The Need for Measured Data in
Computer System Performance Analysis

or

Garbage In, Garbage 011t=!=

Alan Jay Smith
Computer Science Division
EECS Department
University of California
Berkeley, California 94720-1776, USA
smith@cs.berkeley.edu

Abstract

There are three general techniques for studying
the design, operation and optimization of any type of
system: implementation, modeling, and simulation.
Implementation can be used when the time is avail-
able and the effort is justified. Mathematical model-
ing can be used if the system is simple enough or if
gross approximations are acceptable. Simulation is
needed for the remaining cases.

In all three cases, a crucial element is the need
for accurate estimates of the “workload.” For exam-
ple, for a computer main or cache memory systemn,
the workload may at one level of detail be the timing
and sequence of memory addresses referenced; at
another level of detail, it could be just the ratio of
loads to stores. No matter how accurate the model of
a system may be, any results from it are useless if the
workload is not accurately represented.

In this short paper, we discuss various types of
models and when and what type of accurate work-
load data is needed. We pay particular attention to
performance analysis of memory hierarchies and the
use of trace driven simulation.

*The author's research is supported in part by the National
Science Foundation under grants MIP-9116578 and
CCR-9117028, by NASA under Grant NCC 2-350, by the
State of California under the MICRO program, and is or has
been recently supported by Sun Microsystems, Apple Com-
puter Corporation, Mitsubishi Electric Research Laborato-
ries. Philips Laboratories, Digital Bquipment Corporation,
and the Interpational Business Machines Corporation.

This paper appeared in the proceedings of the Compsac’94
Conference, Taipei, Taiwan, November, 1994.

Keywords: performance analysis, trace driven simu-
lation, memory hierarchies, cache memory, main
memory, disk caching, file migration, database lock-
ing, benchmarking.

1. Introduction

There are three techniques for studying the
design, operation and optimization of any type of
system [Ferr78]. Implementation is the construction
of a version, or at least a prototype, of the target sys-
tem. Implementation has the substantial virtue of
being “real” (but see below), at the cost of substan-
tial time and effort. In some of areas of computer
science research, research work is often only taken
seriously when proposals are actually implemented,
whether or not implementation is the best or most
valid approach.

At the other extreme is the mathematical mod-
eling of a system. Such a model can be a mathemati-
cally complex queueing model, or may be a simple
back-of-the-envelope calculation. Such models are
often relatively easy to generate, but they can capture
only a very limited degree of complexity, and are
usually very limited in the range of assumptions they
can incorporate - e.g. exponential distributions for
parameters are frequently required, most all or
events must be independent, simultaneous resource
possession cannot be modeled, etc.

In cases when implementation is not justified
or feasible, and when mathematical models are inad-
equate, simulation [MacD70] must be used. Simula-
tions may be written at any desired level of detail, up

to and including something that differs little from an
implementation. Simuiations may also be catego-
rized as “trace driven” and random-number driven.
Trace driven simulations [Sher72] are driven by a
trace of some set of relevant events, measured from
an environment believed to represent the one to be
experienced by the target system. (Note that one
must be careful that the trace is still valid when used
to drive a system model significantly different than
the system from which it was gathered.) In the
absence of a trace, a random number generator is
typically used to provide the relevant events. Such a
random number generator may, however, fail to
incorporate important aspects of the real workload;
for example, a synthetic trace of memory addresses
may fail to correctly represent locality of reference.

The weakest aspect of any of these three
approaches to modeling is the dependence of the
results on the “workload;” we use the term work-
load to include the actual (usually ‘toy’) workload on
a prototype implementation, the traces used to drive
a trace driven simulation, and the parameter values
used for a mathematical model or a random number
driven simulation. To the extent that the mathemati-
cal model or random number driven simulation fail
to incorporate aspects of the behavior of the real
workload, the inaccuracy of the result can be consid-
ered a workload problem.

