Trace Driven Simulation in Research on
. sk
Computer Architecture and Operating Systems

Alan Jay SMITH
Computer Science Division
University of California
Berkeley, California 94720, USA
smith@cs.berkeley.edu

Abstract

Trace driven simulation (TDS) is a widely
used and important technique in computer architec-
ture and system research, Conventional (random
number driven} discrete event simulation uses
implicit or explicit models of external processes to
provide the events to drive the simulation. Such
models can fail to capture extremely important
characteristics of the driving process. TDS drives
the simulation with a trace, which is a recorded
sequence of real events believed to be representa-
tive of what the simulated system could expect. To
the extent that the trace is (approximately) represen-
tative of the events that would actually occur in the
simulated system, TDS provides a much more real-
istic workload.

TDS is the standard technique for studying
computer system memory hierarchies and many
other aspects of computer design and performance.
Traces of memory addresses are used to drive cache
and main memory studies. Traces of I/O events are
used to study disk and file systems. Traces of
instructions are used to study CPU implementation
and to estimate performance. Traces of CPU run-
time intervals have been used to swdy CPU
scheduling.

In this paper, we will discuss how research
studies such as the above are conducted and will
survey some of the relevant issues. We will also
consider the limitations and difficalties of TDS.

*The suthor's rescarch is supported in part by the National
Science Foundation under grants MIP-9116578 and CCR-
9117028, by NASA under Grant NCC 2-550, by the State
of California under the MICRO program, and is or has been
recently supported by Sun Microsysterns, Apple Computer
Cotpotation, Mitsubishi Electric Research Laboratories.
Philips Laboratories, Digital Equipment Corporation, and
the International Business Machines Corporation.

This paper was published in the Procecdings of the Confer-
ence on New Directions in Simulation for Manufacturing
and Comununications, ed. Morito, Sakazegawa, Yoneda,

1. Introduction

Simulation is widely used as a tool for system
design and for research studies. It has advantages
over both analytic modeling and prototype imple-
mentation. Analytic models are seldom able to
incorporate sufficient realism, and often have to be
recreated if a different system structure is to be con-
sidered. Implementations of any type usually
require at least an order of magnitude more effort
than a simulation, frequently can represent only one
of a set of design alternatives, and often cannot be
tested under realistic conditions or with realistic
workloads, Simulations can model the target design
at any level of detail, and can be modified as neces-
sary to reflect alternatives and changes.

One class of simulations are called discrete
event simulations; these are simulations over time in
which the state of the simulation model changes at
discrete epochs, when various events occur. Such a
model is typically driven by an event queue; the
simulation process is based on the loop: {get event,
update simulation statistics, update system state and
clock, update (delete from/add to) event list}. In
classical simulation, some or all of the events that
drive the simulation are generated using something
that is essentially a random number generator,
although the (uniform) random number generator is
usually used to generate something ranging from a
more complex distribution to a sophisticated input
process model. The presumption in such models is
that the inputs (workload) are reasonably well
known or understood, but that the effect of the input
on the output is complex and must be determined
through the simulation. To phrase it mathemati-
cally, the simulation output y is determined by the
simulation f{.) and the input workload x as y=f{x);
for many simulation problems, x is faidy well
understood, but ff.) is not.

For many problems in computer architecture
and computer operating systems performance and
design, the problem is not in mapping a known
input to an output, but in the fact that the relevant
aspects of the input are not adequately understood.

Pushimi, Nakano, Tokyo, Japan, Aagust, 1994, pp. 43-49.

-2-

Frequently in such cases, f{.) is sufficiently simple
that if there were a simple characterization of x, the
nature of y would be immediately evident. For such
problems, trace driven simulation (TDS) is patticu-
larly valuable. TDS is a type of event driven simu-
lation in which the events come from a frace, rather
than being generated as an input to the simulator or
as part of it. The trace is a sequence of the actual
simulator input events gathered from a real func-
tioning system sufficiently similar to the system
being modeled; thus, the entire event list is avail-
able and is known at the start of the simulation.

The advantage to trace driven simulation is
that since the input trace is a sequence of real
events, taken from a real, functioning system, it will
contain within it all the characteristics of the work-
load, including those relevant to the proposed st-
dies. An additional advantage is that since the trace
is known, fixed and static, a variety of simulations
can be run using the same trace with some
assurance that any difference in simulation results is
due to changes in the model parameters, not varia-
tions in the input. This is not to say that there are
no problems with trace driven simulation, many of
which are described below, but it does eliminate
one source of error.

