evsrsm SECURITY

Unix and Windows NT securiry
models have their advantages

and disadvantages. Neither ol
offers clearly superior security. |

e

1!

[/ '_l‘ff
e

. N A
Dol :.M.'H

R VI RV R AR
o4y

John Viega and Jeffrey Voas

- The Pros and Cons
of Unix and Windows
Security Policies

upporters frequently tout Windows NT
as being the most secure commercially
available operating system. Others tend
to believe this opinion after hearing of
Unix’s many infamous security vulnerabilities. In
reality, the two operating systems have far more
in common from a security point of view than
people expect. This, then, makes it difficult to hon-
estly assert that NT is more secure than Unix,

By providing a brief introduction to the secu-
rity architectures of Unix and Windows, we hope
to convince readers that both operating systems
have substantial merit from a security point of
view and that neither operating system offers
clearly superior security.

BASIC OPERATING SYSTEM
SECURITY MODELS

Although the security models of Unix and
Windows are Jargely different, they are based on
the same fundamental concepts and concerns.

Two main divisions

To begin, both Unix and NT systems are divided
into user-level code (often called the user space)
and an operating system kernel. Application pro-
grams typically execute in the user space but may
occasionally make a call to the kernel if they need
spectal services. Such services are said to be “run-
ning in kernel space.” Kernels are where operat-
ing system developers typically implement
security policies, which manage access to devices,
files, processes, and objects. Figure 1 shows how
this basic division works.

40 IT Pro September i Oclober 2000

L e —

Interprocess protection

Applications aren’t generally concerned with
how the security is implemented: applications
running in user space simply experience security
restrictions that are implemented in the kernel.
One of the most important of these restrictions is
process space protection. This restriction ensures
that a single process can't directly access the mem-
ory allocated to other processes. In addition. no
process can directly access the memory in use by
the operating system. Thus. the operating system’s
security mechanisms mediate all interprocess
communication.

Interestingly enough. interprocess protection
didn’t exist at all in earlier 16-bit Windows
releases. So it was often possible to change data in
other programs just by exploiting a bug in a sin-
gle program since all programs shared a single
address space.

As part of these user-level protections, processes
are also not allowed to directly access devices
attached to the computer, such as hard drives, video
cards. and so on. Instead. special utilities inside the
kernel (device drivers) act as wrappers/partitions
around these devices. User-level programs must
make calls through the kernel to these device driv-
ers to access hardware subsystems. Most fre-
quently, they make such calls indirectly through a
system call interface. For example, in Unix. devices
appear to the application simply as files on the file
system; the application communicates with the
device by pefformjng file reads and writes.

Microsoft did not originally desipn Windows 95
and 98 to afford the level of process protection

1520-9202/00/510.00 © 2000 IEEE

that more recent operating systems provide,
These product lines are descendants of DOS '
(disk operating system). which Microsoft |
designed when security was not a significant
iSsue—most personal computers were single- |
user devices that did not exist on a network. ;
Although Microsoft has added some highly
desirable functionality to more recent DOS
descendants, they retain certain ingrained
aspects of DOS that make it virtually impos-
sible 1o build hacker-proof security policies.
As a result, these additional features are more
closely tied to improvements in reliability than
1o improvements in security.

EETS——

g s,

Protection inside the kernel

Inside the kernel, there are usually no secu-
rity checks. For example, no mechanisms pro-
tect one part of the kernel from other parts of
the kernel: all kernel parts are explicitly
trusted. This trust is usually extended to code
thatis not part of the operating system but exe-
cutes inside the kernel (such as device drivers).

User
Thus kernels generally do not protect them- space) ruthenticati ,
selves from themselves. If a security defect (Most &b o uthentication access B
. . appsrun © Interprocess
exists in the operating system. anyone able to e communication
exploit that defect can exert complete control space)

over the machine by using appropriate soft-
ware applications. Building self-protecting
kernels is difficult, and self-protection usually

Think of your system and its resources—things like mémury_, :
files, and directories—as the grounds and items within a castle’s

Figure 1. Unix and Windows share
several fundamental concepts in
implementing security policies.

Your system and its resources
(memory, files, and directories)

Security policies

comes at a huge hit to performance, so kernels
are infrequently built this way. Nonetheless,
i some operating systems—such as Unix-based
Trusted Solaris—offer this sort of protection.
To our knowledge, Microsoft does not offer
any such self-protecting kernel for the Win-
dows platform.

