridge, MA, 1973.

Denning, P. J., “Third Generation Computer Systems.”
Computing Surveys, Vol. 3, No. 4, December 1971.

Dickman, L. I, “Small Virtual Machines: A Survey.”
Proceedings ACM SIGARCH-SIGOPS Workshop on Virtual
Computer Systems, Cambridge, MA, 1973,

Field, M. S., “Muiti Access Systems — The Virtual Machine
Approach.” IBM Cambridge Scientific Center Report
320-2033, September 1968.

Frasson, C., “Simufation of Input-Output Units.” Proceed-
ings ACM SIGARCH-SIGOPS Workshop on Virtual Com-
puter Systems, Cambridge, MA, 1973.

26.

27.

28.

29.

30.

31.

32.

i3

3s.

37.

38.

39.

40.

41.

42.

43,

45.

46.

Fuchi, K., H. Tanaka, Y. Namago, and T. Yuba, “A Program
Simulator by Partial Interpretation.” 2nd Symposium on Op-
erating Systems Principles, Princeton, NJ, Ociober 1969,
pp. 97-104.

Gagliardi, U. 0., “Chairman’s Report of the Architecture
Panel Recommendation.” 7vi-Service Workshop on the High
Cost of Software, Monterey, CA, 1973.

Gagliardi, U. O., and R. P. Goldberg, “Virtualizable Architec-
tures.™ Proceedings of 1972 ACM AICA International Comp.
Sympostum, Venice, Italy, Aprit 1972, pp. 527-538.

Galley, S. W., “PDP-10 Virtual Machines.” Proceedings ACM
SIGARCH-SIGOPS Workshop on Virtual Computer Systems,
Cambridge, MA, 1973. .

Goldberg, R. P., *“Virtual Machine Systems.” MIT Lincoln
Laboratory Report No. MS-2687 (also 28L-0036), Lexing-
ton, MA, September 1969.

Goldberg, R. P., “Virtual Machines: Semantics and Exam-
ples.” Proceedings [EEE Computer Society Conference,
Boston, MA, September 1971, pp. 141-142.

Goldberg, R. P., “Hardware Requirements for Virtual
Machine Systems.” HICSS4, Hawaii International Confer-
ence on System Sciences, Honolulu, January 1971.

Goldberg, R. P., Architectural Principles for Virtuai Com-
puter Systems. Ph.D. Thesis, Division of Engineering and
Applied Physics Harvard University, Cambridge, MA, 1972.

Goidberg, R. P., “Architecture of Virtuat Machines.” AFIPS
Conference Proceedings, 1973 NCC, AFIPS Press, Montvale,
NIJ.

Goldberg, R. P. (ed.), Proceedings ACM SIGARCH-SIGOPS
Workshop on Virtugl Computer Systems. Cambridge, MA,
1973. .

Goldberg, R. P., “Virtual Machines Architectuze.” Honeywell
Computer Journal, Vol. 7, No. 4, 1973.

Goldberg, R. P., and R. Hassinger, “The Double Paging
Anomaly.” AFIPS Conference Proceedings, 1974 NCC,
AFIPS Press, Montvale, NJ.

Hans, C.,, et al, “GMS Guide de I'Utilisateur.” Report of IBM
Seientific Center of Grenoble, Grerioble, France, July 1972.

Hans, C., Contribution a I'Architecture de Mecanismes
Elementaires Pour Certains Systemes Generateurs de
Machines Virtuelles. These, L'Universite Scientifique et
Medicale de Grenoble, November 24, 1973.

Hoernes, G.E. and H. Hellerman, “An Expetimental 360/40 for
Time-Sharing.” Datamation, Vol. 14, No. 4, April 1958,
pp. 3942,

Hogg, 1., and P. Madderom, “The Virtual Machine Facility —
How to Fake a 360.” University of British Columbia,
University of Michigan Computer Center, Internal Note.

Horton, F. R., “Virtual Machine Assist: Performance.” Guide
37, Boston, MA, 1973.

IBM Virtual Machine Fgcility[370 Planning Guide. 1BM
Corporation, Publication Ne. GC20-1801-0, 1972.

IBM Virtual Machine Facility [370: Release 2 Planning Guide.
IBM Corporation Publication No. GC20-1814-0, 1973.

Keefe, D, D., “Hierarchical Control Programs for Systems
Evalvation.” JBM Systems Journal, Vol. 7, No. 2, 1968, pp.
123-133.

Kogut, R. M., “The Segment Based File Support System.”
Proceedings ACM SIGARCH-SIGOPS Workshop on Virtual
Computer Systems, Cambridge, MA, 1973.

COMPUTER

47.

49.

50.

31.

52.

53.

56.

57.

58.

59.

Laser, H. C. and C. R. Snow, “Is Supervisor-State Neces-
sary?” Proceedings ACM AICA Intermational Computing
Symposium, Venice, Italy, 1972, .