Trace driven simulation has been used for
research on computer systems for many years.
Among the early studies, it is worth citing [Bela66]
which was an early and excellent study of paging
algorithms, and [Sher72], which was a very
interesting study of CPU scheduling. Trace driven
simulation is also frequently used for studies of 1/0
systems, disk caching, file migration, pipeline per-
formance, and cache memories, each of which is
considered below.

In the remainder of this paper, we first con-
sider some of the general issues in trace driven
simulation, such as trace generation, trace storage,
trace length, representative trace samples, efficient
algorithms, etc. We then briefly discuss the use of
TDS for studies of cache and main memory, disk
systems, file migration, CPU scheduling and CPU
pipeline analysis, Finally, we also briefly discuss
some techniques for using parallel processors for
trace driven simulation.

2. Trace Driven Simulation

As explained above, trace driven simulation
(TDS) uses a trace of events to drive an event
driven simulation, rather than generating the events
on the fly from a stochastic moedel. The simulation
model itself may intemnally contain some stochastic
aspects, but the principal events driving the model
come from the trace. There are a number of issues
that relate to the difficulty and validity of TDS; we
discuss those in this section.

2.1. Obtaining A Trace

Generally, the most serious issue with TDS is
that of obtaining a trace of suitable events. This
problem breaks down into two simpler problems:
finding a system in which the relevant events occur,
and then collecting the trace. Fortunately, there are
very few advances in computer systems that are so
radical that there is no suitable system that can be
traced; this will become clear from the examples we
discuss below. Unfortunately, in many cases it is
quite difficult to obtain the relevant traces, since it
can be quite difficult to instroment the existing sys-
tem to obtain the appropriate data; this is also dis-
cussed below.

2.2, Representative and Valid Trace

In some cases, there may be no "representa-
tive" or valid workload. For example, there may be
many parallel algorithms to solve a given problem,
or a number of ways to code a given parallel algo-
rithm on a multiprocessor, and the choice of algo-
rithm could make an enormous difference in the
results obtained; which algorithm should be traced?
In other cases, the most representative data {e.g.
operating systems address traces {Flan93]) may be
very hard to obtain. In still other cases, changes of
scale (orders of magnitude increases in CPU speed,
disk size, main memory size over a decade) may
rapidly make a trace obsolete. Each of these issues
needs to be carefully considered when relevant. An
important point to note, however, is that the situa-
tion only gets worse without a trace; a trace
represents a data point, and generally one or several
data points are significantly better than a random
number driven simulation, which really only
represents a guess. To the extent that there is a
recognized problem with a trace, it may be possible
to adjust, scale or supplement the data to account
for anticipated changes in the wotkload or environ-
memt.

One problem with trace driven simulation is
that the trace may not be completely invariant to
differences between the traced system and the simu-
lated system. For example, changes in the way
memory conflicts are resolved in a parallel proces-
sor system could cause changes in the relative speed
of the various processors/processes, and thus
changes in the actual sequence of memory refer-
ences. Likewise, use of disk caching or changes in
disk scheduling algorithms could cause changes in
the timing of arrivals of disk I/O requests. Thus it
may not be completely valid to use a fixed, invari-
ant trace, if the changes in the simulated system
would have caused the actual generated trace to be
different. Care must be taken to comsider and
evaluate this problem; if it is believed to be severe,
execution driven simulation (described below) may
be preferable.

2.3. Trace Storage

For some types of studies, e.g. cache
memories or disk I/0 analysis, the trace may be
very long. For example, in one study [Borg90],
traces of several billion memory references were
used; in another [Gee93a]l, many billions of
memory references were processed. There are four
approaches to this problem. First, with modern
storage technologies (helical scan tapes, such as
DAT tapes or Exabyte 8mm tapes), long traces can
be stored cheaply; I/O data rates for these technolo-
gies, however, are quite low - around .25 MB/sec.
A second ach is to use data compression;
Samples [Samp89} obtained around 95% percent
compression with some rather simple technigues;
more effort might have yielded even better results.
A third approach is to process the trace and discard
events that have little effect on the performance
metric. For example, [Smit77] shows that refer-
ences to the top of the stack in a memory simulation
can be discarded, with little effect on a count of the
number of misses for a reasonably sized memory.

