e
LA L3
S

AN

4

Linkers and Loaders

LEON PRESSER AND JOHN R. WHITE

University of California,*
Santa Barbare, Californic 93106

This is a tutorial paper on the linking and loading stages of the language
transformation process. First, Joaders are elassified and discussed. Next, the
linking process is treated in terms of the various times at which it may oceur
(i.e., binding to logical space). Finally, the linking and loading functions are
explained in detail shrough a careful examination of their implementation in the
IBM Bystem/360, Examples sre presented, and a number of possible system

trade-offs are pointed out.

Key words and phrases: binary loaders, relocating loaders, linking loaders, linkers,
compilers, assemblers, relocation, program modularity, libraries.

CR categories: 411, 4.12, 4.39

1. INTRODUCTION

A computer system includes a set of soft-
ware and hardware facilities which super-
vises its operation, insures its coordination,
and facilitates its use. Such facilities are
referred to as the computer’s operating sys-
tem. From a functional viewpoint it is justi-
fiable to separate from the operating system
those modules which facilitate the man/
computer communication process. This gep-
aration comes about since a computer un-
derstands its machine language, while it is
much more natural for a user {o program in
a high-level language (e.g., ForTRAN, PL/
I). Thus, it is necessary to transform a pro-
gram written in & high-level language into a
properly formatted binary string before it
can be executed. In its most basic form this
transformation process occurs in two stages
(see Figure 1), First, a user’s (source) pro-
gram is translated into machine language.
Then, the translated program is stored for
immediate or future execution. Storing into
main memory is called loading. In modern
systems the situation is more complex. In
* Department of Eleetrical Engineering. This work

was supported in part by the National Secience
Foundation, Grant GJ-31949.

order to obtain flexibility and better utiliza-
tion of main memory, translators are re-
quired to generate relocatable code, that is,
code that cin be loaded into any section of
main memory for execution. Furthermore,
the capability to combine subprograms into
a composite program, referred to as hinking,
is of great value in modern operating sys-
tems.

This paper is intended as a tutorial on
linkers and loaders. For a tutorial treatment
of translators (e.g., compilers) the reader is
referred to [1]. For a tutorial treatment of
operating systems the reader is referred to
[2, 3].

2. LOADERS

As previously stated, before a source pro-
gram can be executed it must first be trans-
formed into machine language and then
loaded into main memory, if it is not al-
ready there. Since the process of loading a
translated program into memory is logically
distinet from the translation of that pro-
gram, separate software modules, called
loaders [4], have been developed to accom-

Computing Surveys, Vol. 4. No. 8. Beplember 1972

™

™

T

AT N TR

o e S R

T

&

SRR (TR

e i

T il ikt

- a A e

izl i £

e}

A e et

150 . Leon Presser and John B. While

CONTENTS

1. Introduction 148
2, Loaders 149-151
2.1 Binary Loaders
2.2 Reloeating Loaders
3. Linkers 151-153
4. The Linkage Editor 153-164
4.1 Object Modules
4.1l External 8ymbol Dictionary (ESD}
4,1.2 Text
4.1.3 Relocation Dictionary
4.1.4 Ead Record
4.2 Linking Together & Set of Modules
4.2.1 Assigning Addresses
4.2.2 Reloeating Address Constants
4.2.3 Creating an Outpui Load Module
4.3 Load Modules
4.4 Linking Example
4.5 Linkage Editor Control Statements
4.5.1 Overlay Processing
4.5.2 Program Modifieation
4.5.3 Library Access
4.6 Diagnostics
5. The Relocating Loader 184-188
6.1 Requesting Main Memory
8.2 Loading and Relocating the Text
53 Loading Example :
6. Summary 165-166
7. Acknowledgments 166-167
References 167

Copyright @ 1971, Association for Computing
Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is
granted, provided that reference is made to this
publication, to its date of issue, and to the fact
that reprinting privileges were granted by per-
migsion of the Association for Computing Ma-
chinery.

Computing Surveys, Vol. 4, No. 3, September 1972

SECONOARY|
STORAGE

Muaching Language
So == TRANSL ATOR LOADER Plogmnl.n in Moln
Program P'Joomnry Ready
¢ E :

Fie. 1. Basic language transformation pr;:rcess.

plish the loading operation. There are two
types of loaders: binary loaders, and relo-
cating loaders. Each type of loader can be
distinguished by the functions it performs
and by the characteristics of the inputs that
it processes.

2.1 Binary Loaders

A binary (or absolute) loader, the sim-
plest type of loader, is responsible for load-
ing into main memory a single program in
absolute binary form. The absolute binary
form of a program is simply a binary image
of the program as it will exist in memory. A
program in this form is associated with spe-
cific memory locations; hence, it must al-
ways be loaded into the same memory area
if it is to execute correctly.

2.2 Relocating Loaders

A program is said to be relocatable if it
can be loaded into any section of main
memory for execution.* The form of a relo-
catable program, referred to as relocatable
binary, is similar to absolute binary except
that: 1) address fields have been translated
relative to zero; and 2) relocation informa-
tion is associated with the program to be
loaded to indieate which address fields must
be relocated. There are two general ap-
proaches that have been employed to en-
code relocatjon information, In the first ap-
proach, the language translator (e.g., com-
piler, assembler) appends a relocation bit to
each machine language instruction pro-
duced. The reloeation bit is set by the
translator only if the address field of the
corresponding instruction must be reloeated.

* It is impressive to note that John von Neumann
was writing relocatable code as early as 1945 [5]-

In the secon
mation i3 g
(dictionary’
tion table e
ine languag
address fielc

It should
the total nu
relocated m
being that, :
approach, tt
one additior
‘“relocation”
tion that at
sociated wit
were meanir
relocations”
from one bit
reasoning ap
table.

The reloc
loading into
locatzble bi
cating) all
when a reloe
tion of mem
main bound
that progran

3. LINKERS

The linking
form a comp
in the modul
place the lin
us. view Fig
Source progr
first, transla
exeeution fo
be carried «
namely: 1) ¢
2) after codi:
3) at transla
but before lo:
6) after load
or 7) at exeer

At this poi
the coneepts

t The linki
(Burmughsl;f Ft:
(IBM 1800).

re are two
. and relo-
der can be
t performs
mputs that

r, the sim-
ie for load-
srogram in
lute binary
naly image
memory. A
d with spe-
it must al-
emory area

atable if it
m of main
n of a relo-
relocatable
nary except
1 translated
on informa-
gram to be
; fields must
general ap-
wyed to en-
the first ap-
- (e.g., com-
eation bit to
uetion pro-
set by the
field of the
ae relocated.

von Neumann
as 1946 [5].

In the second approach, all relocation infor-
mation is grouped into & relocation table
(dictionary) by the translator. The reloca-
tion table contains a pointer to each mach-
ine language instruction that must have its
address field relocated.

It should be noted that in most systems
the total number of times an address field is
relocated must be zero or one. The reason
being that, in the case of the relocation bit
approach, the translator is only introdueing
one additional bit (two states) to indicate
“relocation’ or “no relocation.” The restric-
tion that at most one relocation ean be as-
sociated with an address field could, if it
were meaningful, be changed to “at most n
relocations” by expanding the reloecation bit
from one bit to logs (n + 1) bits. A similar
reasoning applies in the case of a relocation
table.

The relocating loader is responsible for
loading into main memory a program in re-
locatable binary form and updating (relo-
cating} all relative addresses, Note that
when a relocating loader is used, the alloca-
tion of memory to a given program will re-
main bound {i.e., fixed) for the duration of
that program’s execution.