It is important to emphasize the point that a
prototype (or toy) implementation is often of far less
value for some studies than a good trace driven sim-
ulation. There are several problems with a prototype
implementation: First, it is usually not fully
debugged, doesn’t provide full functionality, and
often doesn’t offer features necessary for a commer-
cial system such as reliability and recovery. Since
the prototype isn’t of commercial quality, it may
exhibit significantly different behavior. Second, the
workload is often grossly inadequate to test the
research ideas. For example, a file system design
exercised by routine graduate student workstation
use is hardly representative of a commercial environ-
ment. Finally, the time, cost and effort for such an
implementation is often disproportionate to the
insight to be gained from it.

There are two other cases in which implemen-
tation can be the proper approach to research. First
is the case where an existing system (e.g. Unix) can

2-

be modified or extended, with a relatively modest
amount of work, to incorporate the new ideas, fea-
tures, or measuring tools. The second case is that in
which the research study can be "piggy-backed" on a
full fledged commercial development effort; in that
case, the systemn being developed is indeed real. In
both of these cases, however, the results are still sen-
sitive to the workload.

In the remainder of this paper, we discuss vari-
ous types of research studies with which the author
is familiar, and consider the extent to which work-
load and measurement data are needed.

2. Cache Memory and Main Memory Studies

Cache and main memory studies [Smit82] can
be classified into three categories: Gross sizing and
capacity studies have to do with selecting the param-
eters for a real implementation. In this case, what is
needed are basic parameter values: frequencies of
reads and writes, miss ratios, acceptable delays for
access, rates of reference, etc. These figures need to
be obtained from traces, from measurements of simi-
lar systems, or from systems whose results can be
extrapolated; a paper with this type of data is
[Smit85b]. Another example is figure 33 in
[Smit82], which presents hardware monitor measure-
ments of miss ratios for various cache sizes and asso-
ciativities. Once parameter values are known, the
necessary ‘modeling’ can often be done on the back
of an envelope because of the grossness of the
approximations involved. The critical issue here is
that the parameter values be reasonably accurate.
Some parameters (e.g. the ratio of reads to writes)
are available from traces; for others, (e.g. miss ratios
as a function of cache size), accurate values can only
be obtained by hardware measurement of real work-
loads in a production environment.

Algorithm and detailed design studies usually
must be done with trace driven simulation, using real
traces of representative workloads. Such traces are
needed because synthetic reference patierns are
unlikely to correctly reflect important aspects of ref-
erence behavior such as spatial and temporal locality.
Examples of these studies include a study of the
effect of line size on cache performance [Smit87], of
associativity on the cache miss ratio [Hill89], of
interleaving on memory access delays [Bask76], and
of the comparative behavior of various consistency

algorithms for multiprocessor systems [Gee93].
Note that when the necessary traces are not avail-
able, studies using a workload model can be useful
[Arch86]; at the present time, a study that compared
multiprocessor cache consistency algorithms without
using traces would almost certainly be useless.

The third case is that of detailed implementa-
tion studies - e.g. the effect of split transactions on a
memory bus. In this case, detailed simulations are
usually needed, but in some cases, it may be suffi-
cient to drive them with random number generated
events rather than traces. In some such cases, timing
information is the most critical need, rather than ref-
erence patterns. This third case may contain
instances for which synthetic traces could be useful;
in this case, it is the details of the implementation,
not the nuances and subtleties of the workload that
are crucial, and rough approximations to the work-
load (i.e. crash dummies, not people) may well be
sufficient.

An important limitation in some types of trace
driven simulations is that the number of events
needed to achieve some necessary state (e.g. a full
cache or a given number of page faults) may be pro-
hibitive. In that case, filtered or reduced traces
[Smit77] may be needed. Such filtered traces might,
for example, include only references to not recently
referenced blocks, or might include only page faults
or TLB misses.

3. Disk and I/O Studies

There are several categories of disk and I/O
system studies. We comment on each individually.
Note that studies in these areas are similar in many
ways to studies of main and cache memory, and the
relationships described above between type of study
and appropriate data and techniques generally apply
here as well.