2.4. Execution Driven Simulation

The fourth approach is to use execution
driven simulation (EDS), which can be considered
10 be a variant of trace driven simulation (see e.g.
[Davi9l, Dwar93]). (EDS is also called "direct
simulation.”) With TDS, a system is traced, the
trace is stored, and then the simulation is run from
the trace. With execution driven simulation, the
events from the traced system are fed directly into
the simulated system. This avoids the data storage
problems described above. EDS can be taken a step
further, with a feedback loop from the simulated
system to the traced one. In this case, the traced
system relies on the simulated system to provide
feedback or results of various types. This permits
the sequence of events (the trace) to vary with
changes in the simulated system. The advantage is
that the trace retains its validity, but with the disad-
vantage of a simulation that is actually driven by a
different sequence of events in each case. Gen-
erally, EDS is more difficult than simple TDS, since
it combines trace collection with TDS, rather than
separating the two.

2.5. Trace Length

The use of long traces has in the last few
years become quite fashionable, but is frequently
unnecessary; it can be a poor substitute for good
experimental design. Long traces are usually col-
lected by tracing a given system or program for an
extended period of time. Since the target system is
unlikely to be identical to the traced system, we
believe it is generally far better to use an equal
amount of trace data gathered from a variety of sys-
tems over a variety of frace periods. Such a varied
trace workload is much more likely to include
within its range the workload to be experienced on
the system being studied, and also provides for a

variety of simulation results, one for each input,
which can demonstrate the vatiation to be expected.
Further, samples taken intermittantly over a long
period can be much more uvseful than the same
aggregate trace length over a shorter continnous
period. The only advantage to a long trace is that
there may be an extended period required to initial-
ize the simulation model (e.g. fill the cache), A
simulation run from an "empty" state is often called
cold start, and one from a fully initialized state is
frequently referred to as warm start. The initializa-
tion problem can be overcome by one of the follow-
ing: (a) preprocessing a continuous trace to obtain
the (approximate) initial state; (b) discarding those
portions of the simulation prior to warm full initiali-
zation; andfor (c) calculating (in some manner) the
effect of the initialization transient on the simula-
tion results.

Even though many computer system models
can be very simple, e.g. an LRU stack, long simula-
tion runs (billions of events) can result in very long
simulation times; in [Gee93a], 17 months of CPU

time were used. There are a pumber of approaches

to this problem. Some (e.g. [Hill89, Mau70,
Thom87,89]) are algorithms for generating the
results for a large number of parameter combina-
tions from one simulaton mn. Others (e.g.
[Cme193]) are techniques for coding the simulations
very efficiently. In the experience of this author, a
simple stack simulation will un 100 to 1000 times
slower than would the actual system being simu-
lated. [Cmel93] claims to run less than 10 times
slower using his coding and simulation tricks.

In the next few sections, we discuss vatious
aspects of computer systems and the use of TDS to
study them,

3. Cache, Main Memory and TLB Studies

A computer system contains an ALU
(arithmetic-logic unit} which does instruction
fetches, loads and stores to main memory. Main
memory is typically much slower than the ALU, so
in modem computer systems a cache memory is
used to make most memory accesses much faster.
Most modem computer systems use virtual memory
and paging, so a TLB (translation lookaside buffer)
is needed to cache page table entries. Studies of
caches, TLBs and main memory paging generally
all consider the issue of hit ratio, which is the frac-
tion of events (I-fetches, loads, stores, translations)
that are satisfied by the faster element (cache rela-
tive to main memory, TLB vs. translator, main
memory vs. disk). All three types of studies use as
input a trace of virtwal addresses (instruction
fetches, loads, stores) generated by the ALU. The
virtual address trace generated, for a given unipro-
cessor program, ignoring task switching, is invari-
ant with respect to changes in the memory system,
the contents of the page table or almost anything
else, so driving a simulation of a variety of memory
configurations is generally valid.

3.1. Address Trace Generation

There are a number of techniques for generat-
ing address traces; see [Laru93] for a discussion of
some of these, One of the earliest techniques was
to write a simulator of the architecture which the
code being traced runs on. The object code is then
interpretively executed by the simulator, which gen-
erates appropriate trace records. This is particolarly
easy to do for the IBM 360/370, which has an "exe-
cute” instruction, which executes any other instruc-
tion it "points” at [Peut76]. This is the method used
to generate many of the traces used in [Peut76,
Lee84]. One of the few ways to generate operating
systems traces is to use a machine simulator and run
it in a virtual machine environment; that was the
technique used to generate OS traces at Amdahl
Corporation (see [Smit85b] for the analysis of some
OS traces).

Another old technique for coliecting traces is
to use the "trace-trap” facility. Most computers
have various trace-trap facilities, by which the
machine can be set to trap if various things happen,
such as a memory access to a ceriaifi memory
region, etc. These features are usually included for
debugging purposes, but can generally be set to
cause a trap on every instruction feich, The trap
handler then generates a trace record and resumes
execution of the program.

