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Computer System Simulation: An Introduction

This is a tutorial paper describing the construction of a basic simulation model
for a disk-based multiprogrammed computer system. First, the job processing
sequence of the system to be simulated is deseribed and techniques for generating
the simulated job mix are discussed. The structure of simulation models, events,
and events scheduled are then introduced. A simulation model for the
multiprogrammed system is presented and the event routines comprising the
model are discussed. The use of GPSS, SIMSCRIPT, and FORTRAN in
constructing a simulation model is reviewed.
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INTRODUCTION

This paper is an introduction to methods
of developing simulation models and simu-
lators for computer systems. Experience
indicates that the most effective way to
introduce these methods is by actually
going through the development of a simu-
lation model for a simple system. The
system selected as a basis for this approach
is composed of the basic elements of a

disk-based multiprogramming system; in

keeping with the national pastime of the
cemputing profession, this system is called
BASYS.

The techniques employed in constructing
a simulation model for BASYS are readily
extended to more complex problems; in
fact, such a model is a useful foundation
for the development of simulators for
several contemporary multiprogramming
systems. A BASYS simulator also can be
a useful tool in its own right in developing
the analyst’s understanding of some of the
basic interactions in system behavior.

This discussion is not oriented toward
any particular simulation language. The
characteristics of several of the most
widely used simulation languages are re-

viewed and, as we shall see, a BABYS
simulator can be implemented easily in
ForTrAN.

BASYS DESCRIPTION

The components of BASYS are shown in
Figure 1. The system is comprised of a
central processor (CPU), a central mem-
ory (CM), and a movable-head disk. It
is assumed that the purpose of the simula-
tion analysis is to determine the relative
merits, insofar as the utilization of the
central processor is concerned, of (1} add-
ing additional central memory, or (2)
replacing the disk with a faster model. It
is further assumed that the nature of the
job mix is such that card-to-disk, disk-to-
printer, and disk-to-CM (ie. program
loading) operations have little effect on the
parameter of interest; the combined I/0
rate resulting from these operations is
much less than that generated by central
Processor programs.

The portion of the job processing se-
quence to be simulated is described below
and illustrated in Figure 2:

1. A job arrives at the system.
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CONTENTS 2. Central memory space is requested for 1. Jel
the job. If space is available, it is ' he'
allocated to the job; if space is not at
available, the job is entered in 3 queue, 2. Ce

3. The central processor is requested; if 34. In
it is free, the job is assigned to it and : tw
executes until an I1/0 request is en- ; tr:

- Introduction 191 countered or until exeecution completes. re

BASYS Description 191102 ;f the central processor is busy, the job C

Job Generation. 143.108 is entered‘ln 4 queue. . to

. 4. When a job issues an 1/0 request, it di

S‘;::::ﬁ;':i“gv;‘z‘;:: releases the central processor. (If there of

Queues ls another job waiting in the CPU 34. N

The BASYS Simulator 165200 queue, it now is assigned to the central de

Interrupt, Processing 300-201 processor.) If t_he disk is free, it is : t'%

Implementing & BASYS Simulator: Simulation Lan- a,smgned FO‘ the ]Ob to process the I/O u

guages 201-203 ' request; if the disk is busy, the request | 45 1,

Summary 01-204 is entered in a queue. d

Bibliography 205200 5. On completion of processing of an 1/0 t:

1bllography . .
request, the disk is released and the : The °

central processor requested once again, mode
(When the disk is released, the disk :

queue is checked; if there is a waiting Si‘;\?i'
Tequest, it is assigned to the disk.) fics 3
6. When a job completes execution, it value
releases the central processor and its ione
central memory space is released. (The SIE I
CM queue is checked to determine if ! :}?gt
there is a waiting job to which space .
i now can be assignhed, and the CPU oper:
i& queue checked to determine if there is chari
] * & waiting job which now can be as- : inter
i signed to the central processor.) j ete,,
7. The job leaves the system., In
, This is a comparatively simple process; , knos
i however, its simulation employs most of g the
| the techniques required for more complex fron
{ processes and can be extended readily to
incorporate other parts of the iob process- :
ing sequence, such as the card-to-disk |
operation. }
|
JOB GENERATION ‘
An examination of the job processing steps .
described in the preceding section shows
several job characteristics which must be

specified in constructing a simulation model
of this process. These characteristics (num-
bered in accordance with the appropriate
steps in Figure 2) are as follows:
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1. Job interarrival t{ime—the interval
between the arrival of successive jobs
at the system. -

2. Central memory space requirement.

34. Interrequest time—the interval be-
tween a job’s adsignment to the cen-
tral processor and its issue of an I/0
request. In BASYS, a job releases the
CPU upon issuing an I/0 request; the
total CPU time used by a job is
divided by 1/0 requests into a number
of intervals called interrequest times.

3,4. Number of I/0 requests (which also
determines the number of interrequest
times, and hence the job’s total CPU
time).

45, I/0 record length (this, in BASYS,
determines the I/0 request processing
time).

The “arrival” of a job in the simulation
model is marked by the generation of a
set of values for these characteristics. To
provide the variability of job eharacteris-
ties which occurs in a real-world job mix,
values for these characteristics are as-
signed by generating random samples from
appropriate distributions. We shall assume
that a study of the actual system in
operation has provided data on the job
characteristics so that distributions of job
interarrival times, CM space reguirements,
etc., have been determined.

In some cases it is possible to fit a
known probability distribution function to
the empirical data and generate a sample
from that distribution using analytical
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Fic. 2. Job processing steps in BASYS
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methods. In other cases, no convenient fit
can be found and so samples are generated
directly from the data. Suppose job CM
requirements are distributed as shown in
Figure 3. A random sample from this
distribution is obtained by generating a
random number p uniformly distributed in
the range 0-1, and using as the CM space
requirement sample the space value which
corresponds to p. Suppose a p value of
0.4 is generated ; the CM space requirement
would then be taken as 35K (using the
midpoint of the class interval). This
process could be implemented in the sim-
ulation program by a simple table look-up
procedure.