3.1. Disk Cache

Studies of algorithms for disk cache [Smit85a,
Thom87] (e.g. replacement algorithm, effect of block
size, location of the cache, effect of prefetch, etc.)
generally require traces; there is no other way to
deterrnine the effect of varying the parameters of
interest. Gross sizing, bandwidth and capacity stud-
ies are similar to the situation above for cache and
main memory studies. Simple parameter values are

3-

needed and may be obtained from various types of
measurements; the modeling for such studies is usu-
ally very simple.

3.2. Disk Optimization

Studies in this area include studies of disk arm
scheduling, block placement, block size, use of over-
flow blocks, etc. [Smit81d]. Such studies generally
require traces. An example of the problems that
occur when traces are not used is evident from the
large number of early studies of disk seek scheduling
which assumed random requests to the disk surface
[Smit81c]; in fact, the probability of rereferencing
the same cylinder in most systems is quite high
[Lync72].

3.3. /O Configuration Management

I/O configuration management has to do with
the configuration of /O systems on mainframe com-
puters; i.e. how many disks, controllers, channels,
how should they be interconnected, how should the
load among them be balanced, etc. [Smit79]. The
necessary analysis can usually be done with queue-
ing models, provided that parameter values are avail-
able. For example, the products of BGS Systems
Inc. both collect the necessary data and do the neces-
sary analysis; the data collection and reduction is by
far the hardest part.

3.4. Database Locking

Database locking studies consider the effec-
tiveness of various locking algorithms in terms of the
overhead for their implementation, and the extent to
which they impede execution by causing transactions
to block. Because trace data is so hard to obtain, the
large majority of studies in this area have been done
using mathematical models. Traces are needed,
however, to ensure the validity of the results. For
example, [Sing94) shows that many of the assump-
tions frequently used in database locking studies
(independence, time invariance, uniformity, etc.) are
invalid, and that predictions from some of those
studies may be in error.

3.5, File Migration

File migration research has to do with the
selection of algorithms for the management of ter-
tiary storage. This includes algorithms for moving

(replacing) files to tertiary from secondary storage,
fetching them from tertiary to secondary storage,
moving files between nodes in a distributed system,
and for organizing the placement of files on the very
non-random-access tertiary storage media. Traces
are necessary for most of these algorithmic studies
[Smit81a,b, Kure88), although random number
driven simulation or models can be used as a first
approximation for some studies of media manage-
ment.

4. CPU Performance Evaluation

CPU performance evaluation is the study of the
design and implementation of the CPU; e.g. the
effect of data path width, adder size, multiplier
speed, register set size, BTB design [Lee84,
MacD84, Peut77], etc. First order performance esti-
mates for some items can be made with knowledge
of basic parameters, such as the frequency of multi-
plies. More detailed studies, such as the effect of
pipeline design or the need for bypasses around the
ALU, should be conducted using traces. Short traces
are sufficient for some studies, such as pipeline
design, but very long traces may be needed in other
cases (BTB design, register set size).

Note that for CPU performance analysis, an
accurate model of the design under study is crucial.
The personal experience of the author is that even
the designers and implementers of a new CPU are
unable to tell the performance analyst how to accu-
rately model the CPU pipeline.

5. Benchmarking

Benchmarking is the process of measuring
computer system performance by runmning real or
synthetic programs. Traditional benchmarking has

“ been limited to that effort alone. More recent work
[Saav89,92a,b,c] involves the detailed measurement
of the components of both the system and the work-
load; i.e. an analysis of CPU performance on indi-
vidual workload operations, a measurement of the
performance of the CPU memory system, an evalua-
tion of compiler effectiveness, and measurements of
the type of operations actually executed in the work-
load. The type of data gathered in the more recent
studies is invaluable in the analysis of CPU and sys-
tem performance.

Any benchmarking effort is highly sensitive to
the workload. Different programs exercise different
aspects of a machine (e.g. floating point, integer),
and some programs may be especially suited or
unsuitable for a given architecture. Measurements
taken on a PC are unlikely to be useful for predicting
the performance of a vectorized workload on a Cray,
and software for the PC is unlikely to be suited to the
Cray.