3. LINKERS

The linkingt of subprograms together to
form a composite program is of great value
in the modular development of software. To
place the linking function in perspective, let
us view Figure 1 as a function of time.
Source program coding must be performed
first, translation second, loading third, and
execution fourth. Linking, however, eould
be carried out at seven different times,
namely: 1) at source program coding time;
2) after coding but before translation time;
3) at translation time: 4) after translation
but before loading time; 5) at loading time;
6} after loading but before execution time;
or 7) at execution time,

At this point it is worthwhile to introduce
the concepts of physical and logical (vir-

1 The linking process has also been celled binding

(Burroughs), eollects (Untvac), and buildin
(IBM I&E)O). eoing) g

Linkers and Loaders . 151

tual, name) address space [6, 7]. The physi-
cal space consists of the set of main mem-
ory locations where information may be
stored. The logical space consists of the set
of identifiers that may be used by a pro-
gram to reference information. The transla-
tion or mapping of a logical into a physical
address is called address binding.

The linking process may be viewed as
binding (combining) independent logical
spaces into one composite logical space. In
essence, the binding of a set of subprograms
in logical space is equivalent to fixing their
positions relative to a common base. Let us
now discuss the seven cases listed above in
more detail.

To link at or before transiation time im-
plies a separate translation for each differ-
ent combination of subprograms. This rep-
resents an important drawback. The IBM
1401 Autocoder is an example of a system
that performed linkage at translation time.
The approach of linking after translation
but before loading time is employed in the
IBM System/360 (Linkage Editor) and the
Uwivac 9400. In the basic case (refer to
Figure 2) the input to the linker consists of

one or more subprograms in binary sym--

bolic form. (These subprograms can come
from secondary storage and/or directly
from translation.) This form is similar to

" relocatable binary except that an additional

table (dictionary} is included with each
subprogram presented to the linker to indi-
cate the definition and use of external sym-
bois [8). External symbols are symbols that
are declared to be “public” and, as a result,
can be referenced by other programs. Exter-
nal symbols are the primary {facility
through which independently translated
subprograms communicate. (External sym-
bols are discussed in detail in section 4.1.1.)
It is the responsibility of the linker to com-
bine the input subprograms into a single
{relocatable) output module in which all
external references have been resolved, if
the module is to be loaded for execution.
Carrying out the linking process after
translation but before loading time (or
later) allows the composition of a set of
linked subprograms to change without forc-
ing retranslation of the entire collection;

Computing Survevs. Vol. 4. No. 3. Seplember 1972

o 1

En.

152 . Leon Presser and John R. White

e e R [RO

Indapandently SECO!

,Tmmlum STQR'J‘A%%M

Subprogram
I
| o s '

odule Ons Module

| =—=———{ LiNKER f;;-w °|; | LOADER M:;n':-m
i I n::'hizm Execution
I
i

Inde ly

'Trunsluhd

Subprogram

Fia. 2. Linking after translation but before loading.

only linking has to be performed anew. The
output of the linker can be supplied to the
loader for immediate loading or it can be
stored in secondary membory for future link-
ing and/or loading. This alternative pro-
vides for a flexible system. Furthermore, the
linker represents a natural base for the in-
corporation of subprogram editing facilities,
Linking could be performed at loading
time (ie., linking loader) as in many exis-
tent systems (e.g., Loader in IBM System/
360, XDS-UTS, CDC-SCOPE, and SEL
810B-BOS). The popularity of linking
loaders is a result of their simplicity since
the loading stage is a natural place to bind
subprograms together. On the other hand,
sinee linking implies loading, there is less
flexibility than when the two funetions are
implemented as separate modules, as in the
case earlier discussed. The input to a link-
ing loader consists of one or more subpro-
grams in binary symbolic form. The output
consists of one module in main memory
ready for execution. Again, all external ref-
erences must be resolved before execution.
Linking after loading but before execution
{case 6) would only be logical if we could
keep a very large number of subprograns
resident in main memory. In today’s sys-
tems main memory is 8 scarce resource;
thus, this alternative is not attractive.
Finally, it is possible to link (bind) at
execution time. Such an approach is called
segmentation. A segment is a self-contained
logical entity of related information defined
and named by the programmer (e.g., sub-
program, data array). All intersegment ref-
erences are achieved through symbolic

Computing Burveys, Vol 4, No. 3, September 1973

names that are resolved at execution time.
The most general implemehtaton of this
concept is that embodied in the Honeywell
645 Murrics system (formerly the GE-
645). For an excellent discussion of segmen-
tation as well as the Murtics system the
reader is referred to [7]. Briefly, from the
linking point of view the principal advan-
tages of segmentation include: the binding
of segments to the composite logical space
only when required; possible segment,
growth during execution since segmentation
allows the management of logical space;
and sharing (of segments) in its most gen-
eral form since the relative position of a
shared segment in one logical space is inde-
pendent of its position in other logical
spaces. The main problems with segmenta-
tion include: overhead costs, since execution
time binding is less efficient although more
flexible than earljer binding; and the im-
portance of an integrated (hardware and
software) design.

To treat linking and loading in more de-
tail we discuss the implementation of these
functions on the IBM System/360. The
System/360 Operating System (0S) pro-
vides two alternatives. On one hand there
exists a linking loader referred to as
Loader; on the other hand there exists a
sophisticated linker, called the Linkage
Editor, and a simple relocating loader re-
ferred to as Program Fetch. The linking
power and flexibility of Loader is a subset
of that provided by the Linkage Editor ; 80
that only the funetion and structure of the
Linkage Editor and Program Fetch are ex-
amined in detail. The ease in question is

that outlir
tional faci
tem/360 C
cal spaces
time throu
be discuss:
maining s
trate basic
te point o
refer to th
ized throug

4. THE LN

With this |
in mind, w
funetions i
is responsi
[9]:
Primary fu
dependent]
Secondary
ing; (3) Pr
access,

The first
responsibili
fore, the b
the manhe:
Iated mod:
other three
objectives
oughly con
are discuss
Linkage Ed

The inpu
tor can he
input modu
statements.
sified as b
Load Modu
are similar i
discussed ns
Modules is
age Editor
in Section 4.

4.1 Object 4

The term
output prodi
language tr:

execution time.
‘htaton of this
the Honeywell
aerly the GE-
sion of segmen-
1¢8 system the
‘iefly, from the
*incipal advan-
le: the binding
& Jogical space
«gible segment
‘¢ segmentation
logical space;
n its most gen-
: position of a
1 space is inde-

other logical
with segmenta-
since execution
although more
.+ and the im-
{(hardware and

ng in more de-
tation of these
stemn /360, The
xm (0O8) pro-
me hand there
sferred to as
there exists a

the Linkage
ing loader re-
t. The linking
ler is a subset
age Editor; so
iructure of the
Fetch are ex-
in question 1s

that outlined in Figure 2. There is an addi-
tional facility (LINK) provided in the Sys-
tem/360 OS which allows two separate logi-
cal spaces to communicate at execution
time through general registers. This will not,
be discussed here. The objective of the re-
maining sections of this paper is to illus-
trate basic implementation techniques and
to point out system trade-offs. (Terms that
refer to the IBM System/360 are capital-
ized throughout.)

4. THE LINKAGE EDITOR

With this perspective of the Linkage Editor
in mind, we can exarnine in more detail the
functions it performs. The Linkage Editor
is responsible for the following functions
[9]:

Primary funetion—(1) Linking together in-
dependently translated modules.

Secondary funetions-—(2) Overlay process-
ing; (3) Program modification; (4) Library
access,

The first function listed abave is the main
responsibility of the Linkage Editor; there-
fore, the bulk of this discussion centers on
the manner in which independently trans-
lated modules are linked together, The
other three functions represent secondary
objectives and, as a result, are less thor-
oughly considered. Before these functions
are discussed further, the inputs to the
Linkage Editor should be examined.