It is possible, of course, to tabulate
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values and use a table look-up procedure to
generate random  samples from known
probability distributions, However, sam-
ples from several commonly used distribu-
tions may be generated by using the in-
verse form of the distribution funection
Suppose the distribution of job interarrival
times is found to follow a negative expo-
nential distribution with mean T, as
shown in Figure 4. The distribution fune-
tion for the negative exponential distriby-
tion is
Prix <t) = 1 — gtiTa,

Since Pr is uniform on the interval 0, 1,
4 random sample from this distribution
can be obtained by generating a random
humber uniformly distributed in the range
0-1 and using as the sample the corre-
sponding value of t, as illustrated in
Figure 4. This value of ¢ can be computed

using the inverse form of the distribution
function,

t = ~T, log, {1 — P),

or, since {1 — p) is distributed identically
to p,

t = -7, lUge .

Most program libraries provide uniform
random number generators, and the above
sampling process can be implemented

easily in Forrray using such g generator;
for example,

T = -—TA*LOG(RANDOM(I))

Computing Burveys, Vol, 2, No. 3, Beptember 1970

The inverse of many distribution fyne-
tions is difficult or Impossible to obtain;
for these, an approximation to the inverse
may be found or some other sampling
method employed. Sampling techniques are
diseussed at length by Gordon [2], Naylor
et al. [5], and Tocher [7].

As a practical matter, it is exceedingly
difficult to obtain statistics on the inter-
request interval distribution and much less
difficult to obtain data on total job CPU
time requirements. Accordingly, interre-
Quest intervals often are determined by
generating a sample from the distribution
of job CPU times, generating a sample from
the distribution of the number of records per
job, and dividing the former by the latter to
obtain the mean interrequest interval for
that job. Then, each time a job is assigned
to the CPU, the duration of that assign-

ment (the interval yntil an I/0 request is
issued) is determined by generating g
sample from, say, the negative exponential
distribution, using the computed mean
interval as the distribution mean,

SIMULATOR STRUCTURE

Events and the Event List

In the simulator, g job is represented by
an entry in a job table. This entry eontaing
the characteristics established for this
particular job as well ag various counters
for the accumulation of job-related sta-
tistics. As the job moves through the
system—enters queues, is assigned to the
central processor, etc~—its movement is
reflected by moving a pointer to this job

table entry, rather than by moving the
entry itself,

The progress of the job through the
system is marked by the occurrence of a
series of events. These events correspond
to transition points between operations,
or activities; they represent a change of
tate. Some events of significance might be:

* the assignment of a job to the CPU
(the transition between the “wait” and
“execute” states) ;

* the release of the CPU to wait for
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the completion of an I/Q request (the
transition between the “execute” and “wait”
states).

It is convenient to develop the simulation
program so that there is a one-to-one
correspondence hetween the events of the
stmulation model and the simulator rou-
tines. With this philosophy, each simu-
lator “event routine” essentially does two
things: it performs the operations whose
initiation corresponds to the oceurrence of
this event and it predicts, for the job for
which the operation was performed, which
event is fo occur next and at what time
it is to occur. For example, the basic steps
in an event routine “Assign CPU” might
be as follows:

» set a flag marking the assignment of
the CPU to this job;

» predict the time at which this job
will resease the CPU and determine if the
event corresponding to the release is to
be “end execution” or “issue 1/0 request”,

As each simulated event oceurs, then,
the time and identity of the next event to
oceur for that particular job are deter-
mined. In the simulator, job processing is
a quasi-parallel operation, reflecting the
true simultaneity of the system being
simulated. The predicted duration of an
operation is added to the value of simu-
lated time at which the operation was
initiated to obtain the point in simulated
time at which an event (the end of that
particular operation) is to oecur. Thus, if
we were to obtain a snapshot of the clock
(the current value of the variable repre-
senting. simulated time) and a tabulation
of the jobs in the system iogether with
the next event identity and next event
time for these jobs, at some randomly
selected point during the simulation, the
results might appear as follows:

TIME = 108075
JOB (J) NEXTEVENT (E) EVENT TIME (T)

63 1/0 ISSUE 110042
22 RELEASE CPU 110121
88 JOB ARRIVAL 124003

This reflects the simulation of several
paralle] activities. However, the simulation
program is concerned only with the start
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and end of these activities; these points
comprise &  sequence of events, the
ordering of which is determined by the
times at which these events are to oceur.

Establishing  this  event sequence
(“scheduling” the events) is facilitated by
use of an event list, although there are
other ways to accomplish this. In the
BASYS simulator, it is assumed that the
event list is a linked list with four-
element entries. One element of an entry
is an event identifier, a second element is
an event time, the third element is a
pointer to a job table entry, and the
fourth element is a link. Whenever an
entry is made in the event list, its position
is determined by the relative value of the
event time; the list is ordered in ascending
values of event times. The structure of this
hist is illustrated in Figure 5.

All the event routines in the BASYS
simulator make entries in the event list,
but only one routine (the Scheduler) re-
moves entries from this list. All transfers
to event routines are from the Scheduler
and all exits from event routines are to
the Scheduler. The basic steps in event
scheduling are as follows:

1. The Scheduler removes the entry at the
head of the event list. This entry spec-
ifies an event time T, an event identifier
E, and a job table pointer J.

2. The Scheduler advances the clock
(TIME) to the event time 7T specified
in the first step, because this time repre-
sents the earliest of all the scheduled
events to oceur.

3. The Scheduler transfers control to the
event routine designated by the event
identifier.

4. The event routine performs the required
processing for the job, determines its
next event and event time, and inserts
the event identifier, event time, and job
table pointer in the event list. It then
returns control to the Seheduler.

An event scheduling mechanism such as
that deseribed can be easily implemented
in ForTRAN; contemporary event-oriented
simulation languages provide similar fa-
cilities.

