ILLUSTRATED BY ROE SAUNDERS)

BY ALAN FILIPSKI AND JAMES HANKO

MAKING

UNIX SECURE

Countermeasures
to known methods
of attack

NIX evolved as a power-
ful operating system at
Bell Laboratories, where it
was used primarily by -a
few research programmers. Much ex-
perience in using UNIX also came

-

from universities, particularly the
University of California at Berkeley.
These environments provided an
army of competent and dedicated
hackers to test UNIX system security.
UNIX operating system security has
always been an “open book”

R. Morris and K. Thompson wrote
the following in “Password Security:
A Case History” {from the program-
mer's manual for UNIX System],
volume 11}.

We did not attempt to hide the security
aspects of the operating system. thereby
playing the customary make-believe game

" in which weaknesses of the system are not

discussed no matter how apparent.
Rather. we advertised the password algo-
rithm and invited attack in the belief that
this approach would minimize future troy-
ble. The approach has been successful.

In this article we examine some
specific security-related features of
the UNIX operating system and
discuss known methods of attack
along with countermeasures and their
associated costs. We make no claim
of completeness; it is axiomatic that
someone will always build a better

{continued)
Alan Filipski has @ PA.D. in computer science
from Michigan State University. He has
taught at Central Michigan University and
Arizona State University and is currently a
principal staff engineer at Motorola Micro-
systems. working on UNIX System V.

James Hanko has M.S. and BS. degrees
in-computer science from Pennsylvania State
University. He works at Edge Computer
Corp., Scottsdale, Arizona, and is currently
a semior software design engineer working on
porting UNIX System V,

Both authors can be reached at Mail Drop
DWI160Q, 2900 South Diablo Way, Tempe,
AZ 85282, '

APRIL i986 = BYTE 113

e r e e m e L L

i

MAKING UNIX SECURE

mousetrap (or Trojan horse),

We provide this informatten in a way
that, we hope, is interesting and usefui
yet stops short of being a "cookbook
for crackers* We have often inten-
tionally omitted details, Admittedly,
we are treading a thin line. However,
it is the consensus of most system ad-
ministrators that wider dissemination
of such information is ultimately
beneficial to the security of UNIX
installations.

DEFINITION OF SECURITY

The level of “security” of computer
Systems can be measured by the
amount of difficulty users would have
accessing the system data or
Tesources in a way unauthorized by
the system administrator. The word
“users” here includes legitimate users
who modify or read data they are sup-
posed to be excluded from, un-
authorized persons who break into
the system for the purpose of falsify-
ing data or using system resources, or
people who “decrypt” information

they are supposed to read onlyinen- -

crypted form.

We will not discuss protecting the
user or administrator from his or her
Own carelessness or ignorance. If you
are troubled by this kind of “insecuri-
ty” in a particular environment, you
can write shell scripts or new shells
to coddle the user to any degree re-

m

quired. Performing regular disk back

ups also effectively serves to limit the
damage incurred in this way.

PHYSICAL VERSUS SOFTWARE
SECURITY

There are two approaches to secur-
ing a computer system. You can put
the system in a windowless electro-
magnetically shielded room with no
data lines leading out and hire 3
guard to stand at the door and check
persons who enter and leave. This
type of physical security is very effec-
tive. Unauthorized persons are pre-
vented from gaining access to the Sys-
tem and even legitimate users can be
stopped from carrying tapes out the
door. Of course, this approach great-
ly reduces the usefulness of the
system. '

The second approach is to relax
some of this physical control and
compensate by using software securi-
ty checks, such as passwords, permis-
sions. log files. and encryption
schemes. Although these schemes
cannot absolutely prevent clever and
determined attacks, especially by in-
siders, they can provide enough
security to foil the casual snoop.

FILE PERMISSIONS AND

THE SUPERUSER

Perhaps the greatest security weak-
ness of the UNIX operating system is

E— i

———— write

owner

| L
sticky bit

b——— setgid

setuid

sxscule /eparch) -
L 4 L 4 r)
u G T R w X/8 R w X/8 R w xX/8
— VI -y Y)

others

Figure 1: UNIX file permissions. Under the UNIX operating system, a user's
ability to access a particular file is governed by the setting of 12 bits {four octal
digits) associated with that file. The high-order 3 bits are the setuid. setgid,
and “sticky” bits, respectively. The remaining 9 bits represent read. write, and
execute/search permissions for owner, group, and others, respectively.

14 BYTE « APRIL 1986

the power of the superuser. There is
no effective system of checks and
balances against him or her.

Within the UNIX operating system,
each file has an owner and group as-
sociated with it and a set of switch
values that control the way it may be
accessed by different types of users,
By default. the owner of a file is its
creator. and the group associated
with a file is the group its owner
belongs to.