The inputs accepted by the Linkage Edi-
tor can be divided into two groups [10]:
input modules, and Linkage Editor contro]
statements. Input modules are further eclas-
sified as being either Object Modules or
Load Modules. These two types of modules
are similar in structure. Object Modules are
discussed next, while the structure of Load
Modules is examined in Section 4.3. Link-
age Editor control statements are covered
in Seetion 4.5.

4.1 Object Moduiles

The term Object Module refers to the
output produced by the (IBM System/360)
language translators. This output consists

Linkers and Loaders ¢ 153

of the machine language code for the trans-
lated program, relocation information, and
& table indicating the definition and use of
€xternal symbols. As a result, Objeet Mod-
ules correspond to the binary symbolic form
of & program that was discussed in Section
3. Each module (see Figure 3) is divided
into the following four sections [9]: Exter-
nal Symbho] Dictionary, Text, Relocation
Dictionary, and End Record.

4.1.1 External Symbol Dictionary (ESD)

The External Symbol Dictionary (ESD)
is a table that contains an entry for each
external symbo! defined within the modyle
[9]. As mentioned earlier, external symbols
are the facility by which independently
translated programs communicate. An ex-
ternal symbol is classified as representing
either an external name or an external ref-
erence [11].

!

EXTEﬁNAL SYMBOL DICTIONARY
(ESD)

TEXT

RELOCATION DICTIONARY
(RLD)

END RECORD

F16. 3. Object Module format.

Computing Surveys, Vol. 4, No. 3, September 1972

R S s et

T e e

PR 1

Sms St i LT Tk Ko

154 . Leon Presser and John B. While

Ezternal Name

A symbol within a module is said to be
an external name if that symbol can be ref-
erenced by other modules that were inde-
pendently translated and are being linked
together with the module containing the ex-
ternal name. Within the framework of the
IBM System/360 there are two types of ex-
ternal names: Control Section names, and
Entry Point names [10].

Control Section Name

A program in the System/360 is made up
of one or more Control Sections. Each Con-
trol Bection is a unit of coding (instructions
and/or data) that is considered to be an
entity, While all elements of a single Con-
trol Section are loaded and executed in a
constant relationship with each other, an
individual Control Section can be relocated
independently of other Control Sections at
load time without altering the operating
logic of the program [11]. Note that section-
ing allows independently coded subpro-
grams to be translated together, thus pro-
ducing a single Objeet Module, whereas a
linker allows independently translated pro-
grams to be combined into a single Load
Module.

In the System/360 Assembly Language
there are three pseudo-operations (instruc-
tions to the Assembler) for identifying the
beginning of a Control Section [11]:

1) CSECT—identify Control Section;

2) START—identify Control Section and
specify initial location counter value; and

3) COM—define Blank Common Control

Section.

A name can be associated with any of these
pseudo-operations, and the corresponding
Control Section is considered to be a named
Control Section. The Control Section name,
being external, can be referenced by other
modules. An External Symbol Dictionary
entry ig ereated by the Assembler for each
Control Section. Note that the beginning of
unnamed Control Sections cannot be refer-
enced by other modules since there is no
external name associated with the Control
Section.

Computing Surveys, Vol. 4, No, 3, September 1972

Entry Point Name

Since a Control Section name is an exter-
nal symbol, another independently trans-
lated module can reference the beginning of
any named Control Section. It is often de-
sirable, however, to be able to reference a
particular point within a Control Section.
This can be accomplished by declaring the
symbol to be an external name at the de-
sired reference point. A symbol declared to
be external for the above purpose is referred
to as an Entry Point name. In the System/
360 Assembly Language the ENTRY pseu-
do-operation is used to identify those labels
which are to be considered Entry Points
[11]. The Ascembler creates an ESD entry
each time an ENTRY pseudo-operation is
found.

External Reference

The term external reference refers to a
symbol that is defined as an external name
in another independently translated module
but is referred to in the current module {10].
To insure correct assembly the symbol
being referenced must be identified as an
external symbol. In the System/360 Assem-
bly Language this is accomplished, in gen-
eral, with either the EXTRN pseudo-opera-
tion or a V-type Address Constant. (Ad-
dress Constants are discussed in Section
4.1.3.) Either of these causes the Assembler
to create an ESD entry for the external
reference.

ESD Entries

Each entry in the External Symbol Die-
tionary has a type assigned to it that indi-
cates its function. There are six possible
ESD types; however, for purposes of this
discussion it is sufficient to limit our atten-
tion to the following five types [9]:

1) Section Definition (SD). This ESD
entry represents the beginning of a
named Control Section. As shown in
Figure 4(a), the entry specifies the Con-
trol Section name, the faet that this entry
represents a named Control Section, the
assembled origin of the Control Section,
and the length of the Control Section.

2) Privale
represen
Control
as shown
SD type
is blank
tion is
Control
other m«

3) Label i
represen
4(c) shc
name of
address
start of
(called
for the ¢
Entry P

4) Comme
sents a
name an
Hd)) T
defined s
is not «¢
Commor
be alloes
the valu
The len;
length o
tained in

5) Extern
ESD en
an exter
4(e}), th
referenc
entry oc

 ence.

4.1.2 Text

The Tex
straightfor
machine |
that were |

4.1.3 Relo:

The Rel
tains one ¢
be relocate
main mem
addresses .

me is an exter-
ndently trans-
1e beginning of
It is often de-
to reference a
ontrol Section.
- declaring the
ume at the de-
ol deelared to
yose is referred
n the System/
ENTRY pseu-
fy those labels

Entry Points
an ESD entry
lo-operation is

ce refers to a
external name
1slated module
't module {10).
- the symbol
:ntified as an
/360 Assem-
‘ished, in gen-
pseudo-opera-
onstant. (Ad-
'd in Section
:he Asgembler

the external

Symbol Die-
y it that indi-
+ six possible
‘poses of this
ait our atten-
[8]:

This ESD
inning of a
8 shown in
fies the Con-
1at this entry

Section, the
itrol Section,
Section,

2} Private Code (PC). This ESD entry
represents the beginning of an unnamed
Control Section. The format of the entry,
as shown in Figure 4(b), is similar to an
SD type entry except that the Name field
is blank. Note that since the Control Sec-
tion is unnamed, the beginning of the
Control Section cannot be referenced by
other modules,

3) Label Definition (LD). This ESD entry
Tepresents an Entry Point name. Figure
4(c) shows that the entry containg the
name of the Entry Point, the type, the
address of the Entry Point relative to the
start of the input module, and a pointer
(called an ESD ID) to the ESD entry
for the Control Section that contains the
Entry Point.

4} Common (CM). This ESD entry repre-
sents a Common area and specifies the
name and length of the area. (See Figure
4(d).) The Assembled Origin field is un-
defined since space for the Commen ares,
is not created during translation. One
Common area in the output module will
be allocated by the Linkage Editor; thus,
the value of this field is set at link time.
The length of this area will equal the
length of the largest Common area eon-
tained in the inputs,

&) External Reference (ER). This type of
ESD entry represents the occurrence of
an external reference. As shown in Figure

4(e), the entry need only specify the
referenced symbol and the fact that the
entry corresponds to an external refer-
ence,

4.1.2 Text

The Text portion of an Object Module is
straightforward. It contains the relocatable
machine language instructions and data
that were produced during translation.