Computing Surveys, Vol. %, No. 3, September 1970
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EVENT ROUTINES

------------------------
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Pramaaee
CM  |RECORD
SPACE | COUNT

JOB TABLE

Fre. 5. Event list structure: B, event identifier; 7, event time; J, job table entry pointer

There are instances where the next event
time for a job cannot be predicted and so
o entry for this job appears in the event
list. This oceurs, for example, when a job
finds g facility busy and enters g queue.
At the time at which this event occurs, it
is impossible to predict the time at which
this job will leave the queue and bpe
assigned to the facility, When the facility
is released, s job is selected from the
queue according to the appropriate queue
diseipline and scheduled for the event,
which will result in its assignment to the
facility. In the BASYS simulator, every
job in the system is represented by the
appearance of its job table entry pointer
either in the event Jist or in a queue, byt
not both. This is not general rule; for
example, suppose a job did not release
the CPU upon issuing an 1/0 request. In
this case, its job table entry pointer might
appear in the event list twice (once for
the completion of the current I/0 request
and once for the issue of the next 1/0

Computing Surveys, Vol. 3, No. 3, September 1970

request) or it might appear both in the
event list and in a queue. '

Queves

Another use of linked lists in the simy-
lator is the maintenance of queues. In itg
most elementary form, a simple first-in,
first-out queue might be mechanized ag a
linked list with two elements per entry,
one element containing the job table
pointer and the other g link. The queueing
of a job would then be represented by
adding an entry at the tail of the list; the
removal of a job from the queue would
be represented by removing the entry at
the head of the list,

A more useful mechanism would provide
& convenient way of handling queue dis-
ciplines in addition to first-in, first-out,
and might also provide facilities for eol-
lecting statistics on queue behavior., One
possible mechanism is illustrated in Figure
6. This employs the same four-element
list structure used for the event lst, with
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TABLE I

Insert entry in quexe Remove entry from queue

1. [J, Pr, TIME] — list, 1. Unlink entry at head of list

2. 3 Tq+ (TIME — T1.0) Q — 2Te 2.3 To+ (TIME ~ T) @ = X Ty
3.Q+1-¢Q 3.Q-1-¢

4. MAX @, anx] = Qmax 4. E Tw + (TIME — Tio) — E Tw
S N+1—- N 5. MAX [Woux, TIME — T;,] — Wmax
6. TIME — TlaSt 6. TIME —r Tlut

R YL

i e T s s

the addition of = list header for each
queue. Mean and maximum gqueue length
and waiting time statistics are kept, and
any queue discipline ordered on s single
attribute may be employed, Queue entry
and removal algorithms are outlined in
Table I, using the notation of Figure 6.

Entries are inserted in the queue immedi-
ately behind the entry nearest the tail of
the queue which has a Pr value equal to
or less than that of the entry to be
inserted. The list is then ordered in
ascending values of Pr; should all entries
have equal Pr values, the queune diseipline
is first-in, first-out. Ordering in this way
lets us wuse the same list processing
routines for queues as for the event list,
but causes increasing priorities to cor-
respond to decreasing Pr values.

Maintained in the list header are the
current queue length, the time the queue
last changed in length, the total number
of queue entries, and a length-time
product accumulator. Each time an entry
is inserted in or removed from the queue,
the product of the old length of the
queue and the interval of time over which
this length existed is accumulated (step 2,
above). At the end of the simulation, the
mean queue length can be obtained by
dividing this quantity by the elapsed time:

2T

N
Each time an entry is inserted in the
queue, the time of entry is recorded by
setting Ty, = TIME. When the entry is
removed, the interval of time spent in the
queue is accumulated (step 4 under “Re-
move entry from queue” above). The mean
waiting time is obtained by dividing this
sum by the number of queue entries:

mean queue length =

LTy

N

Note that, unless all jobs pass through the
queue, this mean waiting time is condi-
tional on a job’s entering the queue.
Extension of this structure to accom-
modate ordering on more than a single
attribute or to provide for the collection
of additional statistics is straightforward.
For example, the queue length distribution

mean waiting time =

-----------------------------------------
.

pir *—E—I;J

w I
max LIST ELEMENTS FOR THIS QUEUE

2w
Aax

Q
2T

Tla.st

Pr

Tinllink

N

LIST HEADER

F16. 8. Queue structure example:
ptr  pointer to head of list
Wmex maximum waiting time
ZT waiting time accumulator
Qmax maximum gqueue length
Q current queue length
2T¢ length - time product aceumulator
Thaae  time of last entry/removal
J job table entry pointer
Pr priority or other ranking attribute
T time of entry in queue
N entry count
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can be obtained by recording in a table
the total length of time in which the
queue was 1, 2,..., n entries in length
and, at the end of the run, dividing each
total by the elapsed time.

Similar queue processing facilities are
available in most simulation languages,
although the extent to which queue sta-
tistics are maintained and reported varies.
This mechanism, like the event list, can
easily be implemented in the form of
Fortran subroutines, using a few Ilist
processing routines as a base.

THE BASYS SIMULATOR

The event routines which, together with
an initialization routine and scheduling
routine, compose the BASYS simulator are
illustrated in Figure 7 and described be-
low. The scheduling routine functiong in
the manner previously described; the ini-
tialization routine established system pa-
rameters (central memory size, disk trans-
fer rate, etc.) and job mix parameters, and
triggers the simulation by scheduling the
arrival of the first job.

Event 1 marks the arrival of a job in the sys-
tem. The characteristics of this job are determined
by sampling the appropriate distributions and
stored in the job table entry assigned for the job.
(Another use of lists in the simulator is the re-
cording of available job table entries.) For the
BASYS simulation, the following job character-
istics are generated :

¢ CM space required,

» number of records read/wriiten,

s CPTU time required,

* mean interrequest interval (computed by
dividing the job’s CPU time by the number of
records),

s record size (assumed to be constant for a
given job),

The next event for this job is scheduled by in-
serting the job table pointer (J), the event desig-
nator (E), and the event time in the event list. In
our basic model, there is no delay between the time
at which the job arrives and the time at which it
requests central memory. Therefore, it would be
possible to transfer directly to the event 2 routine
or combine the event 1 and event 2 routines. How-
ever, the organization deseribed makes it easier to

Computing Surveys, Vol. 2, No. 3, September 1870

expand the simulator to inelude, for example, the
card-to-disk operation.