Only the owner of a file, or root (the
superuser). can change the files
owner, group, or the values of the file-
permission bits. The permissions are
useful not only to the system adminis-
trator, but also to individual users
who want to enhance the privacy of
some of their files,

Figure 1 shows the format of the file-
permission bits. They are organized as
a four-digit octal number. The bits
constituting the most significant digit
are sefuid (set user identification),
setgid (set group identification), and
the “sticky” bit. The sticky bit causes
the system to preserve a core image
(of often-used files) after use, to
enhance system speed,

The next three octal digits represent
the permissions for owner. group, and
other users, respectively. The bits
within each octal digit represent read.
write, and execute/search permission
for that group. ‘

For example, a permission of octal
750 = 111 10! 000 means that the
owner can read, write, or execute the
file: members of the group associated
with the file can read or execute it:
and others can neither read, write, nor
execute it. A default set of values for
these bits is used when a new file is
created. Often this default is 644,
meaning that only the file owner can
write to and read the file, and every-
one else can only read it.

In a work environment where peo-
ple frequently need to share informa-
tion, this is reasonable. But if securi-
ty is a concern, the default should be
changed to something more restric-
tive (such as 640 or even 600} and
then weakened for selective files as
necessary. UNIX's Bourne shell pro-

{continued)

Inquiry 172 —

MAKING UNIX SECURE

vides an umask function to change
this default.

Since directories are a special kind
of file within the UNIX operating sys-
tem, the same 9 permission bits apply
to them. However, the execute bit has
a special meaning here, and it is called
the search bit. The search permission
bit in a directory is required to access
any file with that directory in its path.
This is distinct and independent from
read permission in a directory.

The read permission bit allows the
contents of a directory (the names of
files) to be examined or dispiayed as,
for example, by Is. This distinction
provides some additional security.
You can let someone execute, read, or
write to one of your files without let-
ting him or her list the contents of the
directory that the file is in. Therefore,

the user can access the file only if he

or she knows its name.

Some claim that the three-level
(owner, group. other) file-protection
system of the UNIX operating system
is inferior to the scheme in which an
explicit access list of users must be
given for each file. Actually, you can
simulate this other file-protection
scheme on UNIX in several ways.

For example, you can form a group
that defines any given subset of users,
and you can give the desired permis-
sion to the group. More flexibly, a set-
uid program can be written to check
the log-on [D of the user who invokes

it and allow access to files based on .

a list of IDs. The UNIX SCCS (Source
Code Control System) utilities do
something like this.

Two additional file-protection bits,
setuid and setgid, are very important
to the security of the UNIX operating
system. The setuid bit on an ex-
ecutable program allows it to run with
the effective file-accessing power of
the program's owner rather than with

- that of the user (the usual case). Like-
wise, the setgid bit on an executable
program allows it to run with the ef-
fective file-accessing power of the
group of the program file.

These features, when used with
care, can be powerful tools for imple-
menting application software. For in-
stance, you can implement an elec-

1é BYTE *+ APRIL 1936 °

~

tronic mail facility wherein a fictitious
user group, e.g.. “mail,” is associated
with all files that represent mail in
transit. You can prevent unauthorized
reading of the undelivered mail by
preventing those users not running
under the group "mail” from access-
ing the files.

*This presents a dilemma: How does
a user not ordinarily in group “mail”
send mai! to another? The setgid bit

‘resolves this by allowing the program

that sends mail to temporarily run
under the group “mail” instead of the
user's real group.

If not used carefully, this feature can
compromise the security of a system.
For example, the mkdir or df pro-
grams, which are owned by the super-
user and have the setuid bit on, might
inadvertently be made writable by
others. Then any user could copy an-
other program over the original mkdir
and do whatever he or she desired,
running as the superuser. Afterward,
the user could copy the original mkdir
back in to (partially) cover his or her
tracks.

TRAPDOORS
The goal of nearly every UNIX system

- breakin scheme is to allow the

cracker to become superuser (root)
even for a few moments. The cracker
creates a setuid shell that he or she
can execute. He or she then becomes
root whenever he or she wants to.

Administrators take note: A setuid
root program in a user directory is an
advertisement of a security hole.

If source is available on the system,
the cracker can be more sophisti-
cated. To cover his or her tracks the
user creates a doctored version of,
say, mkdir or df, and installs it in place
of the real one. This version behaves
exactly like the real one except that
when given a special option, such as
mikdir — xyzzy, it transforms itself into
a shell via an exec system call. Since
the original utility was setuid to root,
the shell will be setuid roct also.

The cracker now becomes super-
user whenever he or she wishes, even
if the superuser password is changed
and the cracker leaves no incriminat-
ing programs in his or her working

directory. The only trace left is that the
doctored utility is now perhaps dif-
ferent in size and its modification date .
updated. But even these tracks can be
covered. A little clever surgery can
make the utility the same size. and
touch can be used to reset its
modification times,

Such a subverted utility is some-
times called a trapdoor because it
gives those who know how to use it
secret access to the operating system.