4.1.3 Relocation Dictionary

The Reloeation Dictionary (table) con-
tains one entry for each address that must,
be relocated when the module is ioaded into
main memory. The number of relocatable
addresses and, as a result, the amount of

Linkers and Loaders . 155

CONTROL ASSEMBLED
SECTION |SD ORIGIN LENGTH
NAME
ASSEMBLED
BLANK | pc | (oNEM LENGTH
POINTER TO ESD
53'.1'? to | ASSEMBLED] ENTRY FOR CSECT,
NAME ORIGIN CONTAINING
ENTRY FOINT
NAME OF
COMMON -
AREA (OR | M ===~ LENGTH
BLANK)
REFERENCED)
SYMBOL mm e s

Fie. 4. Format of ESD entries, (a). Section defi-
nition, {b). Private code. (). Label definition.
(d). Commeon area. (e). External reference.

information that must be contained in a re-
location table is a funetion of the machine
(addressing) architecture. To illustrate this
point consider for a moment a hypothetical
computer with an addressing mechanism
which funetions such that the effective ad-
dress (i.e., the actual memory location that
is accessed) is taken to be the contents of
the memory address field of the instruetion,
With such an architecture, the address field
of the machine language instructions will
contain the effective address of the cell to
be referenced. As a result, all the instrue-
tions that reference memory must have
their address fields modified when a pro-
gram for this computer is relocated in mem-

Computing Surveys, Vol, 4, No. 3. Septemher 1972

|

156 . Leon Presser and John R. White

ory. Consequently, the relocation table is of
maximum length,

In the System/360, the size of the reloca-
tion table is greatly reduced because the
system architecture utilizes a base register
approach in calculating the effective ad-
dress. The effective address is formed by
always adding the contents of a base regis-
ter to the contents of the instruction mem-
ory address field. (When indexing is speci-
fied, the contents of an additional index
register is added in when forming the effec-
tive address.) Therefore, the address por-
tion of machine language instructions that
reference memory can be represented by the
ordered pair: (Base Register, Displace-
ment). The first element of the pair indi-
cates which one of the 16 general-purpose
registers is being used as a base register;
the second element is a displacement {in
bytes) from the address contained in the
base register. The hardware calculates the
effective memory address at execution time
by adding the displacement field to the con-
tents of the appropriate base register (and,
if specified, the contents of another gener-
al-purpose register, an index, is also added).
It is the responsibility of the language
translator to place the proper base register
and displacement in the address portion of
the machine language instruetions being
generated. In the System/360 Assembly
Language, the USING pseudo-operation ex-
ists to inform the Assembler: 1) which of
the sixteen general registers is to be used as
a base register, and 2) the relative address
that will be in the base register at execution
time [11]. These two pieces of information
enable the Assembler to correctly build the
address portion of each memory reference
instruction. When writing in 360 Assembly
Language the programmer is responsible for
including instruetions in his program that
at execution time will load the base regis.
ters with the appropriate addresses. As a
result of this organization, the address fields
of machine language instructions in the
System/360 do not have to be modified
when a module is loaded. In effect, the nec-
essary relocation oceurs at execution time
when the hardware adds the displacement

Computing Surveys, Vol. 4, No. 3, September 1072

to the contents of the base register to obtain
the effective memory address.

This discussion illustrates some impor-
tant trade-offs that exist at system design
time. On the one hand there is the trade-off
between hardware and software as far as
contributions to the relocation function are
concerned (e.g., base registers). On the
other hand there is the the trade-off be-
tween various software modules. For exam-
ple, the loader in the System/360 has
shifted some of its responsibilities to the
language translators which now have to
output addresses in a base plus displace-
ment format. Moreover, note that with a
base register approach the binding of a
memory address is not completed until the
last possible moment—execution time.

In the System/360 approach the only
parts of the Text that require relocation are
those entries that represent Address Con-
stants, It is sufficient for us to think of an
Address Constant as simply a cell that will
contain an absolute memory address at exe-
cution time. Address Constants are used
primarily for: 1) initializing base registers,
and 2) communicating between Control
Sections.

In discussing Address Constants, we must
distinguish between: 1) the cell (Text
entry) that contains the constant, and 2)
the value of the constant (i.e., the contents
of the cell).

In the 360 Assembly Language, Address
Constants are normally established with a
DC (Define Constant) pseudo-instruction.
For example,

JW DC A(LP)

defines a cell labeled JW which at execution
time will contain the actual memory ad-
dress of the cell labeled LP. The Text entry
that contains the Address Constant cannot
be completed at translation time since the
address of the symbol specified in the refer-
ence field of the DC instruction will not be
known until the corresponding module is
loaded. Therefore, Address Constants must
be completed (reloeated) by the loader.

There are two principal kinds of Address
Constants that require relocation: A-type
and V-type [9).

A-type A
with:

D

where SYME
the module e
& name that
the use of th
In the first .
stant represe
sembler sets 1
to the relativ
second case, |
stant is set
no knowledge
specified sym

V-type Ac
with:

ID(

where SYMB

nal reference.

the value of
the Assemblel
Since Add:

part of the T\

Relocation D

each Address

format of a]
entry is show:
tains the folle

1) Relocatior
ESD entry
whieh the
depends. If
A-type that
nal symbol
point to th
Section whi
stant,

2) Position F
ESD entry
taining the .

3) Flag. A ty
things, spec
represents &
Constant.

4) Address. 1
from the sts
Constant.
The RLD &

ing loader to r

zister to obtain

; some impor-
system design
is the trade-off
vare as far as
m function are
ters}). On the
1 trade-off be-
les. For exam-
rstemn /360 has
thilities to the
now have to
plus displace-
te that with a
binding of a
eted until the
.ion time.
oach the only
2 relocation are
Address Con-
to think of an
a cell that will
address at exe-
.ants are used
: base registers,
tween Controi

stants, we must
he eell (Text
nstant, and 2)
e., the contents

guage, Address
iblished with a
1do-instruction.

.LP})

ch at execution
J memory ad-
The Text entry
onstant cannot
time since the
ed in the refer-
:ion will not be
ling module is
Jonstants must
the loader.

inds of Address
cation: A-type

o ogem

A-type Address Constants are defined
with:

DC A(SYMBOL)

where SYMBOL is either 1) a name loeal to
the module containing the DC pseudo, or 2)
a name that has been declared external by
the use of the EXTRN pseudo-instruction.
In the first case, where the Address Con-
stant represents a local reference, the As-
sembler sets the value of the constant equal
to the relative address of SYMBOL. In the
second case, however, the value of the con-
stant is set to zero since the Assembler has
no knowledge of the relative address of the
specified symbol,

V-type Address Constants are defined
with:

DC V(SYMBOL)

where SYMBOL is assumed to be an exter-

nal reference. As in the second ease above,

the value of the constant is set to zero by
the Assembler,

Since Address Constants are the only
part of the Text that require relocation, the
Relocation Dietionary contains an entry for
each Address Constant in the program. The
format of a Relocation Dictionary {(RLD)
entry is shown in Figure 5, Each entry con-
tains the following four fields [9]:

1} Relocation Pointer (R). A pointer to the
ESD entry for the external symbol on
which the value of the Address Constant
depends. If the Address Constant is an
A-type that does not depend on an exter-
nal symbol, then the R pointer is set to
point to the ESD entry for the Control
Section which contains the Address Con-
stant.

2) Position Pointer (P). A pointer to the
ESD entry for the Control Section con-
taining the Address Constant.

8) Flag. A type indicator that, among other
things, specifies whether the RLD entry
represents an A-type or V-type Address
Constant.

4) Address. The displacement (in bytes)
from the start of the Text to the Address
Constant,

The RLD entries are used by the relocat-
ing loader to relocate the corresponding Ad-

Linkers and Loaders . 157

R P FLAG ADDRESS

F1g. 5. RLD entry format.

dress Constants when the module is loaded.

This relocation occurs prior to execution

and is referred to as static relocation since

it remains fixed for the duration of program
execution. As was pointed out earlier, the
address portion of memory reference in-
structions is bound at execution time (dy-
namic relocation) when the hardware adds
the displacement field to the contents of the
appropriate base register. Therefore, the
running of a program in the System/360
involves both static and dynamic reloca-
tion. The software provided by IBM for the

System/360 discards the Relocation Dic-

tionary after loading the module; so it is

not possible to move a program to another
place in memory once it has been loaded.