Similar to the trace-trap method is 10 invali-
date either the page tables or the TLB (if TLB
misses are handled in software). There is then a
trap on every memory reference, and a trace record
can be generated.

A hardware monitor can be used to collect
address traces from the appropriate signal pins
[Grim93]. This technique has seen only very lim-
ited use for a number of reasons: (i) a hardware
monitor is needed, and they are often hard to obtain;
(ii) the monitor must be fast enough to coltect the
data - ie. usually faster than the system being
traced; (iii) the monitor must have substantial
amounts of storage in which to collect the trace
data; (iv) the pecessary signals must be available,
which is rare; (v} the experimenter must have the
knowledge to instrument the system properly; (vi)
the experimenter must have access to the system
hardware.

In the case of a microcoded machine, the
microcode can be modified to generate traces
[Agar86]. The problems bere are that there are few
microcoded machines {any more), and the experi-
menter must have the knowledge and ability to
modify the microcode, and access to a machine to
which the modification can be made.

Probably the most popular technique
currenily for generating traces is to instrument the
object code. A call to a tracing routine is inserted
for every load, store and branch. A postprocessing
step adds trace records for instruction fetches
between branches. This approach is used by the

pixie facility, available on MIPS processor based
systems. This technique is reasonably efficient, and
lends itself well to execution driven simulation.

3.2. Cache Studies

Memory address traces have been used for a
variety of studies of CPU cache memories, many of
which are illustrated in [Smit82]. These include the
effect of line (block) size [Smit87], the effect of
prefetching on the miss ratio [Smit78b,85b], the
effect of the frequency of task switching, the effect
of associativity [Hill89], etc. Most of these studies
have used very simple cache models, for which the
metric of interest was the miss ratio. For some
issues, e.g. prefetching [Smit78b), a more compli-
cated model with detailed timing information is
needed; such a study is in progress [Tse94]. It is
worth noting that a major problem with many of the
studies that have been done on cache memories is
that the bulk of the cache misses occur while the
operating system is executing [Smit82, Gold93],
and very few studies have included OS traces.

It is worth pointing out that cache memory
studies clearly illustrate the need for trace driven
simulation. Although there are many models in the
literature for program behavior, none purports to
model all of the necessary feamres (effect of line
size, effect of associativity, effect of prefetching,
etc.) of real traces. Even traces of real programs
from standard benchmark sets can fail to be
representative of real workloads [Gee93a]. Traces
of individual programs are also of limited use for
studying large caches, since a substantial fraction of
the misses for large caches are due to task switching
effects (and the corresponding cold starts), and
traces that cross task switch boundaries are seldom
available.

Recently, studies of the design of caches for
multiprocessor systems have become popular. Such
studies were long known to be useful and interest-
ing, but were held up for the lack of suitable mul-
tiprocessor traces. A problem with these studies,
however, is that there does not seem to be a
genuinely representative workload; depending on
how the code is written, performance and behavior
can vary widely [Gee93b,c].

3.3. Other Memory Address Driven Studies

Trace driven simulation of memory systems
was fitst used for studies of main memory paging
(see e.g. [Bela66]). Most such stadies also con-
sidered only miss ratios, although a few timing siu-
dies were also done. These studies looked at issues
such as page size, page replacement algorithm, page
fetch algorithm, etc. An overview of research on
paging appears in {Denn80], although without much
emphasis on TDS. See [Smit78c] for a bibliogra-
phy on paging.

Memory address traces have also been used
to study memory interference in shared memory

.5-

systems [Bask76]. In this case, it was shown that
representing an address stream as randomly
referencing the various memory medules was a
good approximation.

Branch target buffers (BTBs) are caches for
branches (and their targets); they are used in the
ALU to predict when branches will be taken and
what their targets will be. A successful prediction
means that there will be no pipeline "hole.” BTBs
can also be studied using instruction and memory
address traces [Lee84, Perl93].

4. Disk Cache and 1/0 Optimization

The large ratio betweenﬁthe time to do an [/O
and the CPU cycle time (10° or more)} has made
optimization of the I/O system crucial. Many of
these optimization studies have relied on I/O traces.
The use of these traces for I/O smdies is similar to
studies of main and cache memories, but collecting
the traces is quite different. We discuss both in this
section.