UNIX System V provides some. fea-
tures to thwart unauthorized super-
users. For example, the superuser can
log on only at the system console,
which is subject to physical security.
Ordinary users at ordinary terminals
can become superusers through the
su command and the superuser
password. The su command enters
the real log-on ID of the user into a
log file when executed, but this log
should not be relied upon as a deter-
rent because, like any other file, it may
be changed by the superuser.

Because superuser privileges are re-
quired for many administrative opera-
tions. superuser passwords shouid be
guarded with great care. should be
changed frequently, and should never
be given to anyone unless absolutely
necessary.

THE crypt UTILITY

Many versions of the UNIX operating
system provide a utility called crypt.
This utility implements a single-rotor
encryption machine that is a sim-
plified version of the German World
War Il "Enigma” machine. Using the
utility is simple—to encrypt an ASCH
file plain to produce an encrypted file
cipher, you only have to type

crypt [password] <plain> cipher

where password is a character string
that serves as an encryption key. The
crypt utility provides its own inverse,
so that to decrypt the file, you type

crypt [password] <cipher> plain

using the same string for password.
Recent studies indicate that crypt
may not be as secure as previously
thought and that the files produced
(continued}

AKENG T MIX SECURE

Device-special
disk, memory, and

terminal files can
compromise system
security. '

will yield to attack by a proficient
cryptographer in a relatively short
time. However. if you encrypt only
short files with relatively long (but dif-
ferent) keys, crypt is still fairly secure.
In most environments, people lack the
skill and patience to break files en-
coded with crypt. You should use
crypt for encoding information that is
confidential but not likely to come
under serious attack.

Unfortunately, some versions of the
UNIX operating system being pro-
duced today. particularly those des-
ignated for export, do not have a
crypt utility. If your UNIX system does
not have one, obtain a similar utility
to provide a certain amount of securi-
ty against casual attacks.

SPECIAL /dev FILES

Within the UNIX operating system.
devices such as disks, terminals, etc.,
are treated as special files. These files
appear in the directory /dev. For ex-
ample, /devitty00 might represent a
terminal and /dev/dk10 might repre-
sent one of the disks. Like any other
file, each special file has an owner, a
group, and a set of permission bits as-
sociated with it. If permitted, a user
may perform read and write opera-
tions on it.

Internally. a special file is repre-
sented by a pair of numbers—the
major device number (an index to a
particular device driver} and the
minor device number (one of the
devices controlled by that driver).

Special files simplify the user inter-
face to devices by allowing one
mechanism to handle access to both
devices and regular files. However, the
use of three types of device-special

N8 BYTE « APRIL 1986

R . N AT —

files can compromise system securi-
ty. The devices in question are mem-
ory, disks, and terminals.

MEMORY

The UNIX operating system kernel
was kept small and simple due to
memory limitations of circa-1970 mini-
computers. Therefore, UNIX uses
memory device-special files instead of
system calls to report status of run-
ning processes.

Reading or writing a location in
these special files has the effect of
reading or writing the associated sys-
tem memory location. The ps utility
uses the memory device-special files
to read the information in the system's
process table and report about run-
ning processes.

Such a structure may be appealing
for system implementation, but it is a
nightmare in terms of maintaining sys-
tem security. The memory device-
special files provide a window into the
running system through which any
users proprietary programs ot data
can be observed. Even worse, this
window allows access to critical vari-
ables in the kernel itself. Ordinary
users should never have read or write
permissions on the memory device-
special files.

Disks

Disk device-special files provide a

convenient method for system ad-
ministrators to specify particular disks
to be mounted, backed up, etc. Read-
ing the information from such a file
would reveal the disk data in “raw”
form; i.e, blocks concemed with main-
taining directory structures and raw
data blocks would be mixed in a
seemingly random manner. However,
a sophisticated user with knowledge
of the file-system structure could
follow the disk pointers and read or
write any information without regard
to the permissions recorded for files.
Again. care must be taken to assure
that ordinary users do not have ac-
cess to the disk device-special files.

TERMINALS
Terminal device-special files pose a
special security problem in UNIX sys-

_tems. Ordinary users need read and

write permission on these files while
they are logged on to the associated
terminal, to aliow them to use the
write utility to send realtime mes-
sages to each other.

The problem is that users should
not be allowed read permissions for
terminals that they are not logged on
to. Such access allows them to inter-
cept data that is entered at the key-
board, including passwords,

Most UNIX implementations check
access permissions on open calls
only. Therefore, user 1 can start a
background process that opens user
I's terminal for reading while he or
she is logged on to it. User | can then
log off, allowing user 2 to log on. At
any time, the background process can
issue a read and thereby intercept in-
put from the terminal.