It is interesting to note that with a some-
what different system strategy, Address
Constants are not needed. For example, if a
single base register is used, and if the length
(in bits) of the displacement field is suffi-
cient to allow all of main memory to be
accessed (e.g., in the System/360, 24 bits
instead of 12—with implicit specification of
the base register), then all memory refer-
ences could be done with a base plus dis-
placement format without the need for Ad-
dress Constants. For a Jocal reference, the
displacement field would be set by the
translator; but the displacement field of ex-
ternal references would be set by the linker.
This approach is essentially the one em-
ployed in the CDC 6400. There are definite
system trade-offs:

1} In the single base register case, each in-
struction that references memory requires
additional bits; however, once a program
has been loaded it can be easily relocated
in physical space at any time during exe-
cution’ since there are no Address Con-
stants.

2) Muitiple base registers under user con-
trol require that the user specify (eg.,

Computing Surveys, Vol. 4, No. 3, Beptember 1972

R T T R T
PRI SRR £ % el TR il Th e
iRt bl s AR i . -

b i

R e
i o L i i

£

il

1l

b F i 3 1o Bd Lk b ik

s

158 . Leon Presser and John R. While

USING) which base register is to be

used,

3) Multiple base registers facilitate the
sharing of programs and allow the split-
ting of programs for loading into noncon-
tiguous areas of main memory.

In addition to the static relocation of Ad-
dress Constants there are other features of
the System/360 architecture that prevent
the dynamic relocation of programs. Among
these are the fact that working registers can
contain absolute addresses (e.g., return ad-
dresses from Branch-And-Link instrue-
tions), and the fact that working and base
registers are drawn from the same register
set.

4.1.4 End Record

The End Record indicates to the Linkage
Editor that the end of the Object Module
has been reached.

With the structure of Object Modules in
mind (Figure 3), we can now discuss in more
detail the primary Linkage Editor function
of linking together one’ or more Object
Modules.

4.2 linking Together g Set of Modules

In linking together a set of modules, the
Linkage Editor is primarily responsible for
{9]: 1} assigning addresses; 2) relocating
Address Constants; and 3) creating an out-
put module (called a Load Module).

42.1 Assigning Addresses

Each input Object Module may consist of
one or more Control Sections. To produce a
single loadable module, the Linkage Editor
assigns consecutive relative addresses to
cach Control Section encountered. This is
done by assigning an address of zero to the
first Control Section and then assigning ad-
dresses relative to this origin to all other
Control Sections. During this process the
External Symbol Dictionaries of the input
modules are merged together to form a
Composite External Symbol Dictionary

- {CESD). The Assembled Origin fields of all

8D, PC, and LD type entries are updated

Computing Surveys, Vol. 4, No, 3, September 1972

to reflect the new addresses that were as-
signed.

4.2.2 Relocating Address Constants

Once contiguous addresses have been as-
signed to the Control Sections in the input
modules, all A-type and V-type Address
Constants must be relocated relative to the
beginning of the output module being
created. This relocation is accomplished in
the following manner [9]:

1) Every entry in the RLD for each indi-
vidual input module is read. The R and P
pointers are updated to point to the cor-
rect CESD entry. The Address field is
updated by adding to it the contents of
the Assembled Origin field of the CESD
entry pointed to by the new P pointer.
The Flag field is examined to determine
the type of Address Constant represented
by the RLD entry.

2) If the RLD entry represents a V-type
Address Constant, then the constant cor-
responds to an external reference. This
means that the symbol referenced is not
defined in the input module containing
the Address Constant, but is defined (it is
hoped) in one of the other input modules
being linked together. In the ESD of the
input module the external reference is
represented by an entry with Type set to
ER. When the Composite External Sym-
bol Dictionary is formed during the first
step of linking, each ER type entry
should be matched by an 8D, LD, or CM
type entry that has the same name field.
External references that are matched in
this way are said to be resolved since the

referenced symbol corresponds to either a-

Control Section Name (SD type entry),
an Entry Point Name (LD type entry),
or a Common area (CM type entry).
Only one entry (the SD, LD, or CM
entry) is retained in the CESD. On the
other hand, if there is no matching SD,
LD, or CM entry, the ER entry is placed
in the CESD and the external reference is
said to be unresolved. Relocation of a V-
type Address Constant is accomplished in
the following manner. The constant is ac-
cessed through the Address field of the

U

RLD ent
index the
which the
If the Ty
either 8D
ence has
effected L
stant equ
bled Orig
however,
entry is I
resolved :
as nob exi
3) If the B
Address !
respond {
external
stant co
(i.e., the
the modt
stant), n
following
ing the ¢
Address |
value of
cated) b
Assemble
entry po
pointer.
represent
stant is
dress fiel
field of t!
R pointe
stant cor
nal refer
marked
hand, if
entry is
nal refer
tion is 1
value of
gin field

42.3 Creai

As a rest
tions (assi
Address (
produces a
sents a cor
processed.
Load Mod:

es that were as-

Constants

es have been as-
lons in the input
V-type Address
:d relative to the

module being
accomplished in

D for each indi-
ad. The R and P
point to the cor-
Address field is
the contents of
Id of the CESD
new P pointer.
ed to determine
tant represented

esents a V-type
he eonstant cor.
reference. This
eferenced is not
dule containing
¢ i8 defined (it is
'r input modules
the ESD of the
1l reference is
vith Type set to
+ External Sym-
during the first
IR type entry
8D, LD, or CM

ame name field. .

are matehed in
solved since the
:onds to either a
‘D type entry),
D type entry),
I type entry).
), LD, or CM
CESD., On the
» matching SD,
entry is placed
‘nal reference is
ocation of a V-
secomplished in
constant is ac-
498 field of the

—-——

RLD entry. The R pointer is used to
index the CESD to find the entry on
which the value of the constant depends.
Ii the Type field of the entry accessed is
either 8D, LD, or CM, the external refer.
ence has been resolved; and relocation is
effected by setting the value of the con-
stant equal to the contents of the Assem-
bied Origin field of the CESD entry. If,
however, the Type field of the CESD
entry is ER, the external reference is up-
resolved and the module must be flagged
as not executahle.

3) If the RLD entry represents an A-type
Address Constant, the constant can cor-
respond to either a local reference or an
external reference. If the Address Con-
stant corresponds to a local reference
(i.e, the symbol referenced is defined in
the module containing the Address Con-
stant}, relocation is accomplished in the
following manner. First, the cell contain-
ing the constant is accessed through the
Address field of the RLD entry. Then the
value of the constant is updated (relo-
cated) by adding to it the contents of the
Assembled Origin field of the CESD
entry pointed to by the R (relocation)
pointer. If the A-type Address Constant
represents an external reference, the con-
stant is again accessed through the Ad-
dress field of the RLD entry. If the Type
field of the CESD entry pointed to by the
R pointer is ER, then the Address Con-
stant corresponds to an unresolved exter-
nal reference, and the module must be
marked as not executable. On the other
hand, if the Type field of the CESD
entry is either 8D, LD, or CM, the exter-
nal reference has been resolved, Reloca-
tion is then effected by adding to the
value of the constant the Assembled Ori-
gin field of the CESD entry.

4.2.3 Creating an Output Load Module

As a result of performing these two fune-
tions (assigning addresses and relocating
Address Constants) the Linkage Editor
produces a single output module that repre-
sents a concatenation of the input modules
processed. This output module is called a
Load Module; its format is discussed below.

Linkers and Loaders . 159

4.3 load Modules

As earlier discussed, Load Modules can
also appear as inputs to the Linkage Editor.
The possible reprocessing of a Load Module
by the Linkage Editor requires that the
structure of a Load Module be similar to
that of an Object Module. The general for-
mat of & Load Module is shown in Figure 6.