In collecting I/O traces, we would like several
types of information, since various types of study
require different data; see [Zhou85, Toua91] for a
discussion of many of these issues. Ideally, we
would like trace records for each open, close, read,
write, rename and file delete evest. In each case,
we'd like to know the owner of the process, the
owner of the file, the process ID, and the time. For
reads and writes, we’d like both the logical (file
name and address within file) and physical (disk
address, cylinder, track and sector) addresses. For
opens, closes, renames, and file deletes, we’d like to
know the file name, size and possibly layout.

There are two general methods to collect the
data described above, The first is to use an existing
trace package if available; the second is to modify
the operating system. In general, trace packages are
not available, but sometimes there exists other types
of tracing facilities which can be pressed into ser-
vice. For example, in IBM mainframes running
MVS and its variants, the GTF (general trace facil-
ity) feature can be used to generate trace records for
all system calls. The problem is that GTF was
designed for debugging and does not generate all of
the necessary information, generates what it does in
inconvenient formats, generates far too much
unneeded information, and causes a high level of
overhead. There is also SMF (system management
facility) data; SMF generates data for many of the
higher level events (e.g. opens, closes, etc.). SMF,
however, was primarily designed for accounting
purposes, and suffers from the same types of flaws
when used for tracing as GTF. Finally, there is the
difficult problem of merging the two types of data;
we discuss the latter issue further below.

The other approach to collecting I/O trace
data is to modify the operating system. There are
two general problems here. First is the general
difficulty involved of obtaining access to the OS

source code, understanding it, modifying it, and
then being able to bring it up on a machine running
a real user workload. The second problem is that
generally, modifications are required throughout the
operating system, because the desired data is not
usually available in one place. For example, by the
time (in the control flow of the OS) that the physical
I/O address is available, the file name, user and log-
ical address are generally unavailable.

A third approach, of limited utility, is to use a
hardware monitor to record the signals between the
CPU and the IO devices. The problem is that those
signals contain only low level information (physical
disk addresses and commands).

Once trace data has been generated, using
either of the first two approaches described above, it
needs to be placed in usable form. That generally
means merging two or more types of trace data (e.g.
SMF/GTF, or physical and logical I/O records).
This merge is greatly complicated by the fact that
there may be no casy way to tie together related
records (matching physical and logical data may not
be easy), and the huge volume of data makes the
programming and logistics very difficult. Once the
data has been merged, it helps to create unique
identifiers for relevant entities (file names, user
names, disk addresses, etc.), which greatly facili-
tates the amalysis. This is all a huge amount of
work. For example, man years were required for
each of the studies described in [Smit85a] and
[ZhouB5] to make the data usable,

A problem with I/O stdies is that the traces
may not be invariant with respect to changes in the
1/0 architecture or operation. Changing the speed
of I/O operations, for example, may change the pro-
cess scheduling in the CPU, and thereby the
sequence of I/O addresses issued.

A variety of studies are possible using 1/O
traces. Disk cache has been studied extensively
(see e.g. [Smit85a]), as has database buffering
[Smit78a)]. Various IO optimizations have been
investigated (see [Smit81a] for a survey), such as
disk arm scheduling, file placement, block size
optimization, etc. More modetn topics such as
RAID disk systems [Katz89] and log-structured file
systems [Rose91] have also been considered.
Traces taken from database systems [Sing94] have
been used to study things such as the behavior of
locking algorithms.

5. File Migration

File migration has to do with the movement
of files between levels of the memory hierarchy
(typically between disk and tape) so as to mainiain
online a large volume of data while using a much
smaller amount of expensive disk. The data neces-
sary for file migration studies is much easier to col-
lect than that for general I/O studies. At most, a
tracc of open events (with file sizes and time
stamps) is sufficient. One can evem do very

-6-

interesting studies given only information, for each
day, as to which files were used that day [Smit81b].
In general, one wants to trace a system with a very
large online file store (disk and/or tape), such that
miss ratios can be calculated for smaller physical
file systems. It would seem difficult to extrapolate
performance for larger file systems than are actually
traced.

6. CPU Scheduling

CPU scheduling is another issue that has been
studied using trace driven scheduling. In an early
study [Sher72], a variety of scheduling algorithms
were compared, using a trace of run time intervals.
Each interval was a period of execution terminated
by some sort of trap or interrapt.

There are three general difficulties with such
scheduling studies. First is collecting the data,
which may require modifying the operating system.
The second is the question about the invariance of
the trace with respect to changes in the scheduling.
Third is the fact that actual operating systems
schedulers make scheduling decisions based on fac-
tors other than run length intervals, such as memory
allocations, resources (disks, tapes, semaphores)
needed, etc. Collecting this additional information
can be difficult, and a simulation to use it could be
very complicated.