Although such an attack is hard to
defend, it is easy to detect. The telltale
symptom is that the background pro-
cess. not the system, receives user 2's
input, and it appears that the input
line of data is lost. If the system in-
dicates that user 2's password is in-
correct but user 2 is fairly certain it
was entered correctly, that password
may have been intercepted. If this oc-
curs, itis a good idea for user 2 to log
on to another terminal and quickly
change his or her password.

DIAL-UP LINES

Dial-up lines pose additional prob-
lems. For example, the UNIX System
V user's manual advises you to ter-
minate a session simply by hanging
up the phone. This is a bad idea: the
next user who dials in may be able to
resume your session.

Call-back modems offer improved
security but should not be relied
upon absolutely. Persons knowledge-
able about the workings of the phone
system may be able to foil these.

THE UNIX PASSWORD SYSTEM
Most time-sharing systems’ passwords
are kept in secret restricted files that
ordinary users cannot read. The UNIX
operating system takes a different ap-
proach. All passwords are stored in
(continued)

MAKING UNIX SECURE

encrypted form in the file fete/
passwd, along with other information
fn plain form. such as log-on IDs,
home directories, users' names, etc.

All users can read this file. This is
the only place on the system where
passwords are kept. Passwords are
never stored anywhere in plain unen-
crypted form. However, the exception
to this rule is the uucp file (L.sys.
which we will discuss later), which
contains passwords for restricted ac-
cess to other systems.

No means are provided for decrypt-
ing the passwords in /etc/passwd.
even by the superuser. If you forget
your password, you cannot have the
superuser find out what it is; you can
only ask him or her to change it for

you.

THE /etc/passwd FILE

Figure 2 shows a typical /etc/passwd
file entry and defines the individual
data fields within it. The system ad-
ministrator can add new entries sim-
ply by editing the /etc/passwd file.

“

System administrators, please take
note: Never set up log-on 1Ds with null
passwords. This is sometimes done at
unijversities where student accounts

are set up without a password entry

in fetc/passwd. The intention is that
the student can supply it the first time
he or she logs on. Anyone can peruse
the /etc/passwd file looking for ac-
counts with null passwords and com-
mandeer those accounts.

ATTACKS VIA THE
fetc/passwd FILE
One obvious way to break into the
system is to try many passwords until
you find one that works. You can do
this by trying to log on many times
with passwords generated com-
binatorially or read from a dictionary
or list of proper names. A disadvan-
tage to this method is that log-on pro-
grams are often intentionally slow and
sometimes record a log of unsuccess-
ful log-on attempts.

In a variation of this approach you
encrypt trial passwords and compare

The figlds within the entry are separated by colons,

2 s3]

I 1
al davAPSLXMSP.90/A | 112 | 20 | AD446-3570-AIFlpski2000) | /ajat |
5

Field 1 is the log-on name of the user,

Field 2 is the password field;
The comma is a subfisld separator.
since the beginning of 1970,

Fi'eldra is the numerical user D

Field 4 is the numerical group ID.
Itis a key into the field /etc/group.

" Field 6 is the user's home directory,

The first 11 characters, davRPSLxxmS are the encrypled password.
The next two characters, P, are the salt. i

The 9 and 0 foliowing the comma mean that the password must be changed no

less often than every 9 weeks and no more often than every 0 weeks,

The /A is an encoded count of when the password was last changed, in weeks,

Field 5 s a commert field and can contain administraiive information.

Figld 7 is the null last field. It indicates that the user's defauit fog-on shell is /bin/sh,

L e[

Figure 2: A typical fetc/passwd file entry. The fields within the entry are

separated by colons,

120 BYTE - APRIL 1986

the resulting strings with the en-
crypted strings in the publicly read-
able fetc/password file,

A number of UNIX security features
make this type of search impractical.
First, UNIX uses an iterated version of
the DES ({Data Encryption Standard)
algorithm that is unavoidably siow
when implemented in software. The
password encryption library routine
crypi() {no relation to the utility crypt)
requires about 1.29 seconds of
VAX-11/780 processor time to encrypt
a single password. This is fast enough
so that a legitimate log-on sequence
does not take an inordinate amount
of time, but an exploratory key search
would.

To prevent you from using commer-
cially available hardware (eg. DES
chips) to perform a key search on a
password file, the UNIX software uses
a DES version with some minor modi-
fications. Figure 3 and figure 4 illus-
trate the use of the modified DES al-
gorithm for password encryption and
verification, as adapted to the UNIX
operating system.

salt

Another security feature that makes
a key search impractical is the use of
salt during password encryption. The
new password utility obtains a ran-
dom two-character string (the salt
string) from the environment. Actual-
ly. this string is a function of the cur-
rent time and process ID number
{PID}.