6. Measurements

The purpose of the above discussion has been
to emphasize the need for and importance of mea-
surements and workload data as a necessary compo-
nent of any modeling or simulation study. Despite
its evident importance, a glance at the literature will
show a disappointingly low frequency of studies
which make sufficient use of real measurements,
although the situation is steadily improving. The
reason for this is the extremely difficulty of obtain-
ing appropriate data [Zhou85]. Getting I/O traces at
the necessary level of detail usually takes a man(per-
son)-year or more. Analysis of CPU and workload
performance took years [Saav92c]. Collecting paral-
lel system traces took a considerable amount of
effort [Gee93]. As a general rule, collecting the nec-
essary data and reducing it to usable form is as much
or more work than the study for which it is destined.
Note, however, that once collected, workload data or
traces can be used in many studies and the collection
effort can be amortized over many papers, many stu-
dents and many products.

In the remainder of this section, we comment
briefly on methods for trace generation.

6.1. Program Address and Instruction Traces

There are several techniques for generating
traces for uniprocessor programs. (a) A hardware
monitor can be used to pick addresses off of the
address pins of the processor, provided that there is
no on-chip cache, and that ‘spurious’ references
(prefetches) are desired. (b) An interpreter for the
machine architecture can be used to interpretively
execute the target program. (c) A “trace trap” mode
can be used to cause a trap after each instruction. (d)
An *execute” instruction {available on the IBM 370
architecture) can be used to interpretively execute a
program. (e) The object code can be instrumented to

generate trace records for every load, store and
instruction fetch (or branch); note that in this case,
addresses must be ‘fixed up’ to compensate for the
tracing code. (f) On a microcoded machine, the
microcode can be modified.

Note that while all of the above techniques can
also be used for parallel programs, steps must be
taken to properly trace each thread, and maintain a
consistent clock among the threads.

6.2. I/0O and File Traces

Generating 1/0 and file traces is difficult.
There are two general techniques: (a) Instrument the
operating system to generate trace records at appro-
priate times. (b) Use the output of a standard trace
or debugging package such as IBM’s GTF.

The problems with the former are: (a) Instru-
menting the OS requires considerable specialized
knowledge and effort. (b} Collecting data requires
access to and permission to modify the OS of a
machine running a real, live workload. (c) The data
desired is seldom available in one piece of OS code
(e.g. file names and disk addresses are generally not
available in the same pieces of code), so many differ-
ent places in the OS must be modified, and then the
data tied together. A major difficulty is that it may
be very difficult to match up records with file names
generated in one part of the OS code with corre-
sponding records that contain physical disk
addresses generated elsewhere.

The problem with the use of a standard trace
package is that it seldom generates what is needed,
and often generates much that isn’t needed, placing a
very heavy overhead load on the system.

For file migration purposes, it is often suffi-
cient to know only if a file has been used on a given
day. In that case, gathering data can be very easy-
just read the file system directory every night and
save information on which files have (or have not)
been used in the preceding 24 hours.

6.3. Trace Validity and Stability Over Time

There are several issues about the validity of
traces. (a) Has gathering the trace perturbed the sys-
tem? For example, the overhead of a tracer may
upset the time sequence of events. (b) Is the work-
load traced representative of the target workload?

(¢) Does the workload change rapidly over time, so
that old trace data is obsolete? (d) Is the system
being simulated different enough from the system
traced that the nature of the trace (e.g. the sequence
and timing of events) becomes invalid?

All of the issues mentioned immediately above
are valid ones and must be considered by the
researcher or analyst. Note that in almost all cases,
however, some data is better than none, and a larger
sample better than a small one.

7. Conclusions

The factor that most determines whether a
research study of a computer or system design is
useful is the accuracy of the workload information
used to drive, or incorporated in, the system model.
Highly sophisticated models incorporating incorrect
assumptions or wrong parameter values are of little
use.

In this paper, we have discussed various types
of system optimization studies, concentrating on top-
ics on which the author and his students have
worked. In each case, we have discussed the type of
data or workload information needed for the study
results to be useful. For many of the types of studies
described, trace driven simulation is the preferred
technique. We briefly considered how traces can be
obtained and what some of the limits on their utility
are.