Event 2 is the oecurrence of a job's request for
central memory space. The CM requirement of the
job {from the job table entry) is compared with
the available CM space. I sufficient space is avail-
able, it is allocated to the job; otherwise, the job
i8 entered in the CM gqueue. It is assumed that
allocation of CM space to a job may require re-
location of other jobs to provide sufficient contigu-
ous CM space. The next event for this job (event
3) is scheduled to cceur at a time equal to the
current time plus the time required to relocate
CM. (Although, in an actual system, this reloca-
tion may require interrupting the CPU, no provi-
sion is made to represent this in the basic model.
Incorporation of interrupt processing into the
model will be discussed later.)

Event 3 corresponds to a job’s requesting the
central processor. If the CPU is free, it is re-
served for the requesting job; otherwise, the job
is entered in the CPU queue. The number of rec-
ords to be read or written and the mean interval
between I/0 requests were established when the
job “arrived.” If the record count has not been
reduced to zero, a sample from a distribution of
the appropriate form with this mean value is used
to determine the time at which the next I/0 re-
quest is issued. The record count is decremented
and event 4 (release CPU) is scheduled for this
time, If the record count has been reduced to zero,
event 7 (job completion) is scheduled.

Event 4 i8 the release of the CPU by a job is-
suing an I/0 request. Upon the requestor’s release
of the CPU, the CPU gueue is examined ; if there
are jobs waiting, one is selected from the queue
and scheduled for event 3 {request CPU). The job
releasing the CPU is scheduled for event 5 (process
I/0 request). Both events are scheduled to oceur
at a time equal to the current time plus an over-
head time (7%) required to process the request.
Note that if accounting for this overhead time is
not required, events 4 and 5 could be combined.

Event § marks the initiation of processing for
an I/0 request. If the disk is busy, the job is
entered in the disk queue. If the disk is free, it is
reserved for the job and the request processing
time is computed. For example, if positioning is
required, the processing time might be computed
ag

To=Tp+ T+ Tr X R,

where T'» is the positioning time, T'x is the latency
time (2 randomly selected fraction of a revolution
time), Tr is the disk transfer time per word, and
R is the record size in words. The next event

-
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(event 6, release disk) is scheduled to oecur at a
time equal to the current time plus 7.

Event 6 is the completion of processing for an
I/0 request. The disk is released and the disk
queue checked for waiting requests; if there are
waiting requests, one is removed from the queue
and scheduled for event 5 {process 1/0 request).
The job releasing the disk is scheduled for event 3
(request CPU). Here again, overhead time ac-
counting is easily incorporated if desired.

Event 7 marks the completion of a job. The
CPU is released and, if there are jobs in the CPU
queue, one is removed and scheduled for event 3.
The CM space allocated to the job is now re-
leased. If there is a job in the CM queue which
now can be assigned CM space, it is removed from
the queue and scheduled for event 2.

In some .areas, such as in the accounting
for overhead and relocation times, the
foregoing description has been intended
to be deseriptive rather than complete.
These and other features (e.g. disk-to-
printer operations) may be incorporated
into the simulation model in a number of
ways.

INTERRUPT PROCESSING

Expansion of the basic simulation model
will require incorporation of interrupt
processing. There are innumerable types
and levels of interrupt systems which may
be encountered in practice. In this discus-
sion, we shall be content with a single
example: the interruption of a job execut-
ing on the central processor by a higher
priority job. Many other types of inter-
rupts can be handled in a similar if not
identical manner.

Let’s return for a moment to the des-
cription of the event 3 routine. This
routine processed the assignment of a job
to the central processor; upon returning
control to the scheduling routine, it had

» entered the time of the next event,
the event designator, and the job pointer
in the event list, and

» modified the appropriate quantities
in the job table entry (e.g. the record
count) to reflect the processing to be
performed during this interval.
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Suppose the next event for this job is
to occur at some time T',, but the central
processor is preempted by another job at
some earlier time T,. What do we have to
do to properly reflect the interruption and
eventual resumption of this job? (The
preempting job is to be processed in the
usual manner and presents no special
problems.)

As a result of the preemption of the
central processor, the event list now con-
tains an invalid entry; the event scheduled
for the interrupted job is not going to
occur at the time specified and so one
requirement is to cancel this event. The
entry corresponding to this event is lo-
cated in and removed from the event list
(or the event identifier changed to indicate
a null event}. The exact method employed
will depend upon the simulation language
used. In general, locating the proper entry
m the event list requires knowledge of
both the event identifier and the job
identification. Thus, when interrupt situa-
tions are to be simulated, the simulator
should keep track of the user of a facility.

In order to keep job time accounting
straight, the remaining CPU time in this
interval (T, — T,) must be saved; when
the interrupted job is restarted, it will be
assigned to the central processor for this
period. It is also necessary to save the
event designator for the event which was
cancelled. The interrupted job may be
placed in an interrupt list or may be
entered in the CPU queue, depending
upon the design of the system being simu-
lated. If the job is entered in the CPU
queue, it must be flagged so that the event
routine can distinguish between interrupted
jobs on one hand and new jobs or jobs
returning from an I/0 wait on the other
hand. The event 3 routine, in processing
an interrupted job, performs only the
following steps for this job:

* clear interrupt flag in job table entry;
» obtain remaining compute time and -
event identifier from job table entry;

* reschedule event to occur at current
time plus remaining compute time.

Figure 8 shows how the event 3 routine
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may be extended to provide interrupt pro-
cessing.

IMPLEMENTING A BASYS SIMULATOR:
SIMULATION LANGUAGES

There are many simulation languages, em-
bodying several basic conceptual ap-
proaches to simulation modeling, in exis-
tence today. An excellent (although no
longer current) survey of simulation lan-
guages has been prepared by Teichroew
and Lubin [56]. The most widely available
simulation languages are GPSS and Sim-
sCRIPT; these two, together with ForTran,
are also (or, perhaps, therefore) the lan-
guages most often used in simulation model-
ing.