Twelve bits of this salt string are then
used to modify, in one of 4096 dif-
ferent ways, the DES algorithm that
encrypts the password string given by
the user. The salt is stored in the /etc/
passwd file along with the encrypted
password. When a user enters a pass-
word at log-on time, the salt string
from his or her entry in the fetc/
passwd file encrypts his or her pass-
word.

Use of the sait string enhances pass-
word security in several ways. First,
even if two users happen to choose
the same password, their fetc/passwad
entries will almost always look com-
pletely different. This prevents a user

(continued)

MAKING UNIX SECURE

from making efficient sequential
searches of the fetcipasswd file to see
whether anyone is using a particular
password. Determining if any of 100
people have the password 23skidoo,
for example, requires 100 separate
applications of the encryption algo-
rithm.

Finally, the UNIX operating system
iImposes many restrictions on the
length and composition of the pass-
words. For example (under UNIX Sys-
tem V. release 2), passwords cannot

_ be either entirely numeric of entirely

alphabetic. This discourages the yse
of strings that can be easily guessed,
such as people's names, A password
aging system is also implemented so
that users can be automatically forced
to change their passwords periodical-
ly. This feature shouid be used!
System V also provides the option
of specifying a minimum length of time
a password must exist before it can

be changed. This feature is of ques-

tionable vajue. We recommend that it
be set to 0 but that users be educated
about the foolishness of using this to

time PID)
salt I I
. s N\
C - . -
N . encrypled
© password DES possword salt
A ' o . - .
T oa] -
1
© bassword file

i

Figure 3; UNIX password encryplion. When the user enters a new password, it

Is encoded by a variant of the DES algorithm. The algorithm is modified in one
of 4096 different ways by a random quantity called the salt, which is then
stored in the file /etc/passwd along with the encrypted password.

ancrypied

password - salt

“entered
pasaword -

7

possword file

tncrypﬁd

. entered
password -

comparizgn

Figure 4: UNIX password verification. The entered password is encrypted by a

variant of the DES algorithm using the salt string readout of the fetc/passwd
file entry for that user, The resulting encrypted password is compared lo the
encrypted password in the file. 1f they are the same, the password is accepted.

Note that the password in the file is never

“decrypted:

122 BYTE - APRIL 1986

maintain the same password per.
petually.

THE TROJAN-HORSE PRINCIPLE
The cracker's Trojan-horse principle
consists of getting a legitimate yser to
unwittingly execute or utilize program
code set up by the intruder Some-
times the planted code looks like an
ordinary system utility, If the duped
user happens to be 3 superuser, the
security game is effectively over

use it takes an intruder only a few
instructions (as superuser) to set
things up so that he or she can effec-
tively become the superuser when-
ever he or she wishes.

For example. the intruder can quick-
ly install a modified version of the su
utility that ‘bypasses the password
check and log-file entry when a cer-
tain argument is given. Here are some
of the more common pioys based on
the Trojan-horse principle and some
possible countermeasures for each.

FISHING FOR PASSWORDS

One technique uses a program that
simulates the log-on sequence of the
system. The intruder leaves this pro-
€ram running on a terminal that ap-
pears to be unused. When another
user attempts to log on. the program
easily dupes him or her into reveal-
ing his or her password. The password
is then written into a file owned by the
intruder, the password program kills
itself, and a real log-on sequence is
initiated.

A fishing program can be made so-
phisticated enough that users never
know their passwords have been com-
promised. However, one feature of
these programs arouses suspicion.
After the fishing program obtains a
password and writes it to a file, jt must
make a graceful transition to the real
sequence for logging on.

The giveaway is that the user has
already given his or her password cor-
rectly once yet must enter it again for
the benefit of the “real” log-on pro-
gram. which requires that the pass-
word be entered from a terminal. The
fishing program usually tries to
disguise this requirement by claiming

(continued)

MAKING UNIX SECURE

that the password given is “incorrect
Therefore, whenever yoy are fairly
sure that you have entered your pass-
word correctly byt the system says
that it is incorrect, it is a good idea
to log on to ancther terminal and
change your password immediately.

FAKE UTILITIES

Many installations have a directory
where locally produced utilities can
be placed. Often, users will include
this directory in their path variable,
which indicates where to search for
commands. A user may submit a utili-
ty program that performs service
many users want but which also con-
tains code designed to bypass the sys-
tem protections. For example, the pro-
gram can check if the user running it
is root and, if so, perform some hid-
den operation, such as changing a file

to setuid root, withoyt the users

knowledge.

In a simpler method, the user places
a program in his or her directory with
the same name as a commonly used

system command, such as Is. If an- -

other user, including root, executes
this program instead of the real Is utilj-
ty. the user will be at the mercy of the
fake utility program.