8. Bibliography
[Arch86] Archibald, James and Jean-Loup Baer, “Cache Coher-

ence Protocols: Evaluation Using a Multiprocessor Simulation
Modei”, ACM TOCS, 4, 4, November, 1986, pp. 273-298.

[Bask76] Forest Baskett and Alan Jay Smith, "Interference in
Multiprocessor Computer Systems with Interleaved Memory”,
Communications of the ACM, 19, 6, June, 1976, pp. 327-334.

[Ferr78] Domenico Ferrari, “Computer Systems Performance
Evaluation”, Prentice Hall, Englewood Cliffs, NJ., 1978.

{Gee93] Jeffrey Gee, “Analysis of Caches in Vector Processors
and Multiprocessors”, Ph.D. Dissertation, Computer Science
Division, UC Berkeley, Berkeley, CA., April, 1993.

[Hill89] Mark Hill and Alan Jay Smith, "Evaluating Associativ-
ity in CPU Caches", IEEETC, December, 1989, 38, 12, pp.
1612-1630.

[Kurc88] Oivind Kure, **Optimization of File Migration in Dis-
tributed Systems”, UC Berkeley Computer Science Division
Technical Report UCB/CSD 88/413, April, 1988.

[Lee84] John K-F Lee and Alan Jay Smith, "Analysis of Branch
Prediction Strategies and Branch Target Buffer Design", IEEE
Computer, 17, 1, January, 1984, pp. 6-22.

[Lync72] W.C. Lynch, “Do Disk Arms Move”, Performance
Evaluation Review, 1, 4, December, 1972, pp. 3-16.

[MacD70] M. H. MacDougal, “Computer System Simulation;
An Introduction”, Computing Surveys, 2, 3, September, 1970,
pp- 191-209.

[MacD84] Myron H. MacDougall, "Instruction Level Program
and Processor Modeling", IEEE Computer, July, 1984, pp.
14-24.

[Peut77] Bemard L. Peuto and Leonard J. Shustek, "An Instruc-
tion Timing Model of CPU Performance”, Proc. 4°th Ann.
Symp. on Computer Arch., March, 1977, pp. 165-178.

[Saav89] Rafael Saavedra-Barrera, Alan Jay Smith and Eugene
Miya, “Machine Characterization Based on an Abstract High
Level Language Machine”, IEEE Transactions on Computers,
special issue on Performance Evaluation, December, 1989, 38,
12, pp. 1659-1679.

[Saav92a)] Rafael Saavedra-Barrera and Alan Jay Smith, “Per-
formance Prediction by Benchmark and Machine Analysis”,
Computer Science Technical Report UCB/CSD 90/607, Decem-
ber, 1990,

[Saav92b] Rafael Saavedra-Barrera and Alan Jay Smith, “Per-
formance Characterization of Optimizing Compilers”, UC
Berkeley Computer Science Technical Report UCB/CSD
92-699, August, 1992,

{Saav92c] Rafael Saavedra-Barrera, Ph.[D. Dissertation, Febru-
ary, 1992, “CPU Performance Evaluation and Execution Time
Prediction Using Narrow Spectrum Benchmarking”, UC Berke-
ley Computer Science Report UCB/CSD 92/684.

[Sher72] Stephen Sherman, Forest Baskett III and J. C. Browne,
"Trace-Driven Modeling and Analysis of CPU Scheduling in a
Multiprogramming System", CACM, December, 1972, 15, 12,
pp- 1063-1069.

[Sing94] Vigyan Singhal and Alan Jay Smith, “Characterization
of Contention in Real Relational Databases™ Technical Report
UCB/CSD-94-801, Computer Science Division, UC Berkeley,
March, 1994. Submitted for publication,

[Smit77] Alan Jay Smith, "Two Methods for the Efficient Analy-
sis of Memory Address Trace Data”, IEEE Transactions on Soft-
ware Engineering, SE-3, 1, January, 1977, pp. 94-101.

[Smit79] Alan Jay Smith, "An Analytic and Experimental Study
of Multiple Channel Controllers”, IEEE Transactions on Com-
puters, C-28, 1, January, 1979, pp. 38-49.