7. CPU Pipeline Analysis

Instruction traces are frequentiy used to drive
simulations of CPU pipelines. Such instruction
traces can be gathered using most of the same
methods as were described above for gathering pro-
gram address traces - €.g. the trace trap facility, the
object code modification approach (pixie), the
machine simulator, etc. The purposes of such simu-
lations are twofcld. First, there are studies relating
to performance [Peut76], to measure various types
of pipeline stalls, number of instructions per second,
etc. The second is that of debugging, whereby a
detailed logic simulator for the CPU is driven by an
instruction trace in order to detetmine if there are
any errors in the logic design.

For performance studies of most machines, it
is only necessary to consider instruction sequences
between taken branches [Koba84]. This is because
when a branch occurs, the pipeline is reloaded, and
so the branch is effectively a regeneration point in
the simulation. Note that if branch prediction is
used, the set of sequences that needs to be con-
sidered changes with any change in the branch
prediction methodology.

8. Parallel Simulation

The availability of parallel processors has led
to a number of techniques for running parallel simu-
lations of various ‘aspects of computer systems.
Many of these techniques are specialized, and do
not represent the geperic type of simulation avail-

able in the literature [Chan81, Kona91, Misr86].

For a set associative memory design, separate
processors can be assigned to each simulate a subset
of the sets in the memory [Puza85]. For multipro-
cessor studies, each processor of the simulation
engine can be mapped to one or more processors of
the simulated system [Rein93, Qin94]. In some
cases, it is possible to divide a trace into a number
of sequential segments, with each segment simu-
lated by a separate processor. The issue here is that
of initial conditions, but those can be provided by a
second pass; i.e. the processor using the k’th seg-
ment of the trace generates results contingent on
some unknown initial conditions. Those conditions
are provided when the simulation of the k-1’st seg-
ment is complete (and so on, recursively, back to
segment 1) [Harp931.

There are two general problems with parallel
simulation techniques. First is to find sufficient
parallelism in the system being simulated, or alter-
natively, to find a way (as with the last technique
above) to work around a lack of parallelism. The
second problem is the overhead of communication
between the processors performing the simulation;
this overhead can be the limiting factor in the speed
of the simulation.

9. Conclusions

Trace driven simulation is a very powerful
technique for obtaining valid simulations of systems
in which the workload (the input) is not weil under-
stood and fully characterized. It is the overwhelm-
ingly dominant technique used for studies of com-
puter systems, particularly memory hierarchies. It
is also widely used for debugging digital logic. In
this paper, we have reviewed the principal subjects
of such simufations and have discussed the issues of
trace generation, management and validity.

Bibliography

[Agar86] Anant Agarwal, Richard L. Sites and Mark Horowitz,
“ATNUM: A New Technique for Capturing Address Traces
Using Microcode”’, Technical Report, Digital Equipment Cor-
poration, DEC-TR-415, December, 1985. republished in Proc.
13°th Ann, Int. Symp. on Computer Architecture, Junc 2-5, 1986,
Tokyo, Japan, pp. 119-127.

[Bask76] Forest Baskett and Alan Jay Smith, "Interference in
Multiproceasor Computer Systems with Interleaved Memory”,
Communications of the ACM, 19, 6, June, 1976, pp. 327-334,

[Bela66] L. A. Belady, A Study of Replacement Algerithms for
A Virtnal Storage Computer, IBM Sys. 1., 5, 2, 1966, pp. 78-101,
[Borg90] Anita Borg, R.E. Kessler, and D.W. Wall, "Generation
of Very Long Address Traces", Proc. 17'th ISCA, May, 1990,
pp. 270-281,

[Chan81] .M. Chandy and J. Mista, '‘Asynchronous Distri-
buted Simulation via a of Parallel Computations™,
CACM, 24, 11, Apsil, 1981, pp. 198-206.

fCmel93] Robert Cmelik and David Keppel, "Shade: A Fast
Instruction Set Simulator for Execution Profiling”, Technical
Report UWCSE 93-06-06, Dept. of Computer Science and
Eagincering, University of Washington, Scattle, WA.

[Davi91] Helen Davis, Stephen Goldschmidt, John Hennessy,
“*“Multiprocessor Simulation and Tracing Using Tango", Proc.

1991 Int. Conf. on Parsllel Proc., August, 1991, Penn. State
Univergity, pp. II-99 - II-107.

[Denn80] Peter Denning, *“Working Sets Past and Present™,
IEEETSE, SE-6, 1, January, 1980, pp. 64-84.