The system administrator can limit
his or her vulnerability to these at-
tacks by keeping the current directory

and any local utility directories out of
the path for root.

The utility su should take care to set
root's path to

PATH = fbin:fetc:fustibin
rather than
PATH = fbin:fete:tusr/bin

The colon at the beginning of the sec-
ond path tells the shell to search the
current directory first when looking
for a command typed in by the user
Leaving this colon off makes sure that
root will not inadvertently execute
nonstandard utility programs.

This problem can also arise when a
Program uses the exec system call.
For example, the code segment

execvp(“sh’argv)

is dangerous and should be replaced
by

execv(‘/bin/sh’argv)

if the intent is to execute the standard
shell.

FAKE DISTRIBUTIONS

A remarkably simple and bold way of
installing a Trojan horse in a system
is to mail a doctored distribution tape
to the system administrator with the
return address of the source of the
distribution tapes on it The intruder

 perpetrator can send his or

%—‘

YICTIM'S
TERMINAL -

HOST
COMPUTER -

%-

PERPETRATOR'S .
TERMINAL ’

Figure 5: Rrminal page-mode buffering. The colored path indicates how the
her own commands to the victim's terminal and then

to the host, where they are interpreted as commands entered by the victim,
Terminals with this feature should nor have write permission for “other” enabled.

124 BYTE » APRIL 1986

wants the administrator to believe
that the tape is an ordinary update
and install it on the System. Therefore,
the perpetrator of this ruse must
know a considerable amount of inside
information. The security-conscious
administrator should be aware of this
possibility.

MOUNTING A DOCTORED

FiLE SYSTEM

The UNiX operating system accepts
thé contents of a mounted file system
as being completely accurate, How-
ever, it is possible for a user to create
a file system on removable media. The
user then, at another location, “doc-
tors” the file system. By writing to the
Proper area on the media, the user
sets the setuid bit on program and
changes its ownership to superuser.
When the file system is subsequently
remounted, the user runs his or her
program as the superuser. The most
effective control of this is to restrict
physical access to the machine and
media.

OTHER TECHNIQUES

Another technique involving user ter-
minals is terminal page-mode buffer-
ing (see figure 5). Most moderately in-
telligent terminals have what is known
as a page mode of operation. When
the terminal is put into this mode (by
certain escape sequences), it does hot
send information to the host but
merely buffers it in screen memory.
When the terminal receives certain
other escape sequences, jt sends the
contents of its buffer to the hogt
computer,

All of these operations can be per-
formed by sending escape sequences
(from the host) instead of typing them
in at the keyboard. The cracker makes
the systemn believe that commands he
or she writes to the victim's terminal
were really entered by the victim,
{Under the UNIX operating system, a
terminal is simply a special file and
You can usually write to it for the pur-
pose of real-time communication via
the write command.) Any processes
the commands invoke therefore run
under the victim's user ID, The efficacy
of this method depends on the ter-

MAKING UNIX SECURE

minal used; there may be some visi-
ble effect, such as a flash at the vic-
tim's terminal.

How can this type of attack be
guarded against? Terminals should be
provided without the page-mode fea-
ture or at least with the option of turn-
ing it off. Making your terminal non-
writable to others is easy—just type
mesg -n. However, this does not pro-
vide certain protection against this
trick, since mail or other means may
be used to manipulate your terminal.

ATTACKS BY HOGGING
RESOURCES

The UNIX operating system evoived
in a nonhostile environment and is
relatively liberal in its granting of
resources to a user, Typically, a user
is allowed to run 25 concurrent pro-
cesses, and each process can have 20
files open simultaneously.

These limits. in isolation, will not
cause the system trouble and are
generally more than enough for any
legitimate use. However, in order to
limit the amount of memory the
kernel occupies, installations often
limit the number of files open (system-
wide) to around 250. This is also
generally enough for even a heavily
used system.

A problem arises, howevet, when a

malicious user spawns 25 concurrent |

processes that each attempt to open
20 different files. The user quickly
takes all available slots in the file table
and essentially makes the system un-
usable by others. UNIX installations
that might encounter such antisocial
users should be adjusted to prevent
any single user from causing such

problems. ,
Another area of concern is disk-stor-
age space. Although the size of a
user's files is usually limited to 1
megabyte. typically there is no limit
to the number of files a user can pro-
duce. (Or if there is, it is often only en-
forced at the time of logging on or
off.) Therefore. it is possible for a user
to allocate all the free blocks of a file
system to himself or herself. resulting
in irate users and possible damage to
the file system. However, the damage
{continued)

Inquiry 292

DO YOU KNOW WHE

' YOUR PROGRAM HAS BEEN?#

If you know where your program is spending
its time, you can Improve its performance.