The first portion of the Load Module
contains the Composite External Symbol
Dictionary. This table represents a combi-
nation of the ESDs of the individual input
modules, as hag already been discussed. The
CESD is followed by a sequence of Text
and RLD information; each Text/RLD pair
corresponds to the Text portion and Reloca-

COMPOSITE EXTERNAL SYMBOL DICTIONARY
(CESD)

TEXT

RLD

TEXT

RLD

TEXT

RLD

EOM RECORD

 Fic. 6. Load Module format.

Computing Surveys, Vol. 4, No. 3, Beptember 1972

T T e e bttt o B S PN Gove s m e

160 .

tion Dictionary of an input module. The
end of the Load Module is indicated by an
EOM (End-Oi-Medule) record.

At this point let us discuss an example in
detail.

4.4 Llinking Exampie

In this example two Object Modules,
each containing one Control Section, are
linked together to form one output Load
Module. The format of the first module is
shown in Figure 7.

Object Module One has one named Con-
trol Section (CSECT A), one Entry Point
(the statement labeled BILL), and one V-
type Address Constant (DC V(B)). As
shown in the External Symbol Dictionary,
there are three external symbols: A (a Con-

Leon Presser and John B. White

Point), and B (an external reference).
There is one entry in the RLD for the sin-
gle (relocatable) Address Constant present
in Object Module One. The entry indicates
that the value of the constant depends on
the address of the external symbol B and
that the constant is defined in Control Sec-
tion A at relative byte location 300. The
value of the constant has been set to zero
by the Assembler.

The format of the second input module is
shown in Figure 8. There are two entries in
the External Symbol Dictionary, one for
the Control Section name B and one for the
external reference BILL. As indicated in
the Relocation Dictionary, there are two
Address Constants, DC A(JOE) which
is a local reference, and DC V(BILL)
which is an external reference. The R and P
pointers in the RLD entry for the local ref-

' Computing Surveys, Vol. 4, No, 3, September 1972

trol Section name), BILL (an Entry erence, DC A(JOE}), are the same since
ASSEMBLED
NAME TYPE ORIGIN LENGTH(OR ESD ID}
A sD 0 500 E
BiLL{ LD 200 1 $
B .3 I b
|
CSECT A
ENTRY BILL
200
BYTES| .
-
-
. T
300 BILL e e cem e e
BYTES . €
500 * X
BYTES .
. T
L]
[]
®
[oC Vv{B) Q——————VALUE OF THE
. CONSTANT SET BY
THE ASSEMBLER
[]
L]
*
L]
1
R
3 1 V-type 300 I5
{ R P FLAG ADDRESS

F1a. 7. Object Module One.

2(
BY?

the Address Ci
trol Section B,
stant depends
Control Sectior
As said, it is
guage translatc
to ereate the (
defined. Thus,
ject Module Ts
by two previo
tion processes.
Processing b
one output Lc
which is shown
the Assembled
External Symk
tion B had be:
tive to Contro

B

ternal reference}.
RLD for the sin-
i Constant present
he entry indicates
1stant depends on
18! symbol B and
ed in Contro] Sec-
location 300. The
5 been set to zero

d input module is
are two entries in
ctionary, one for
B and one for the
As indicated in
y, there are two
A(JOE) which
DC V(BILL)
nee. The R and P
- for the local ref-
.re the same since

F THE
JTSET BY
/EMBLER

ASSEMBLED
NAME TYPE ORIGIN

Linkers and Loaders . 161

LENGTH (OR ESD D)

B 50

300

8iLL ER | .

E
S
D

[
T CSECT @
L

100 .
BYTES} *

JOE ...

200
BYTES

BYTES

OC A {JOE)
DC v {BILL)
L]

300
BYTES

L
L]

* 8 @ 9 @

~ X M~y

1oo]_._____ L VALUE OF THESE

H f A~-type

2 H V-type

R P FLAG

o CONSTANTS SET BY
THE ASSEMBLER
200 R
L
204 D
ADDRESS

Fie. 8. Object Module Two.

the Address Constant is contained in Con-
trol Section B, and the value of the con-
stant depends on the address assigned to
Control Section B. '

As said, it is the responsibility of the lan-
guage translator (e.g., compiler, assembier)
to create the Object Module in the format
defined. Thus, Object Module One and Oh-
Jeet Module Two would have been produced
by two previous and independent transla-
tion processes,

Processing by the Linkage Editor yields
one output Load Module, the format of
which is shown in Figure 9. As indicated in
the Assembled Origin field of the Composite
External Symbol Dictionary, Control See-
tion B had been assigned an address rela-
tive to Control Section A. The R and P

fields in the Relocation Dictionaries have
been updated to paint to the correct CESD
entries, and the Address fields have been
changed to reflect the new addresses as-
signed. The three Address Constants have
been relocated relative to the start of the
module, and the two constants that repre-
sented external references have been re-
solved.

Having discussed the primary function of
the Linkage Editor (linking together inde-
pendently translated modules), and having
also described one class of Linkage Editor
inputs (input modules), let us now briefly
discuss the secondary functions of the Link-
age Editor and the other class of Linkage
Editor inputs (contro) statements).

Computing Surveys, Vol. 4, No. 2, September 1972

ASSEMBLED
NAME TYPE ORIGIN

Leon Presser and John R. While

LENGTH (OR ESD ID)

A SD) 500 c
BiLtL | Lo 200 1 E
B SD 500 300 g
Tt CSECT A
ENTRY BILL
200| .
pyTES| |
. TEXT OF OBJECT
_____________________ MODULE ONE
300 BiLL -
BYTES
-
[)
[]
pc v(s} 500
600 .
BYTES .
L]
3 | 1 | v-type 300 RLD OF OBJECT
BTes MODULE ONE
CSECT 8
704 .
BYTES JOE —___ —— -
L)
_.
. 2
‘-
1 DC A(JOE) 600 TEXT OF OBJECT
MODULE TWO
Y DC v (BILL 200
.
[]
3 3 A-type 700 RLD OF OBJECT
R EREE 704 MODULE TWO

R P FLAG

ADDRESS

Fi1a. 8. Format of output Load Module.

4.5 Linkage Editor Control Statements

In general, Linkage Editor control state-
ments modify or augment the processing
performed by the Linkage Editor in its pri-
mary function of linking modules. Control
statements specify to the Linkage Editor
which of the secondary functions (Overlay
Processing, Program Modification, or Li-
brary Access) are to be performed. To con-
vey the flavor of what takes place, some
key Linkage Editor control statements will
be discussed as they relate to the appropri-

ate secondary function. Since we are more
interested in concepts than in details we
will not concern ourselves with the syntax
of control statements.

4.6.1 Overlay Processing

The tendency in modern eomputer archi-
tecture is toward systems with hardware-
aided (main) memory management (e.g.,
paging) [6]. As a result of these hardware
facilities the software effort necessary to
implement a dynamic (i.e., execution time)

R X

memory manag
duced. Howeve
management c:
parent to the p
cient without

hase registers,
models 67, 85,
hardware feat
memory mana;
incorporated i
manage memo
The Linkage 1
ferred to as O
the option of
memory mana
grammer poim
via control st:
tions in his prc
main memory
this informatic
tures the mod
cution time an
the operating

lay Control Se

Overlay Struc

A program
set of Segmen:
of one or mo
overlay struct
resented by a
10 indicates. '
1) contains al
remain in ma:
tion of the pr
path are logic
passed to a &
path between
question are
not already tl
trol is passed
Supervisor mt
and Segment
ments that i
logically relat
other (e.g., Se

Once the |
overlay strue
indicate that
tor; this is a
Linkage Edi

-

ounumo

T OF OBJECT
WLE ONE

OF OBJECT
ULE ONE

"OF OBJECT
JLE Two

OF OBJECT
JLE TWO

ce we are more
1 in details we
vith the syntax

omputer archi-
with hardware-
1agement {e.g.,
these hardware
t necessary to
wecution time)

T e ey s

T e o pem

Inemory management scheme is sizeably re-
duced. However, even though such memory
management can proceed completely trans-
parent to the programmer, it may be ineffi-
cient without his cooperation. Other than
base registers, the System /360 (except for
models 67, 85, and 195) does not provide
hardware features to perform dynamie
memory management. Rather, the software
incorporated into the operating system to
manage memory is extensive and complex,
The Linkage Editor through a facility re-
ferred to as Overlay allows g programmer
the option of specifying certain dynamic
Memory management. In essence, the pro-
grammer points out to the Linkage Editor,
via control statements, those Contro! Sec.
tions in his program that need not reside in
main memory at the same time. Based on
this information the Linkage Editor strue-
tures the module it outputs so that at exe-
cution time an Overlay Supervisor {part of
the operating system) wil) be able to over-
lay Control Sections.