[DougB9] Fred Douglis and John Ousterhout, **Log Structured
File Systems", Proc. Compcon, Spring, 1989, Febroary, 1989,
San Francisco, CA, pp. 124-129,

[Dwar93] S. Dwarkadas, L.R. Jump, R. Mukherjec and J.B. Sin-
clair, "Execution Driven Simulation of Shared Memory Mul-
tiproceasors”, Proc. MASCOTS'93, pp. 83-86.

[Flan93] JK. Flanagan, B. E. Nelson, JK. Archibald, K.
Grimsrud, "Incomplele Trace Data and Trace Driven Simula-
tion", Proc. MASCOTS 93, Jeanuary, 1993, San Diego, CA, pp-
203-209.

[Gee93a] Jeffrey Gee, Mark Hill, Dionisios Penvratikatos and
Alan Jay Smith, *"Cache Performance of the SPEC Benchmark
Suite”, IEEE MICRO, 13, 4, August, 1993, pp. 17-27,

[Gee93b] Jeffrey Gee and Alan Jay Smith, **Analysis of Mul-
tiprocessor Memory Reference Behavior™, Technical Repert
UCB/CSD-93-754, June, 1993, to appear, ICCD, 1994.

[Gee93c] Jefirey Gee and Alan Jay Smith, **Absclute and Com-
parative Performance of Cache Consistency Algorithms'* Techn-
ical Report UCB/CSD-93-753, June, 1993, submitted for publi-
_cation.

{Gold93] Stephen Goldschmidt and John L. Hennessy, ‘“The
Accutacy of Trace-Driven Simulations of Multiprocessors”,
Proc. Sigmetrics®93, May, 1993, Santa Clara, CA, pp. 146-157.
[Grim93] K. Grimsrud, J. Archibald, M. Ripley, K. Flanagan,
and B. Nelson, “‘BACH: A Hardware Monitor for Tracing
Microprocessor-based Systems”, Microprocessors and Microsys-
tems, 17, 8, October, 1993, pp. 443-439.

fHatp93] D.T. Harper III and David Tuma, ‘A Paralle]l Algo-
rithm for Cache Miss Ratio Evaluation”, Proc. MASCOTS93,
Janwary, 1993, San Diego, CA, pp- 79-82.

{Hil189] Mark D. Hill and Alan Jay Smith, "Evaluating Associa-
tivity in CPU Caches”, Transactions on Computers,
December, 1989, 38, 12, pp. 1612-1630.

[Katz89] Randy Katz, Garth Gibson and David Patterson, *Disk
System Architectures for High Performance Computing’, Proc.
IEEE, 77, 12, December, 1989, pp. 1842-1858.

[Kona91] Pavios Konas and Pen-chung Yew, ‘‘Paralle]l Discrete
Event Simulation on Shared Memory Multiprocessors”, Techni-
cal Report CSRD 1079, Center for Supercomputing Rescarch and
Development, University of llinois, April, 1951.

[KobaB4] Makoto Kobayshi, " Characteristics of
Loops", IEEETC, C-33, 2, February, 1984, pp. 125-132,

[Lara93] James Larus, "Efficient Program Tracing", IEEE Com-
puter, May, 1993, pp. 52-61.

[Lee84] John K-F Lee and Alan Jay Smith, "Analysis of Branch
Prediction Strategies and Branch Target Buffer Design”,
Comgputer, 17, 1, January, 1984, pp. 6-22.

[Matt70} R, L. Mattson, J. Geesel, D, R. Slutz and . L. Traiger,
"Evaluation Techniques for Storage Hierarchics”, IBM Systems
1., 1970, pp. 78-117.

[Misr86] J. Misra, "Distributed Discrete Event Simuiation"”,
Computing Surveys, 18, 1, March, 1986, pp. 39-65.

[Per!93] Chris Perieberg and Alan Jay Smith, “‘Branch TFarget
Buffer Design and Optimization®’, TREETC, 42, 4, April, 1993,
pr- 396412,

[Peut76] Bernard L. Peuto and Leonard J. Shustek, "An Instruc-
tion Timing Model of CPU Performance”, Proc. 4’th Ann. Symp.
on Computer Arch., March, 1977, pp. 165-178.

(Puza$5] Tom Puzak, “Cache Memory Design”, Ph.D. Thesis,
BECE Dept., University of Massachusetts, 1985.