* walls. The castle’s walls and the moat represent the security poli- |
cies, which both Unix and Windows implement in the operating

system’s kernel. Among these policies are those for authentica- '

tion and access, which sort of act as the drawbridge to what’s

inside the castle; this drawbridge is the vehicle for interprocess
communication, which is how applications running in user space -
Access a system. Just like the castles of old, the kernel provides -
good protection from intruders outside itself, but not those aris- .

ing from within.

—

Ly

AUTHENTICATION
A basic function of any security system s to

e LR i e et ey i

provide aurhentication. a process which deter-
mines if a user’s login information is valid—that is, if she
is the correct person to have access to the system.
Operating systems provide techniques for securing user
authentication. Such techniques differ from network-based
authentication, which implements security via the program
that provides the network service (though the program
may leverage the operating system’s built-in authentica-
tion mechanism).

Unix system authentication

Most Unix systems base authentication on user names
and passwords. The system keeps a password database
(usually in the file /etc/passwd). Since it is common to use
the same password for muitiple accounts on multiple

*

machines, it is not desirable to let systemn administrators
have access to user passwords. As a result, the database
does not store actual passwords; instead, it stores a cryp-
tographic hash of the password.

Hashing passwords. A hash is simply a one-way trans-
formation of the password into another word. When it
comes time to authenticate a password for a user attempt-
ing to access a machine, the user types in his password,
which the sysiem again hashes in the same manner that it
used to store the password. If the two hashes match, the
system authenticates the user and gives him access.

Unix systems have traditionally used a hashing al gorithm
based on the US government's Data Encryption Standard
{(DES). As a result, Unix systems implement the algorithm

Sepiemnber | October 2000 IT Pro

41

SYSTEM SECURITY

so that it considers only the first eight characters of a pass-
word, discarding the rest. Consequently, attackers can con-
ceptually launch a brute-force attack with a dictionary of all
cight-letter passwords. Such an attack was once infeasible.
Today, with ever-faster hardware and distributed comput-
ing, a brute-force attack is feasible for attackers with suffi-
cient resources. Perhaps in a few years, this kind of attack
will take only a few days using an average desktop PC,
This situation points to the need for
password protection schemes that do
not ignore the extra information. In

Attackers can use

verts all characters to uppercase before transforming them,
Another technical problem with this algorithm is that
passwords are easily broken with brute-force attacks. For
example, running l0phtCrack—a cracker tool—for jittle
more than a week will likely try every password in a data-
base. Further, attackers can use this tool to break into 90
percent or more of those databases within a few hours,
When a Windows-NT-based system is attached to a net-
work, it is susceptible to the same types
of attack as those based on NFS
authentication. However, the defauit

fact,some Unix systems haverecently g ﬂaw in one part of network authentication mechanism in

begun switching to the MDS5 hash
function. which allows arbi trary length
passwords.

Storing passwords, There are also
security issues related to the database
that stores passwords. When a system
uses Unix’s standard Network File

the operating
system to attack
ancther part of the non-Kerberos-enabled machine, the
operating system.

Windows 2000 uses Kerberos. an
encryption technology that helps pre-
vent these types of attacks. Unfor-
tunately, when authenticating to a

protection does not apply. Similarly. if
2 machine without Kerberos tries to

System (NFS) software to maintain its
password database. it is difficult but possible to circumvent
authentication and thus gain access to an individual
machine by controlling network access. The reason such
break-ins are possible is that the NFS protocol does not
provide adequate protection for password information as
It traverses the network. A savvy attacker can forge
responses from an NFS server and gain access even with
an invalid password.

Additional Unix security prevents attackers from keep-
ing a catalog of common passwords that would let them
look up a password based on the resulting hash. This mech-
anism is called a sait. The system chooses random data and
appends it to the front of the password—*salts” the pass-
word—before hashing it. So even if two people have the
same password, the corresponding hashes should be dif-
ferent since each person is likely to have a different salt.

There is one weakness with this scheme: Unix systems
store the salt alongside the password. If attackers have the
password database, they can attempt to hash every pass-
word in a dictionary of common passwords by using a par-
ticular salt. They can then check for matches with the
stored hash. This scenario is another brute-force attack
and is remarkably effective at breaking real passwords in
only hours or days.

Authentication on Windows systems

Windows uses the same concept of password hashing as
Unix. However, the details behind the hashing algorithm
and the hash storage approach are different.