When a choice exists, there are several
factors to consider in selecting a simula-
tion language. Among these are ease of
learning, expressiveness (the ease with
which the model can be described in the
language), compilation and execution
speeds, reporting facilities, general compu-
tation capability, and execution time
facilities (trace, display of contents of the
event list, queues, etc.). The relative im-
portance of these considerations depends
upon the problems at hand. If the require-
ment is to build a number of different
small- to medium-scale simulation models,
GPSS may prove most efficient; for large
models or models in which much general
computation is required, SIMSCRIPT may be
preferred.

In discussing the construction of the
BASYS simulator, details of some of the
major functions (event scheduling, queue
maintenance) were deseribed in sufficient
detail to provide a basis for their imple-
mentation in ForTran. It is possible to
construct a set of routines which, together
with FomTraN, constitute a simulation
language of moderate power and relatively
high compilation speed. One such FORTRAN-
embedded language is Gasp [45].

Siascrrer [53] is an event-oriented simu-
lation language somewhat resembling in
form, and providing general computation

EVElNT 2

I3 CPU BUSY? —l

NO |
] YES
ISP_>P.?
k —C
I i I——‘-{NO k—CPU QUEUE |

YES | Scheduler

SEE NOTE 2 '

CANCEL EVENT FOR |
SAVE EVEKT DES.
1~F
(Tg = T,)~TR

I

RESERVE CPU
IS F, SET?

1

I YES

O—F,

(TR + Tp)l-( k, Ey
—EVENT LIST

O

Scheduler

Fic. 8. Example of CPU assignment with priority
interrupt

Note 1.

j  pointer for job in execution

k  pointer for job preempting CPU

P: priority of job ¢

T, next event time for job j

T, current time

F. interrupt flag for job ¢

Note 2. The processing performed here is es-
sentially that discussed in the event 3 routine de-
seription.

facilities similar to, ForTRaN. Originally
developed at the RAND Corporation in
1961-62, it has come to be widely used
and is now available on most large com-
puters (IBM 7090/94 and 8/360; CDC
36/3800 and 64/6600; Philco 211/212;
UNIVAC 1107/8; GE 625/35). A more
advanced version, SimscripT II, has been
developed by RAND and Simulation Asso-
ciates [40].

SmuscripT deals with entities described
by parameters called attributes, with sets,
which are collections of related entities,
and with events. Entities may be perma-
nent, existing for the duration of the
simulation, or temporary, arriving and
leaving during the course of the simula-
tion. In a BASYS simulator, permanent
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entities would be system resources such as
the central processor and central memory
with attributes such as “busy” and
“available space.” Jobs would be temporary
entities, possessing attributes such as num-
ber of I/0 requests, CM space required,
ete. The queues in the system would be
defined as sets. SIMSCRIPT permits the
elements of a set to be ordered on a first-in,
first-out or a last-in, first-out basis, or to
be ordered on the basis of a single attri-
bute in either an ascending or descending
sequence. Permanent and temporary en-
tities, together with their attributes, and
sets are specified on a special definition
form and constitute a preamble to the
program itself.

A Smdscripr simulation program takes
the form of a set of event routines. An
event routine is analogous to a subroutine;
it begins with and is named by an EVENT
statement and is terminated with an END
statement. Events are scheduled by a
statement of the form

CAUSE event-name AT event-fine

and may be cancelled via a CANCEL
statement (as required for example, in
simulating CPU interrupt processing).

The arrival of a job in the system
would be effected via a CREATE state-
ment, which generates a single instance of
a temporary entity. The attributes of that
job then would be assigned via a LET
statement, which is an extended form of
the FORTRAN replacement statement. Enter-
ing jobs in and removing jobs from queues
would be accomplished by FILE and
REMOVE statements.

Other features of SimscrierT include
statistics-gathering statements such as
COMPUTE (mean, variance, etc.) and
ACCUMULATE, and a report generator
facility. Most ForTRAN statements (DO,
READ, WRITE, IF, ete.) have similar but
not identical equivalents in SmmscripT,

GPS8 (General Purpose Systems Simu-
lator) is a transaction-oriented interpretive
simulation language developed at IBM. A
first version appeared in 1961; a second
version, GPSS II [41], appeared in 1962
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and has since received widespread use.
The current version, GPSS III [42], is an
extension of GPSS II and provides some
new facilities and greater ease of use.
With but one exception, GPSS II for the
Univac 1107/8, GPSS 1s generally avail-
able only on IBM systems. (However, a
number of versions and variants for other
systems have been developed by individual
installations.)

In GPSS, a simulation model is described
in the form of a block diagram, using a
number of special block types. GPSS
deals with entities called facilities, stor-
ages, queues, and transactions. Transac-
tions are characterized by their apparent
motion through the system. Facilities are
entities which can be oeeupied by only
one transaction at a time, while storages
are entities which may be occupied by
more than one transaction at a time. A
GPSS version of the BASYS simulator
would treat the central processor and disk
as facilities, central memory as a storage,
and jobs as transactions.

The development of a GPSS simulation
mode] is done from the point of view of
the transaction. The operations performed
for a transaction are specified by appro-
priate block types; the flow of transactions
1s specified by the manner in which blocks
are connected. SEIZE and RELEASE
(or PREEMPT and RETURN) blocks
are used to reserve and release facilities;
the interval for which the facility is re-
served is specified by an ADVANCE
block. ENTER and LEAVE blocks are
used to reserve and release storage space,
and QUEUE and DEPART blocks used
to enter transactions in and remove trans-
actions from queues. The arrival of a
transaction is effected by a GENERATE
block, parameters established for that
transaction by one or more ASSIGN
blocks, and the eventual removal of the
transaction from the system accomplished
by a TERMINATE block. Other block
types, such as TEST, LOOP, and TRANS-
FER, provide means of controlling the
flow of transactions.