[Qin94] Xischan Qin and L. Bacr, **A Parallel Trace-driven
Simulator: Implementation and Performance”, Technical Report,
University of Washington, January, 1954,

[Rein93] Steven Reinhardt, Mark Hill, James Larus, Alvin
Lebeck, James Lewis and David Wood, "The Wisconsin Wind
Tunnel: Vistual Prototyping of Parallel Computers”, Proc. Sig-
metrics’93, May, 1993, Santa Clara, CA, pp. 48-60.

[Rose%1] Mendel Rosenblum and John Ousterhout, **The Design
and Implementation of a Log-Structured File System'’, Proc.
13°th SOSP, October, 1991, Asilomar, CA, pp. 1-15. Repub-
lished, ACM TOCS, 10, 1, February, 1992, pp. 26-52.

[Samp89] A.D. Samples, "Mache: No Loss Trace Compaction”,
Proc. 1989 ACM Sigmetrics Conf., pp. 89-97.

[Sher72] Stephen Sherman, Forest Baskett HI and I. C. Browne,
"Trace Driven Modeling and Anatysis of CPU Scheduling in &
Multiprogramming System”, CACM, 15, 12, December, 1972,
pp. 1063-1069.

[Sing94] Vigyan Singhal and Alan Jay Smith, **Characterization
of Contention in Real Relational Databases’ Technical Repert
UCB/CSD-94-801, Computer Science Division, UC Berkeley,
March, 1994. Submitted for publication.

[Smit77] Alan Jay Smith, "Two Methods for the Efficient
Analysis of Memory Address Trace Data”, IEEE Transactions on
Software Engineering, SE-3, 1, January, 1977, pp. 94-101.

[Smit78a] Alan Jay Smith, "Sequentiality and Prefetching in
Data Base Systems", IBM Rescarch Report RY 1743, March 19,
1976, and ACM Transactions on Data Basc Systems, 3, 3, Sep-
tember, 1978, pp. 223-247.

[Smit78b] Alan Jay Smith, "Sequentia] Program Prefetching in
Memory Hierarchies", IEEE Computer, 11, 12, December, 1978,
pp- 7-21.

[Smit78¢] Alan Jay Smith, "Bibliography on Paging and Related
Topics", Operating Systems Review, 12, 4, October, 1978, pp.
39-56.

{SmitS12a] Alan Jay Smith, "Tnput/Output Optimization and Disk
Aschitecture: A Survey”, Performance Evaluation, 1, 2, 1981,
pp- 104-117.

[Smit81b] Alan Jay Smith, "Long Term File Migration:
Devetopment and Evaluation of Algorithms", Communications
of the ACM, 24, 8, August, 1981, pp. 521-532.

[Smit82), "Cache Memorics”, Computing Surveys, 14, 3, Sep-
tember, 1982, pp. 473-530.

ISmit8Sa] Alan Jay Smith, "Disk Cache - Miss Ratio Analysis
and Design Considerations”, ACM Transactions on Computer
Systems, 3, 3, August, 1985, pp. 161-203,

[Smit85b] Alan Jay Smith, "Cache Evaluation and the Jmpact of
Workload Choice”, Proc. §12'th International Symposium on
Computer Axchitecture, June 17-19, 1985, Boston, Mass, pp. 64-
75.

[Smit87] Alan Jay Smith, "Line (Block) Size Selection in CPU
Cache Memories”, IEEE Transactions on Computers, C-36, 9,
September, 1987, pp. 1063-1075.

[Thom87) James Thompson, “Efficient Analysis of Caching
Systems™, Report UCB/CSD 87/374, (Ph.D. Thesis), UC Berke-
ley, October, 1987.

[Thom89] James G. Thompson and Alan Jay Smith, “Efficient
(Stack) Algorithms for Analysis of Write-Back and Sector
Memories'’, January, 1987. ACM Transactions on Computer
Systems, 7, 1, February, 1989, pp. 78-116.

[Toua®1l] Herve Touati and Alan Jay Smith, “‘Reducing and
Manipulating Complex Trace Data’, Software Practice and
Bxperience, 21, 6, June, 1991, pp. 639-655.

[Tec94] John Tse and Alan Jay Smith, "An Accurate, Timing
Based Evaluation of the Utility of Prefetching”, in preparation.

[Zhou85] Songnian Zhou, Herve DnCosta and Alan Jay Smith,
"A File System Tracing Package for Berkeley Unix", Proc. 1985
USENIX Summer Conference, Portland, Oregon, (Hosted by
University of Oregon), Junc 12-14, 1985, pp. 407-419.