Lauer, H. C,, and D: Wyeth, “A Recursive Virtual Machine
Architecture.” Proceedings ACM SIGARCH-SIGOPS Work-
shop on Virtual Computer Systems, Cambridge, MA, 1973,

Lefebvre, P., Spy. Un Systeme de Controle. These,
L’University Scientifique de Medicale de Grenoble, July 5,
1972,

Madnick, $. E., “Time-Shaririy Systems: Virtual Machine
Concept vs. Conventional Approach.” Modern Data, Vol. 2,
No. 3, March 1969, pp. 34-36.

Madnick, S. E., and 1. J. Donovan, “Application and Analysis
of the Virtual Machine Approach to Information System
Secutity and Isolation.” Proceedings ACM SIGARCH.-SIGOPS
Workshop on Virtual Computer Systems, Cambridge, MA,
1973,

Madnick, §. E., and J. J. Donovan, Operating Systems.
McGraw-Hill, New York, 1974.

Mailach, E. G., “Emulation — A Survey”. Honeywell Com-
puter Journal, ¥Yol. 6, No. 4, 1972.

Mallach, E. G., “On the Relationship between Emulators and
Virtual Machines.” Proceedings ACM SIGOPS-SIGARCH
Workshop on Virtual Computer Systems, Cambridge, MA,
1973.

March, J. H., “The Design and Implementation of a Virtual
Machine Operating System Using 2 Virtual Acoess Method.”
Proceedings ACM SIGARCH-SIGOPS Workshop on Virtual
Computer Systems, Cambridge, MA, 1973.

McGrath, M., “Virtual Machine Computing in an Engineering
Environment.” IBM Systems Journal, Vol. 11, No. 2, 1972,
pp. 131-149,

Meyer, P. A., and L. H. Seawright, “A Virtual Machine
Time-Sharing System.” /BM Systems Journal, Vol. 9, No. 3,
1970, pp. 199-218.

O'Neill, R. W., “Experience Using a Time-Shared Multi-
Programming System with Dynamic Address Translation.”
AFIPS Conference Proceedings, Vol. 30, 1967, AFIPS Press,
Montvale, NJ.

Parmelee, R. P, “Virtual Machines — Some Unexpected
Applications.” Proceedings IEEE Computer Society Confer-
ence, Boston, MA, September 1971.

June 1974

61.

62.

63.

65.

67.

68.

69.

70.

71.

72.

Parmelee, R. P, T. 1. Peterson, C.C. Tillman, and D.1.
Hatfield, “Virtual Storage and Virtual Machine Concepts.”
IBM Systems Journal, Vol. 11, No. 2, 1972, pp. 99-129.

Parmelee, R. P., “Preferred Virtuat Machines for CP-67." 7BM
Cambridge Scientific Center Report No. G320-2068.

Pamnas, D. L., and W. R. Price, “The Design of the Virtual
Memory Aspects of a Virtual Machine.” Proceedings ACM
SIGARCH-SIGOPS Workshop on Virtual Computer Systems,
Cambridge, MA, 1973.

Popek, G. J, and C. Kline, “Verifiable Secure Operating
Systems Software.” AFIPS Conference Proceedings, 1974
NCC, AFIPS Press, Montvale, NJ.

Popek, G. J., “A Survey of Protection Structures.” Com-
puter, Vol. 7, No. 6, June 1974.

Papek, G. J., and R. P. Gokiberg, “Fermal Requirements for
Virtvalizable Third Generation Architectures.”® Communi-
cations of the ACM, Vol. 17, No. 7, 1974.

Sayre, D., “On Virtual Systems.” JBM Corporation T.J.
Watson Research Laboratory, Yorktown Heights, NY,
April 15, 1966.

Sayre, D., “Adding Computers Virtually.” IBM Corporation
Computer Report, Vol. 3, No. 2, March 1967, pp. 12-15.

Schroeder, M. D., “Performance of the GE 645 Associative
Memory While Multics is in Operation.” Proceedings ACM-
SIGOPS Workshop on System Performance Evaluation,

~ Cambridge, MA, April 1971, pp. 227-245.

Schwenk, H., “Virtual Micromachines.” Proceedings ACM
SIGARCH-SIGOPS Workshop on Virtual Computer Systems,
Cambridge, MA, 1973.

Srodawa, R. J., and L. A. Bates, “An Efficient Virtual
Machine Implementation.” Proceedings AFIPS Nationgl
Computer Conference 1973,

Winett, J. M., “Virtual Machines for Developing Systems
Software."” Proceedings IEEE Computer Society Conference,
Boston, MA, September 1971.

Young, C. J., “Extended Architecture and Hypervisor Per-
formance.” Proceedings ACM SIGARCH-SIGOPS Workshop
on Virtual Computer Sysiems, Cambridge, MA, 1973.

. 45