Figure 9 shows part of a GPSS block
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diagram for a simple BASYS simulator.
Jobs “arrive” when generated by a
GENERATE block; also, each time a job
is generated, the arrival of the next job
is scheduled by this block. A number of
ASSIGN blocks are used to establish the
various job characteristics, such as CM
space required, number of I/O requests,
etc. The job then enters the CM queue
(queue 1)} and requests CM space via an
ENTER block. If sufficient space is not
available, the job remains in the queue.
If space is available, it is reserved and
the job leaves the CM queue via a
DEPART block. The TEST block tests
the I/0 request count for this job and

GENERATE

ASSIGN

ok

——
|
ENTER
1
[
DEPART Q

)

|
|
I 1
QUEUE LEAVE
|
SIEZE
2

DEPART

Q TERMINATE

ADVANCE

Tre. 9. GPSS simulation model example

causes the job to-
13 zero. If the count °
enters the CPU queue
CPU is free, it is reserved for
the SEIZE block and the job
from the guene via a DEPART

The length of time for which the :
will be reserved for this job is specified by
the ADVANCE block; upon occurrence of
an I/0 request, the CPU would be re-
leased via a RELEASE block (not shown).
A similar block sequence (QUEUE -
SEIZE — DEPART — ADVANCE -
RELEASE) might be used to represent
the processing of a disk request. When
the job's execution is completed, its storage
space is released via a LEAVE block and
the job removed from the system by the
TERMINATE block.

GPSS provides comprehensive built-in
statistics-gathering facilities. The output
of a GPSS simulation includes statisties
on the utilization of all facilities, storages,
and queues in the system. Queue length
distributions may be obtained by use of a
QTABLE card (which establishes a table
for data collection and defines the number
of frequency classes desired}, and statistics
on any other variable of interest easily
gathered by use of a TABLE card and
the TABULATE block.

SUMMARY

The development of the simulation model
is only a part of the analysis process.
Subsequent steps in this process include
testing and validation of the model, design
of experiments, and the analysis and in-
terpretation of results.

Sinee the simulation model developed in
the preceding pages was assumed to be a
model of an existing system, it can be
validated by comparison of simulation re-
sults to actual system performance. When
no such comparison is possible, other
methods of validation must be employed.
These methods might include the substitu-
tion of fixed values for job characteristics,
rather than random samples, to permit
comparison of simulation results with cal-
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culated values, or the manual verification
of model behavior through the examination
of a step-by-step trace produced by the
simulation program.

Our objective was to determine the
effect on central processor utilization of
increasing the size of central memory or
substituting a faster disk. Thus, the ex-
perimentation process requires three ver-
sions of the simulation model: one repre-
senting the original system, one the system
with added central memory, and one the
system with the faster disk. One or more
simulation runs are made for each of these.
Each run provides an estimate of central
processor utilization (as measured, say, by
recording the amount of time during which
the central processor was assigned to jobs
and, at the end of the run, dividing that
amount by the elapsed time). It is also
desirable to record queue statistics, disk
and central memory utilization, the time
spent by jobs in the system, and so forth;
such data may be useful in identifying
system bottlenecks. The estimates pro-
duced by the set of runs for a given
version are combined to provide a single
performance estimate for that version, and
results for the three versions are com-
pared. Methods for comparison of simula-
tion experiment results are discussed and
reviewed by Naylor et al. [65].

The determination of the number and
length of runs required to obtain a given
accuracy presents complex statistical prob-
lems. These and related problems have
been surveyed by Fishman and Kiviat
[62] and Burdick and Naylor [60]; these
surveys provide an excellent starting point
for familiarization with the nature of the
problems and methods of solution.
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Considerations in undertaking a computer
system simulation study are discussed in this
paper. Some of the modeling techniques re-
uired for such a study are presented and
illustrated via GPSS.

Youcman, M. I, Rume, D. D, anp Jounson,
E. J. The Data Processing System Simulator
(DPS8). Proc. AFIPS 1964 Fall Joint Comput.
Conf,, Vol. 26, Pt. 1, pp. 251-276 (Spartan
Books, Baltimore, Md.). :

This paper describes a general-purpose com-
puter system simulator which can be used
for evaluating a variety of system configura-
tions and job processing rules by specifying
system behavior in a higher order macro
language.

Part lll. Simulation Languages

32

33.

34

ARMSTRONG, J., Urrers, H, MiLLgr, D. J., anp
Page, H. C. SOLPASS, A Simulation Oriented
Language Programming and Simulation Sys-
tem, Proc. Third Conf. on Applications of
Simulation, Los Angeles, 1969, pp. 24-37
(ACM/AIIE/IEEE/SHARE/SCi/TIMS).

SoLpass is an AwrcoL-based simulation and
programming language for the Burroughs
B5500 computer. It is based on SoL, but pro-
vides extensions which facilitate simulation
of large communication networks.

Brunpen, G. P, avp Krasnvow, H. 8. The
process concept as a basis for simulation model-
ing. Simulation 9, 2 (Aug. 1967) 89-93.

Several recent simulation languages (eg.
SiMura) are based on the “Process" concept,
ag opposed to the “event” concept (Sim-
SCRIPT) or the activity concept {CSL). This
paper discusses the dynamic and static char-
acteristics of systems, and suggests that the
process concepl provides a unified way of
treating these characteristies.

Buxrow, J. N, anp Laskr, J. G. Control and
Simulation Language. Comput. J. &, 3 (Oct.
1962), 194-200.

3. G
A2
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41. 1
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This paper describes the activity-based Con-
trol and Simulation Language (CSL) and
describes the compiling technique employed
(FoRTRAN is used as an intermediate lan-
guage), CSL provides facilities for simulation
comewhat similar to those in SIMSCRIPT.

35. DanL, O.-J., AND NYGAARD, K. SIMULA—An

ALGOL-based simulation language. Comm,
ACM 9,9 (Sept. 1966), 671-678.

SrMuLa, an extension of Arcov 60, is a proc-
ess-based simulation language developed for
the UNIVAC 1107/1108, This paper gives &
formal description of the extensions to ALGOL
and illustrates the features of the language
with several examples, An extended version
of the language described in this paper
(Smmura 67) has been developed for the
1107/1108 systems and the CDC 3300 and
64,/6600 systems.