Windows NT employs two different types of hashes. The
one most commonly used is called the LAN Manager pass-
word. System administraters usually use this one because
it interoperates with older systems (such as Windows 95).
Unfortunately, however, this hash is relatively easy to break
because passwords are not case sensitive—the system con-

IT Pro September | October 2000

authenticate to a Windows 2000 ma-
chine, the latter will use traditional. unsecure techniques for
authentication.

ACCESS CONTROL

After a security system authenticates a user, it must typ-
ically enforce certain restrictions or privileges associated
with access to system resources.

Unix access control

Unix differentiates users by assigning them a unique
integer—a UID (user ID). Users can also belong to groups,
which are simply collections of users formed 1o collabo-
rate on projects. Similarly, each group has its own GID
(group ID) identifier,

UID 0is a special integer identifying the user that rules
(administers) the system. This special identifier provides
a user who knows the corresponding password with com-
plete access to the entire machine.

The system assigns all objects within it (including files
and directories) a UID and GID; these identifiers define
who owns what objects. Along with the integers that define
object ownership, the system associates access permissions
with each object; these permissions indicate who can read
from, write to, and execute the object (if it is a program).

Permissions. Each file has three sets of these access per-
missions. The first set identifies the user who owns the file.
The second set defines the group that owas the file. The
third set defines other “non-owner" users that have access
rights granted to them by the owners, The €xception to
these permissions is UID 0, which can perform any oper-
ation on any object.

Typically, when a user executes a program. the system
assigns the executing program and all jts children processes
the UID of the user running the program. This assignment
helps manage access control to system resources. Objects

L

fr= ety ey

are always accessed from running processes Whena process
requests access, the operating system looks at its effective
UID (EUID) to determine whether to grant the request.

Generally speaking, the EUID is the same as the UID
for a specific process. There are exceptions, however—some
programs need access to special resources and can there-
fore change the EUID of a process during runtime to the
UID of the user that owns the executable object. Such pro-
grams are called setuid programs. The owning user must
explicitly mark executable files as setuid for this change to
occur. This operation does not change the real UID asso-
ciated with the process, which can thus return to its original
permissions when special access is no longer necessary.

If the setuid utility contained a security flaw, it would be
possible to run the flawed setuid utility on any system pro-
gram file and gain access to resources that the program’s
owner has access 10. Because setuid programs are usually
owned by UID 0. flaws in them can easily lead to a com-
promise of the entire system.

This is problematic because in practice, attackers com-
monly break into a machine—usually by compromising the
password in some way—using a less privileged account than
UID 0. From there. attackers can exploit broken setuid pro-
grams owned by UID 0 to complete their break-in.

This demonstrates an interesting security problem:
Attackers can use a flaw in one part of the operating sys-
tem to attack another part of the operating system. Today,
some Unix operating systems, such as Trusted Solaris, pro-
vide facilities to protect the operating system from itself.
These operating systems are far better compartmental-
ized, which provides support for protecting one operating
component from another.

Mandartery access control, Such facilities are usually
packaged using a concept called mandatory access control
(MAC), which is not found in all Unix operating systems,
however. Figure 2 illustrates the difference between a typ-
ical operating system and one that employs MAC.

In a typical operating system, if 2 user owns an object
(users can transfer file ownership of files they own, and
UID 0 can arbitrarily set file ownership), that user can
assign other users access to the object without restriction.
Therelore, if a user owns a classified document, nothing
prevents her from sharing the file with people who are not
supposed to access classified information.

MAC solves this problem by introducing security labels
to objects; these labels always propagate across ownership
changes. Trusted operating systems use this function to pre-
~ vent arbitrary operating system components from break-
ing the system security policy in handling objects created
by other parts of the system. For example, Trusted Solaris’s
MAC makes it possible to prevent anything in the operat-
ing system from accessing the disk driver.In a typical oper-
ating system, attackers could circumvent any file protection
mechanism imaginable by tricking any part of the operat-
ing system into running code that directly accesses the disk.

Figure 2. Mandatory access control -
(MAC) lets some Unix systems

provide tighter file security.
File

A

In a typical operating system, if a user owns access -
to a file, she can grant access to whomever she
chooses,

File

S B 4 T 1

hY
\ Security labet

i In an operating system with MAC, a security -
; label—which specifies who has access rights— .
accompanies each object when it changes hands.