The Watcher makes it easy.

-
R
VISA

$3995

\ For any . COM or ,EXE on PC, XT AT or compatibles DOS 2.X or 3.X. Not for use with Basic or other interprm/

Forest Road, PO. Box 107

Stony Brook Software

Wilton, New Hampshire 03086
MC or Visa orders: (603) 654-2525

The Watcher collects data from one or more runs of
your pregram. You can then instruct it to display as
a histogram the percentage of time spent in different
parts of your program and in DOS functions.

The Watcher uses symbolic information from the link
map, including line numbers, or information you pro-
vide to relate the data to your source program.

IE WATCHER KNCWS!

Inquiry 325

APRIL 1986 * BYTE 125

SN

[P P

MAKING UNIX SECURE

is usually minimal and easily re-
paired.,

ATTACKS VIA uucp

The uucp family of utilities facilitates
file transfer between different UNIX
sites and also provides the capability
for remote command execution. The
uucp utilities provide a good set of

H

security features to restrict the set of
files and commands the remote user
has access to, but they make up a
complex system with many nooks and
crannies and must be administered
properly. The following security points
must be observed carefully when set-
ting up uucp utilities. _
The uucp family allows the ad-

Brightest.

Display Telecommunications Corporation
announces ,
a complete family of IBM° compatibles.

MEGA-BOARD-AT™ MEGA-BOARD-XT™ MEGA-NEY™

80286 CPU » The Industry standard with Token-passing ring LAN ¢

Our own Mega-BIOS-AT™ our Mega-BIOS IBM NETBICS Compatible

QEM QUANTITY PRICING
“...masterplece of IBM AVAILABLE ON REQUEST “The most compatible
imitation...minor XT Bare Board 59.95 IBM clone !'v_er ever
Masterplece of the cir- XT Assembled 256K 209.05 | Womked with.lee
cult designer’s art. . Konowe, American Soft.
Winn L. Rosch, Cloning Mega-Case 69.95 1 ware Club, Ridgefieid, Ct.
Your Own PC, PC MQEI-KII 750.00 L
zZine, july 10, 1984 Mega BIOS ROM 29.95 Businss Michines Corporaton.
. . : Power Supply 89.95
AT-BIOS licensing. XT-BIOS Hceming,

8445 Freeport Parkway * Sufte 445 ¢ Irving, TX 75063
1-B00-227-8383 * For Technical Calls Only: 1-214-607-1382
TELEX 5106000176 DTC UD

We’ve Earned Our Reputation, Let Us Help You Eamn Youwrs.

i26 BYTE « APRIL 1986

Inquiry 115

ministrator to give a different log-on
ID and password to each authorized
remote-user system. Do this. Under no
circumstances make this log-on ID the
same as that of the uucp system ad-
ministrator. Put all remote users in a
single group that is used for nothing
else. This information should be n-
cluded in the /etcipasswd file.
Make sure that uucp log-ons do not
get the standard shell. They should
get the program uucico. which imple-
ments all the security restrictions of
the uucp system. Also, their home
directory should be fusrispoolfuucp-
public. This log-on shell and directory

are also included in the /etc/passwd.

entries for the remote users,

There is a file called fusrlibluucp/
USERFILE that allows the administra-
tor to specify. for each remote user,
which UNIX subdirectories he or she
will be allowed to copy files to and
from. This check is in addition to the
normal file-permission scheme. so
that even if a file can be read by
others, if it is not in one of the proper
subdirectories, the remote user will
not be allowed to uucp it. It is a good
idea to prevent all uucp access to
directories other than lusrispool/
uucppublic.

The uucp utilities provide a file that
the administrator uses to specify
which commands can be executed
from a remote system. Do not put
commands in here without a reason.
For example. rmail {not mail) probably
should be in here, while chmod prob-
ably should not.

Use the sequence-check feature
which keeps a sequence count of con-
versations with particular systems. If
the sequence number given by the
calling system is not what the called
system expects, the conversation is
disallowed. This prevents someone
from masquerading as a particular
remote system even if he or she
knows the log-on ID and password
assigned to it.

Use the call-back feature where ap-
propriate. When this facility is set up
in uucp. incoming calls are told: "OK,
now | know you want to talk: I'll call
you right back: This requires the

(continued)

i AT 3 s o

“a

MAKING UNIX SECURE

caller to be at the phone number that
the called system knows as his or hers.
The call-back feature may be specified
for a remote system by setting a flag
in that system's entry in the file /usr/
libfuucp/USERFILE.

Finally, make sure that permissions
are set up properly on alt the uucp
administrative files. For example, the
file /usr/lib/uucp/L.sys contains

- numbers and passwords for other sys-
. tems and obwiously must be unread-

L]

~ able by anyone but the uucp ad-

ministrator. In general, it is necéssary
to set the permissions of the uucp
files with extreme care.