[Smit81a] Alan Jay Smith, "Analysis of Long Term File Refer-
ence Patterns for Application to File Migration Algorithms",
IEEE Transactions on Software Engineering, SE-7, 4, July,
1981, pp. 403-417.

[Smit81b] Alan Jay Smith, "Long Term File Migration: Devel-
opment and Evaluation of Algorithms", Communications of the
ACM, 24, 8, August, 1981, pp. 521-532.

[Smit81c] Alan Jay Smith, "Bibliography on File System and
Input/Qutpat Optimization and Related Topics", Operating Sys-
tems Review, 15, 4, October, 1981, pp. 39-54.

[Smit81d] Alan Jay Smith, "Input/Output Optimization and Disk
Architecture: A Survey", Performance Evaluation, 1, 2, 1981,
pp. 104-117.

[Smit82] Alan Jay Smith, "Cache Memories", Computing Sur-
veys, 14, 3, September, 1982, pp. 473-530.

[Smit85a] Alan Jay Smith, "Disk Cache - Miss Ratio Anatysis
and Design Considerations”, ACM Transactions on Computer
Systems, 3, 3, August, 1985, pp. 161-203.

[Smit85b] Alan Jay Smith "Cache Evaluation and the Impact of
Workload Choice”, March, 1985, Proc. 12’th International Sym-
posium on Computer Architecture, June 17-19, 1985, Boston,
Mass, pp. 64-75.

[Smit87] Alan Jay Smith, “Line (Block) Size Selection in CPU
Cache Memories”, IEEE Transactions on Computers, C-36, 9,
September, 1987, pp. 1063-1075.

[Thom87] James Thompson, “Efficient Analysis of Caching
Systems”, UC Berkeley Computer Science Division Technical
Report 87/374, October, 1987.

[ZhouB85] Sengnian Zhou, Herve DaCosta, and Alan Jay Smith,
"A File System Tracing Package for Berkeley Unix", Proc. 1985
USENIX Summer Conference, Portland, Oregon, June 12-14,
1985, pp. 407-419,

9. Biography

Alan Jay Smith was raised in New Rochelle, New York,
USA. He received the B.S. degree in electrical engineering from
the Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, and the M.S. and Ph.D. degrees in computer science
from Stanford University, Stanford, California. He was an NSF
Graduate Fellow.

He is currently a Professor in the Computer Science Divi-
sion of the Department of Elecirical Engineering and Computer
Sciences, University of California, Berkeley, California, USA;
he was vice chairman of the EECS department from July, 1982
to June, 1984. His research interests include the analysis and
modeling of computer systems and devices, computer architec-
ture, and operating systems. He has published a large number
of research papers, including one which won the IEEE Best
Paper Award for the best paper in the [EEETC in 1979. He also
consuits widely with computer and electronics companies.

Dr. Smith is a Fellow of the Institute of Electrical and
Electronic Engineers and a Fellow of the Association for Com-
puting Machinery, a member of IFIP Working Group 7.3, the
Computer Measurement Group, Eta Kappa Nu, Tau Beta Pi and
Sigma Xi. He is on the Board of Directors (1993-2001), and
was Chairman (1991-93) of the ACM Special Interest Group on
Computer Architecture (SIGARCH), was Chairman (1983-87)
of the ACM Special Interest Group on Operating Systems
(SIGOPS), was on the Board of Directors (1985-89) of the ACM
Special Interest Group on Measurement and Evaluation (SIG-
METRICS), was an ACM National Lecturer (1985-6) and an
IEEE Distinguished Visitor (1986-7), was an Associate Editor of
the ACM Transactions on Computer Systems (TOCS) (1982-93),
is a subject area editor of the Journal of Parallel and Distributed
Computing and is on the editorial board of the Journal of Micro-
processors and Microsystems. He was program chairman for the
Sigmetrics "89 / Performance 89 Conference, program co-chair
for the Second (1990) Sixth (1994) and Ninth (1997) Hot Chips
Conferences, and has served on numerous program committees.