Although some Unix variants provide MAC, there are
no versions of Windows NT that implement it. As a con-
sequence, 1o get a system certified as B-level secure under ¢
the US Department of Defense's “Orange Book ™ criteria,
it must not use Windows altogether.

Windows NT access control

Much like Unix, Windows employs the notion of user
IDs that are assigned to both individual users (account sys-
tem IDs or SIDs) and groups (group SIDs). Windows has
other concepts that do not directly map to the Unix model.

Tokens. The first such concept is the token. Windows NT
has several types of tokens. The most important is the
access token—a bit of data held by the machine that estab-
lishes whether or not the system has previously authenti-
cated a particular entity. The access token contains alt
relevant information about the authenticated entity’s capa-
bilities. When deciding whether or not to allow a particu-
lar access to occur, the security infrastructure consults the
access token. :

Another important Windows token is the impersonation
token, which allows an application to use another user’s
security profile. This token affords the same type of func-
tionality as Unix’s setuid programs—for example, imper-

September | October 2000 IT Pro 43

44

SYSTEM SECURITY

——

Figure 3. Windows NT has a -
flexible access permission
structure with several useful
levels of privilege.

P e

i A

Two Unix privilege levels

Guest

X
i
-3
!
v f
oth
- i :
t 3 dr.g Standard
- 6 user
%
il Standard
g user
E
@
E

! Four Windows priviiege levels

sonation has to be explicitly enabled for an application—
but is implemented quite differently.

Basic security artributes. A second important concept
in the Windows access control model is security attributes,
which the system generally stores in access tokens. These
attributes specify privileges that entities can be granted
access to; system administrators use them for many pur-
poses, such as recording whether the system can transfer
particular rights to other users.

One of the most noteworthy differences between access
control in NT and in Unix is that NT generally offers more
granular privileges. For example, NT implements the right
to transfer file ownership as a separate attribute; on a Unix
system, file transfer rights are implicit in the notion of own-
ership.

File permissions. Similarly, file permissions are far more
granular in Windows NT than for Unix systems. In NT, per-
missions are composed of a set of basic capabilities—such
as the ability to read or the ability to transfer ownership.
Unix provides only read, write, and execute permissions.

Windows NT offers four “standard™ permissions although
the system can create an arbitrary number. No access is one
standard permission; it affords a user no access whatsoever
to a resource. In fact, the system may not ¢ven query exter-
nal attributes such as“size of file” for this level of permission.

The second standard permission is read access, which
enables three capabilities:

» querying basic file attributes,
» reading data in the file, and
» executing the file.

Change access is the next step beyond read access;it adds
the ability to modify and delete files as well as the ability

IT Pra Seplember | October 2000

to display ownership and permission information.

The final default permission is full control. The next step
beyond change access. it provides the ability to change file
permissions and to take ownership of a file.

One final security feature of the Windows NT file access
mechanism that differs prominently from that of standard
Unix is the access control list {ACL). Whereas Unix oper-
ating systems usually implement access control by speci-
fying properties on an “owner, group. other” basis, NT
again provides finer grained control.

Along with each entity protected by access control. the
operating system stores an ACL—a list of users and groups
with associated capabilities. For example. if you wanted to
work on a collaborative project with Alice, Bob,and Chris,
you could give Alice full access to all the files that belong
to the project, while Bob would only have change access to
those files. And you could also limit Chris’s change access
rights to a subset of the files. For other files, you could give
Chris no access.

In contrast, traditional Unix systems do not offer such
sharing, You would need to put the files under group own-
ership; place Alice, Bob, and Chris into a group: and give
them all equal access to the files. So in short, Windows NT
offers arbitrary fiexibility without having to use the notion
of a group.

NT has seven default directory permissions. Unix has
only three: read, write, and execute.

Other permissions. Another significant advantage of the
NT permission model is that the permissions structure is
not as “flat” as that of Unix. In a Unix system, UID 0 must
own most interesting services (such as network services)
because the kernel owns the most powerful capabilities.
Unix also doesn’t have UIDs more privileged than the aver-
age user but less privileged than UTD 0. In other words,
Unix offers “all or nothing™ privilege for access requests
that are not related to file access. So you can either run code
in the kernel {(and thus access the object) or you cannot.
Such a scheme enforces a good security practice: Always
grant the minimum privilege necessary to complete a task.