Overlay Structure

A program in overlay form consists of a
set of Segments, each of which is eomposed
of one or more Control Sections [10]. The
overlay strueture of a program can be rep-
Tesented by a tree, as the example in Figure
10 indicates. The Root Segment, (Segment
1) contains all Contro| Sections that must
remain in main memory throughout execy-
tion of the Program, Segments that lie in 5
path are Jogically related; when contro jg

not already there, For example, when con-
trol is passed to Segment, 4, the Overlay
Supervisor must insure that both Segment 4
and Segment 2 are in main memory. Seg-
hents that lie on the same leve! are not
logically related and, thus, can overlay each
other (eg, Segments 2 and 3 in Figure 10).

Once the programmer has designed the
overlay structure of his program, he myst
indicate that strueture to the Linkage Edi-
tor; this js accomplished with the Overlay
Linkage Editor econtro] statement. Each

Linkers and Loaders . 163
CSECT A [noor seoment
csecT g | (SEGMENT 1)
CSECT ¢
SEGMENT 2 SEGMENT 3
CSECT D CSECT 6
CSECT E CSECT F
SEGMENT 4 SEGMENT §

Fig. 10. Example of an Overlay Structure in tree
form,

Overlay statement specifies 1) a set of Con-
trol Sections that are to be grouped into g
Segment, i i

Editor structures this information for the
Overlay Supervisor. In fact, this informa-
tion becomes part of the Linkage Editor
output module; the module is termed an
Overlay Load Module,

452 Program M odification

During Linkage Editor Processing the
user can edit (thus the name Linkage Edi-
tor) his input modules on a Contro] Section
basis. This makes it possible to modify a
Control Section in an Object or Load Mod-
ule without, retranslating the entire source
program [10]. Two Linkage Editor eontrol
statements that facilitate program modifi-
cation are Replace and Change.

The Replace control statement is em-
Ployed to specify one of the following:

1) the replacement of one Control Section
with another;

2} the deletion of a Control Section; or

3) the deletion of an Entry Point name.,

The Change control statement allows the
programmer to change an external symbol,
The symbol to be changed can be a Control]

Computing Surveys, Vol, 4, No. 3. Beptember 1972

T
vl o9 N -

Lot i O

Ry -

164 .

Seetion name, an Entry Point name, or an
externai reference.

4.6.8 Library Access

It is possible for the Linkage Editor to
obtain input modules from sources other
than its primary input. The Linkage Editor
Incorporates such modules either automati-
cally or upon request [10].

Automatic Library Call

If, after linking together a set, of modules,
the Linkage Editor detects any unre-
solved externa] references, it automatically
searches a specified library—the Call I.i-
brary—in an attempt to resolve these exter-
nal references. All such references must be
resolved before a Load Module can be exe-
cuted. The Call Library (e.g., ForTRAN li-
brary) is specified through a job control
language statement, With the Library
Linkage Editor control statement it is pos-
sible to;

1) instruect the Linkage Editor to search g
library other than the Cal) Library for
the resolution of specific unresolved ex-
ternal references. The control statement
indicates both the library and the spe-
cific external references that are to be
resolved by a search of that library.

2) indicate those unresolved external refer-
ences for which no search of the Call
Library is to be performed during this
run of the Linkage Editor.

These facilities allow g programmer to

translate, link, and check out his code be-

fore it is complete. The incomplete module
may contain references to modules that will
be incorporated at later time.

Requested Library Call

The Linkage Editor contro] statement [n-
clude allows a user to request that a specifie
moduie (from some specified file) be in-
cluded in the Load Moduyle being produced.

4.6 Diagnostics

As previously discussed, the principal
output of the Linkage Editor is a Load

Computing Surveys, Vol, 4, No. 3, September 1972

Leon Presser and John R, White

Module which is placed in a file specified
through the job control language. In addi-
tion, the Linkage Editor outputs diagnostic
information which is also placed in a file
specified through the job control language.
The diagnostic information consists of three
parts. The first part, which is always out-
put, indicates options (e.g., overlay)} and
attributes (e.g., re-entrant) valid for the
Load Module, as wel] ag messages describ-
ing the handling of the Ioad Module (e.g,
Module Has Become Not Executable). The
second part of the diagnostic information,
which may or may not exist, consists of
error/warning messages. The third part
contains additional diagnostic information
requested at the user’s option. This optional
output ineludes a listing of all Linkage Edi-
tor control statements, a module map of the
Load Module (indicating such facts as the
origin and length of each Control Section in
the Load Module, the point of definition of
each Entry Point name in each Control
Section, those Control Sections obtained
from Automatic Library Call, ete.), and a
cross-reference table (listing the cross-ref-
erences between the Control Sections in the
Load Module).

5. THE RELOCATING LOADER

The reloeating loader, a portion of the Con-
trol Program that is always resident in
main memory, is functionally much simpler
than the Linkage Editor. Basically, with a
single Load Module as input, the functions
of the relocating loader are to acquire suffi-
cient space in main memory for the Load
Module, to load the module into main mem-
ory, and to update (relocate) all Address
Constants in the module.

3.1 Requesting Main Memory

The relocating ioader requests from the
Centrol Program the main Memory heces-
sary to load the module [12]. If the Control
Program eannot, satisfy the storage request,
either 1) the program that ealled the loader
is terminated, or 2) an operation (called
Rollout) is initiated in which the Control

Program mus
tem (ie., a p1
the one that |
agel and writ.
that job (its .
age. The spac
job is then ma
program.
Once the red
the appropris
alloeated. Thi
the Text of ths

5.2 toading ai

For each 1
Module (see F
are performed
1) The Text i

seetion of th
2) The RLD

read into
loader’s wor
3) Each Addr
ioaded is ur
ner, The c¢

responding .

from the Ad

RLD entry;

then added ¢

Constant.
These steps at
Module (EOM
point, the Loa:
ready for exeq

3.3 Loading Ex

At this poi
with the Load
ample (Figure
ory. The relo
questing 800 L
the Control Pr
age required by
that the reque
storage allocats
2000 (Figure 1
then reads the |
A} into memo:
The RLD for

in a file specified
language. In addi-
outputs diagnostic
;0 placed in a file
» control language.
n consists of three
ich is always out-
e.g., overlay) and
at) valid for the
messages deserib-
0ad Module (e.g,
t Executable}. The
ostie information,
exist, consists of
. The third part
nostic information
stion. This optional
of all Linkage Edi-
module map of the
x such facts as the
Contro] Section in
int of definition of
» in each Control
Sections obtained
Call, ete.}, and a
<ting the cross-ref-
trol Sections in the

DER

portion of the Con-
dways resident in
nally much simpler
". Basically, with a
nput, the functions
we to aequire suffi-
nory for the Load
i1le into main mem-
ocate) all Address

wory

requests from the
ain memory neces-
[12]. 1f the Control
the storage request,
at called the loader
. operation (celled
which the Control

B e T st

ol e e

s =

oo

e i et

Program must find another job in the sys-
tem (l.e., a program in memory other than
the one that has just requested main stor-
age) and write all the memory allocated to
that job (its Region) onto secondary stor-
age. The space oceupied by the rolled out
job is then made available to the requesting
program.