36. DimspaLe, B., aND Magkowrtz, H. M. A de-

geription of the SIMSCRIPT language. IBM
Syst. J. 8,1 (1964), 57-67.
This paper deseribes the basic features of
SiMscrIpT by demonstrating their use in the
simulation of a supermarket. It also is in-
corporated into [5, Ch. 7].

37. Ergon, R., avp Goroon, G. A general purpose

digital simulator and examples of its applica-

tion. Part I—Description of the simulator. IBM

Syst. J. 3,1 (1964), 22-34.
This paper gives a very good introduction to
the concepts and facilities of GPSS II, using
a simple real-time data processing system as
an example. Since GPSS 111 retaing most of
the GPSS II facilities, this paper is recom-
mended reading for anyone interested in
either version of GP3S. This paper also ap-
pears as part of [5, Ch. 7], where it is ae-
companied by another example provided by
one of the authors.

38. Freemay, D. E. Discrete systerns simulation.

Semaulation 7, 3 (Sept. 1966), 142-148.

A brief introduction fo the nature of discrete
system simulation is given, followed by an
example of the application of GPSS to the
simulation of a gas station.

30. Greevsercer, M., Jones, M. M., MoRRIs, J.R.

anp Ness, D. N. On-Line Computation and
Simulation: The OPS-3 System. MIT Press,
Cambridge, Mass,, 1965,

The OPS-3 system is a general-purpose time-
sharing language developed for use with the
MIT time-sharing system. This manual de-
seribes the facilities and features of the lan-
guage, OPS-3 contains a number of special
operators (eg. the AGENDA operator for

scheduling activities) for simulation.

40. GEtsLEr, M. A. AND MARKOWITZ, H M. A

brief review of SIMSCRIPT as a simulating
technique. RM-3778-PR, RAND Corp., Santa
Monica, Calif., 1963 (AD 411-324).

This paper provides a readily assimilated

review of the basic concepts and facilities of
SIMSCRIPT.

41. GENERAL PURPOSE SYSTEMS SIMULATOR II. Form

B9233—6346, IBM Corp., White Plains, N. Y.
1963,

42,

43.

44,

45.

46.

47.

48.

49,

GENERAL PURrPosE SysteMs SiMuLaror 111
]133354)001, IBM Corp., White Plafns. NF°§I("

This manual (as well as the GPSS IT manual
cited in the previous reference) is a readable
description of the features and faeilities of
GPSS. More detailed information is available
in the user's manuals.

Herscovitcs, H., anp Scunemer, T. H. GPSS
TII—An expanded general purpose simulator,
IBM Syst.J. 4,3 (1985), 174-183.

GPSS III is an extension of GPSS II. This
paper reviews these extensions. A knowledge
of GPSS II is assumed.

Jongs, M. M. On-ine simulation. Proe. 22nd
Nat. Conf. ACM, ACM Pub. P-67, pp. 591-599.
(Thompson Book Co., Washington, D.C).

Following a brief review of OPS-3 and a
discussion of facilities provided by Multics
and PL/I. some problems in modeling are
discussed. The features of OPS-4, a PL/I-ike
language designed for simulation in a time-
sharing environment, are described.

Kmviar, P. J. GASP—A General Activity
Simulation Program, Project No. 00.17-019(2),
zlkg%pal. Res. Lab., U. 8. Steel, Monroeville, Pa.,

This report describes Gase, a TORTRAN-IM-
bedded, event-oriented, simulation language.
Tacilities for performing such simulation
functions as scheduling of events, manipulat-
ing queues, etc., are provided in the form of

ForTraAN subroutines.

— . Simulation language report generators.
P-3349, RAND Corp,, Santa Monica, Calif.,
April 1966 (AD 631-940).

In this interesting paper, the author proposes
simulation language facilities for debugging,
report generation, collection of statistics, and
dynamic display of system behavior.

——. Development_of new digital simulation
languages. J. Ind. Eng. 17 (Nov. 1966), 604-
608, (Also P-3348, RAND Corp., Santa Monica,
Calif., April 1966.)

Event, activity, and process concepts are dis-
cussed, followed by a commentary on current
simulation languages. The buik of the paper
is devoted to a discussion of SIMSCRIPT II.
There are 20 references.

——. Development of discrete digital simula-
t7ion languages. Simulation 8, 2 (TFeb. 1967), 65—
0.

This paper gives a brief review of the devel-
opment of simulation languages, and dis-
cusses the conceptual differences and princi-
pal features. There are 36 references.

——. Digital computer simulation: Computer
programming_languages. RM-5883-PR, RAND
Corp.. Santa Monica, Calif., Jan. 1969.

The conceptual approaches in the develop-
ment of various simulation languages are re-
viewed, and four languages (GPRS, Simm-
SCRIPT, StMuLA, and CSL}, are compared and
discussed. Sample programs in each language
are provided. Cpurrent work and future trends

in simulation languages are described. This is

Computing Burveys, Vol. 2, No. 3, September 1970
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a well-written paper and recommended read-
ing.

50. —, ViLanueva, R., anp Markowrrz, H. M.

The SIMSCRIPT II Programming Language.
Prentice-Hall, Englewood Cliffs, N, J., 1969.

The features and facilities of Simscripr II are
presented in this reference manual. While
Simscrier IT commands are, in general, simi-
lar to those of SiMscrRIPT, many have ex-
anded facilities. The language 18 now free-
orm, and the data definition form has been
done away with; data definition is now ac-
complished by statements.

51. Knvure, D. E,, anp McNeLey, J. L. SOL—A
. symbalic langua%a for general-purpose systems

stmulation, IEE

Trans. EC-13 (Aug. 1964),

401408,

52.

SoL, an AvrcoL-like simulation language
developed for the Burroughs B-5000, is de-
scribed in this paper by applying it to the
simulation of a multiconsole computer sys-
tem. The complete simulation program is
given, followed by a clear explanation of the
purpose and function of each statement.

——. A formal definition of SOL.

—— _AND
IEEE Trans. EC-13 (Aug. 1964), 409-414.