If the above precautions are taken,
uucp should not present any substan-
tial security hole in a UNIX installa-

- tion, However, any outside line to a

computer slightly decreases the
security of the systemn. An intruder
who breaks into the remote system
can now have some access to yours
as well.

The security features of uucp are
well designed to minimize this threat.
However, uucp is a complicated sys-
tem that no doubt contains security
holes that have not yet been dis-
covered or plugged. For example,

ways have been suggested to induce

uucp to create files whose owner is
the uucp administrator but whose
content is determined by some other
user. Such a file may then be executed

to gain access to sensitive information .

in fustflib/uucp. The uucp facilities
provide a favorite hunting ground for
crackers, and the security-conscious
administrator would be well advised
to keep an eye on it.

ATTACKS ViA MAlL

To facilitate communication among
users, the UNIX mail system is set up
as belonging to a mail administration
group, with /bin/mail a setgid pro-
gram. The text of all mail sent is kept
in a central location (the directory
Jusr/mail in System V) and can be read
and written to by anyone in the group
mail.

As with any setuid or setgid pro-
gram, mail must be carefully ad-
ministered. Clearly. it would be dis-
astrous to allow a user to create his

128 BYTE + APRIL 1986

or her own setgid mail program, for
example, by writing over fbin/mail.
Such a program could be used to
read or forge mail.

Some common versions of the mail
utility allow a user to easily forge a
false signature on mail sent by him.
This is a very serious defect. The mail

program should determine the iden-

tity of the sender via the getuid sys-
tem call and not rely on other (pos-
sibly faked) means of identification.

PREVENTING THE DAMAGE

The greatest security weakness of the
UNIX operating system is the power
inherent in root. Therefore, an impor-
tant overall principle is to minimize the
use of root.

This may be done in several ways.
First, use specialized log-on IDs in-
stead of root whenever possible. If
user ID bin or nuucp suffices to do
a job, don't use root,

Second, make judicious use of
setuid programs in lieu of giving out
root. For example, if a user occasional-
ly needs to mount a particular file sys-
tem, having a program that is setuid
to root is preferable to giving out the
root password and is more convenient
than having the user request that the
system administrator provide this
service.)

Finally, and perhaps obviously,
change the root password frequently.

UNDOING THE DAMAGE

What can a system administrator do
if he or she suspects that someone
has broken root? There are several
kinds of traces that an inept or casual

‘cracker may have left behind, The

utility su maintains a log of uses or
attempted uses. Programs that are
setuid to root can easily be discovered
using the find utility.

For example, the following com-
mand prints out the path names of all
files on the system that are owned by
root and have the setuid bit set:

find / -perm -0004000 -user root -print

{On some systems, the ncheck utility
may be used for the same purpose)
Finally, if the perpetrator has avoided
these means of detection. it is pos-

sible to modify the kernel to print out
a secret log of superuser activity to
a file or to the console.

Ridding the system of all effects of
a hostile superuser is a big job. Essen-
tially. the system needs to be gen-
erated again from known secure
sources. Special attention needs to be

“paid to all setuid programs.

COSTS AND REQUIREMENTS
There are many steps an administra-
tor can take to prevent attacks. Many
of these precautions are free. How-
ever, some security measures cost
money, efficiency, or ease of use of
the system. You must make an in-
telligent evaluation of the real securi-
ty requirements of a particular in-
stallation before you establish a
securjty program.

CONCLUSION
Some people claim that the UNIX
operating systern provides no securi-

ty, While it is true that UNIX is inade-

quate for some types of classified
government projects, so are most
other operating systems.

We have outlined some security
threats to the UNIX system and their
related countermeasures. An adminis-
trator who is aware of these methods
can maintain a UNIX system installa-
tion that provides a sufficient degree
of privacy and protection for most ap-
plications. m

BIBLIOGRAPHY

Grampp. FT. and R. H. Morris. "UNIX
Operating System Security.’ ATST Bell
Laboratories Technical Journal. volume 63,
number 8. part 2, October 1984, pages
1649-1672.

‘Morris, R., and K. Thompson. “Password

Security: A Case History” Programmers
Manual for UNIX System Il Volume 11. Sup-
plementary Documents, Western Electric Cor-
poration, October 1981,

Reeds, |. A, and P]. Weinberger. “File
Security and the UNIX System CRYPT
Command.” ATET Bell Laboratories Technical
lournal, volume 63, number 8, part 2,
October 1984, pages 1673-1684.

Ritchie, D. M. "On the Security of UNIX.”
Programmers Manual for UNIX System 1l
Volume II. Supplementary Documents, Western
Electric Corporation, October 1981,

N

o

——
—

[