Once the request for memory is satisfied,
the appropriate amount of main storage is
allocated, This storage will be used to hold
the Text of the module being loaded.

3.2 Loading and Relocating the Text

For each Text/RLD pair in the Load
Module (see Figure 6) the following actions
are performed [12].

1) The Text is read into the next available
section of the memory allocated.

2) The RLD (Relocation Dictionary) is
read into & buffer in the relocating
loader's work area,

31 Each Address Constant in the Text just
loaded is updated in the following man-
ner. The cell that represents the cor-
responding Address Constant is aceessed
from the Address field (a pointer) in the
RLD entry; the starting Text address is
then added to the contents of the Address
Constant.

Tlese steps are repeated until an End-0f-

Module (EOM) indication is found. At that

point, the Load Module is in main memory

ready for execution.

5.3 Loading Example

At this point, the program associated
with the Load Module in the previous ex-
ample (Figure 9) is loaded into main mem-
ory. The relocating loader starts by re-
questing 800 bytes of main memory from
the Control Program (the amount. of stor-
ape required by the Load Medule). Assume
that the request is satisfied and that the
storage allocated starts at absolute address
2000 (Figure 11(a)). The relocating loader
then reads the first section of Text (CSECT
A into memory, starting at location 2000.
The RLD for this Text is read into the

Linkers and Loaders . 165

loader's work area, and the Address Con-
stant in CSECT A is updated (relocated)
by adding the starting Text address (2000)
to the value of the constant (Figure
11(b)). The Text for CSECT B is then read
into the next available section of memory
(location 2500), and the two Address Con-
stants are relocated (Figure 11(c)).

It should be noted that the relocating
loader does not reference the Composite Ex-
ternal Symbol Dictionary of the module
being loaded. As mentioned carlier, the
CESD:s are retained to allow the reprocess-
ing of Load Modules by the Linkage Edi-
tor. Actually, for purposes of relocation it is
only the address field of the RLD entries
that is of interest,.

Thus, in essence, the relocatable binary
form of a program in the IBM System/360
consists of the Text and RLD portions of
the Load Module. As previously deseribed,
when a program is loaded into memory, the
relocation information (RLD) employed to
load (relocate) it is discarded. Therefore, a
program that has been rolled out to second-
ary storage cannot be brought back into
main memory (Rollin operation) until the
space that it previously occupied is made
available; this represents a serious disad-
vantage. (Other reasons that require a
rolled out program to be returned—rolled in
—to the exact space from which it was re-
moved are mentioned in Section 4.1.3.)

4. SUMMARY

In this paper we have discussed the linking
and loading functions, and the implementa-
tion of linkers and relocating loaders. In so
doing, we have placed in perspective the
fact that the language processing responsi-
bility of an operating system extends be-
yond translation (e.g, compilation), and
that the translators are strongly influenced
by the environment in which they function.
A number of possible system trade-offs have
been pointed out. For example, in the Sys-
tem/360 (software and hardware) architec-
ture the work of the relocating loader is
rather simple since: machine addressing
follows the base plus displacement form;

Computing Burveys, Vol. 4, No. 4. September 1972

IV e B v AT ———

Py

i i,

166 .
LGy

2000

Leon Presser and John R. While

% N
//4

MEMORY
LOCATION
2000
CSECT &
ENTRY BILL
-
2200 | Bl 200
.) aYTes
L]
-
2300 | oc vim 2500
2500

Y

MEMORY

LOCATION
2000 | erera
ENTRY BILL

-
E]
-

2200 [emwr
>
-
L]

200 loc v 2900 500
. BYTES
L]
L]
[]
L]

e — — —— —— — ———

2300 CSECT B

2600 Je .
H
-
L]
2roo | oc atuoel 2600 300
BYTES
2704 [0C v(anL) 2200

F1a. 11. Loading a module. (a). Storage allocated by Control Program. (b). First section of Text
loaded and relocated. (c). Module in memory ready for execution.

the linking together of independently trans-
lated programs is the responsibility of the
Linkage Editor; and a major part of the
language processing burden is on the lan-
guage translators whose responsibility is
not only to translate source programs into a
form which is very close to machine lan-
guage, but also to format addresses in a
base plus displacement form and to create
the Object Module,

. Another important trade-off involves
binding time [2]. If the various stages of the
language transformation process are viewed
as a function of time, it is generally true
that early binding allows more efficient im-
plementations, while late binding facilitates
program debugging and modification.

The high cost of such features as elabo-
rate editing capabilities and overlay proe-
essing, which produce a powerful and so-
phisticated linker like IBM’s Linkage Edi-

Computing Surveys, Vol. 4, No. 3, September 1972

tor, presents a question of practicality in a
great many computer center environments,
This point is substantiated by the existence
of IBM’s simple loader which supposedly
reduces editing and loading time by about
one half [10].

In conclusion, it is our opinion that the
flexibility provided by simple linkers and
relocating loaders has a definite place in
modern operating systems.

7. ACKNOWLEDGMENTS

We wish to make it clear that our descrip-
tion of the IBM System/360 modules is
based on the manuals listed in the refer-
ences, as well as on our experience with the
system. The information presented here is
correct to the best of our knowledge.

We are grateful to the reviewers and to

Ed Balko
Rex Kerle
chard for:

1. PRESSER,
language
PRESSER,
Sons, Ne

2. BrapEyN, |
science, !
John Wi

3. Barrox,
Chapma

4. Bagnox,
ican Else

BYTES
2200

section of Text

acticality in a
environments.
* the existence
*h supposedly
ime by about

nion that the
> linkers and
nite place in

our descrip-
} modules is
in the refer-
‘nee with the
nted here is
edge.

‘wers and to

e i
.

s

Ed Balkovich, Wiily Chiu, Don Dumont,
Rex Kerley, Dick Mandell, and Ed Pri-
chard for many helpful comments,

REFERENCES

1. Pacsser, L. “The translation of programming
languages.” In Computer science, CARDENAS,
PRESSER, axp Mamiy (Eds.), John Wiley &
Sons, New York, 1972.

2. Brapes, R, “Operating systems.” In Computer
science, CARDENAS, Pakesser, axp Manrx (Eds.),
John Wiley & Sons, New York, 1972,

8. Barnox, D, W. Computer operating systems,
Chapman and Hall, London, 1971,

4. Barnox, D. W. Assemblers and loaders. Amer-
iean Elsevier, New York, 1969,

5.

6.
7. W
5 M

10.
1.
12. IBM

Linkers and Foaders . 167

Kvure, D E. “Von Neumann's first computer
program.” Computing Surveys 2, 4 (Dec. 1970),
247-260,

Dexning, P.J. “Virtual memory.” Computing
Surveys 2,3 (Sept. 1970}, 153-180.

Atsox, R. W. Pime-sharing system design
concepts. McGraw-Hill, New York, 1970.
cCartHY, J.; Coreato, F. J.: anp Daceerr,
. M. “The linking segment subprogram
language and linking loader.” Comm. ACM 6,
7 (July 1963). 391-395.

IBM System/360 operating sysem linkage edi.
tor program logic manual. IBM Form No,
Y28-6667-0.

IBM Svstem/360 operating system linkage
editor and toader. IBM Form No. C28-8538-8.
IBM System/360 operating syvstem assembler
language. IBM Form Nao. C28-6514-5,

[System/360 operating system MVT su-
pervisar program logic manual. IBM Form
No. GY28-6659-4.

Computing Surveys, Vol. 4, No. 3, September 1972

B T T