This paper briefly introduces the basic con-
cepts of Son and gives a formal, meta-
linguistic description of the language. While
Sor has not come into widespread use, it has
provided many ideas and much stimylus for
current simulation language development.

53. Marxowirz, H. M, Hausner, B., ano Kars, H,
W. SIMSCRIPT—A Simulation Language.
Prentice-Hall, Inc., Englewood Cliffs, N. J,
1963,

This is a reference manual describing the
SiMscrirr language.

54. McNeLey, J. L. Simulation languages, Simu-
lation 9, 2 (Aug. 1967), 95-08.

This paper introduces some of the features
of S1MuLA via a store checkout counter simu-
lation example,

55. PagentE, R. J., anp Kraswow, H. 8. A lan-
guage for modeling and simulating dynamic
systems. Comm. ACM 10, 9 (Sept. 1967), 550—
566

This paper describes 2 PL/I-like, process-
oriented, simulation language. Following a
discussion of the general approach taken in
developing the language, a scheduling prob-
lem is used to illustrate its features, A sub-
sequent section discusses highlights of the
language in some detail, and a semiformal
deseription of part of the language is given
in an appendix.

56. TercaroEw, D, ano Lueiy, J, F. Computer
simulation—discussion of the technique and
comparison of languages. Comm. ACM 9, 10
(Qct. 1966), 723-T4l. (Also, Simulation 9, 4
(Oct. 1967), 181-190, with additions by T. D.

Truitt.)

This excellent survey paper gives a detailed
comparison of asix simulation languages:;
Simscrrer, CLP, CSL, Gase, GPSS, and %OL
The features of each language are compared

Computing Surveys, Vol. 2, No. 3, September 1970

in a series of tables, and the comparison ex-
panded upon in the text, The systems for
which these languages have been imple-
mented are given. In addition to the six lan-
guages compared in detail, 8 number of other
simulation languages, both discrete and con-
tinuous, are also listed. There are 89 refer-
ences. (Note: This paper is available as an
ACM reprint.)

57. UraicH, E. G. Serial/parallel event scheduling

59.

for the simulation of large systems. Proc, 23rd
Nat. Coni. ACM, 1968, ACM Pub. P-68, pp.
279-287 (Brandon/Systems Press, Inc., Prince-
ton, N.J., 1968).

Event-oriented simulations generally em-
ploy & list of events, ordered on an event
time basis, ag & mechanism for event sched-
uling. If the number of scheduled events is
very large, other methods of scheduling be-
come more efficient. This paper describes a
scheduling technique called “time mapping”
and compares it with the next event tech-
nique.

. Weamer, D. G. QUICKSIM—A block struc-

tured simulation language written in StMscripr,
Proc. Third Conf. on Applications of Simula-
tion, Los Angeles, 1969, pp. 1-11 (ACM/AIIE/
IEEE/SHARE/SCi/TIMS).
QuICKsIM, a simulation language written for
the NCR 315, provides a block structure
closely resembling that of GPSS, but with
facilities for a user to easily insert ForTraN-
or StmscripT-coded blocks of his own.

WEINERT, A. E. A SIMSCRIPT-FORTRAN
%si;ét;dy. Comm. ACM 10, 12 (Dee. 1967),

A vehicle dispatching simulation was pro-
grammed in both StMscripr and ForTran.
This paper describes the simulation model,
compares the dprogmms (the ForTran pro-
gram executed faster and required less
memory, but the SmscripT program was
easier to modify), and discusses some of the
implications of the comparison.

Part IV, Statistical Aspects of Simulation

60.

61.

Burpick, D. 8, anp Navior, T. H. Design of
computer simulation experiments for industrial
%f::ems. Comm. ACM 9, 5 (May 1966), 320-

‘This survey article provides information on
the literature on experimental design tech-
niques and relates this material to digital
comﬁutgr _simulation experiments. Major
emphasis 15 on analysis of variance, but
multiple ranking, sequential sampling, and
spectral analysis . techniques are also con-
sidered. There are 78 references,

Fisaman, G. 8. ano Kmviar, P. J. Spectral
analysis of time series generated by simulation
models. RM-4393-PR, RAND Corp., Santa
Monica, Calif., Feb, 1965 (AD) 612-281),

The application of spectral analysis tech-
mques to the statistical analysis of the out-
put of simulation experiments is deseribed in

this interesting report. The theory underlying
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these techniques is reviewed and illustrated
by application to a single-server queueing
problem. The approach provides a method
for determining the experiment run time re-
quired to generate the equivalent of an in-

paring simulation experiments. Oper. Res. 16, 2
(March-April 1968),280-295.
This paper describes a rule for choosing
sample siges~-and therefore computer run-
ning time—so as to obtain a specified relia-

dependent observation. bility in the estimate of the s_ample mean.

62. —— aND ——. ‘The statistics of discrete-event When the objective is a comparison of means
simulation. Stmulation 10, 4 (April 1966), 185- resulting from two experiments, it is shown
195. that, for a given aceuracy, selecting sample

sizes according to the rule rather than em-
ploying equal sample sizes may reduce sig-
nifieantly the computer time required.

65. Navior, T. H., WeeTz, K., aNp Wonnacorr, T.
H. Methods for analyzing data from eomputer
simulation experiments. Comm., ACM 10, 11

A brief resume of the statistical aspects of
simulation experiments is presented in this
paper. Problems in random variable genera-
tion, model structure verification and valida-
tion, run length determination, and experi-
mental design are considered. There are 26

references. (Nov. 1867), 703-710.
. .. . An economic system model] is used to demon-
63. ——. Problems in the statistical analysis of strate three methods of analyzing data gen-

simulation experiments: The comparison of
means and the length of sample records.
Comm. ACM 10,2 (Feb. 1967), 94-99.

This paper summarizes and extends the work
reported in [61].

erated by computer simulation experiments.
The three methods are the F-test, multiple
comparison, and multiple ranking. The as-
sumptions under which these techniques can
be employed and considerations in select-
ing a technique are discussed. There are 50

64. ——. The atlocation of computer time in com- references.
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