Windows NT does not have the same privilege limita-
tions inherent in most Unix systems. NT breaks the privi-
lege structure into four types, as shown in Figure 3:

*

standard,

administrator (a sort of “super user” status),

guest (similar to a standard permission but theoretically
more restricted), and

* gperator.

NT's administrator status is just as dangerous as Unix’s
UID 0, but the privilege type that sets NT far apart from
Unix is the operator, which defines useful subsets of admin-
istrator privilege. An example is the print operator, which
lets a service perform printer management tasks. The print
operator privilege has only limited file access: It permits

only «
Cons.
print
ona.
N1
does
only
porz
type
In
righ: .
calhy
still
the
mer,
acce

THE

ace.
0ne
bee
e
acc

o

only file writes and deletes 1o a single spool directory.
Consequently, if attackers break into a program and gbtain
Prini operator access, they can damage the file system only
on a single spool directory.

NT Server makes better use of the operator type than
does NT Workstation. Machines runnin 2 Workstation use
only two operator types, which by necessity must incor-
porate—and hence, mix up—many
types of functionality.

In Windows 2000, the granularity of
rights assignment increases dramati-
cally. Although the administrator user
still exists by default, refinements to
the Windows 2000 privilege assign-
ment scheme makes an administrator

A single virus
will have a harder
time infecting all

Unix systems.

will have a harder time infecting all Unix Systems since Unix
Operating environments often vary drastically.

OTHER CONSIDERATIONS

The single most widespread cause of security problems in
the past three years is buffer overflow. Buffer overfiows are
as easy to write for Windows NT as they are for Unix. The
core problem is that C does not check
buffer boundaries, so you cannot
blame operating systems for this situ-
ation.

A final difference that we should
menticn is that Windows’s source
code is not publicly available (as is
that for Unix). Thus, fewer people are

account unnecessary.,

THE THREAT FROM REMOTE ATTACKS

Having multiple users requires some sort of remote
access (after all, only one person can sit before a PC at
once). The problems created by remote access have long
been an Achilles’ heel for Unix. Many of Unix’s infamous
security problems have occurred when it allowed improper
access to remote, authenticated users.

In contrast, Windows was not designed as a multiuser
operating system. While NT supports multiuser access,
most machines running Windows support only 2 single user
at a time, sitting at one machine,

For these reasons the Windows design reflects much less
concerit for inappropriate. remote access by, for instance,
local users raising their privilege. Its designers were much
more concerned with attackers breaking into a machine
without an account. This emphasis occurs because local
users generally have hardware access. A skilled attacker
can take over a machine with hardware access alone and
doso fairly easily; there’s no need to exploit software flaws,

Another security concern with remote access is the
threat posed by malicious mobile code. This problem
received a lot of media attention, especially after the
Melissa epidemic and, more recently, the I Love You virus.
This type of virus is a significant problem for Windows
architectures but it has not affected Unix machines what-
soever. The problem these viruses exploit is that Windows
e-mail applications are easier to trick into running code
that is part of an e-mail message.

Further, Windows-based mailers make it simpler for
users to run code inside an e-mail message. It usually boils
down to a single mouse click whereas in Unix. a user would
have to perform many tasks to do the same.

Windows’s lack of diversity in its product architecture also
plays arole here. Today, Windows has essentially one e-mail
application: Outlook. Therefore, a Windows virus can quickiy
execute a script that reads Outlook’s address book on NT
machines. But in Unix. there are dozens of popular mailers,
and address books are less common. Therefore, a single virus

looking for problems in its source
code. As we all know, source code inspections are a good
way to find problems, but nothing prevents “bad guys”
from aiso using source access to find security problems. On
the other hand, source code availability or lack thereof
never stops clever hackers: They simply reverse engineer
the code and break it just as if the source had been avail-
able.

ou should now realize that both Unix and Windows

NT have their advantages and disadvantages. NT’s

biggest shortcomings tend to be poor user authenti-
cation, a susceptibility to malicious mobile code, and the
fact that mandatory access control is impossible. For Unix,
the biggest shortcoming tends to be its inflexible privilege
system.

In summary, do not rely on an operating system as your
sole line of defense. While both Unix and Windows employ
reasonable security models, neither is sufficient. It is up to
you to keep abreast of security-related press releases and
newly released patches. By being aware of your security
risks and state-of-the-art tools for mitigating those risks,
you will be as well equipped as possible to fight these ever-
present dangers. ll

John Viega is a software security consultant at Cigital (for-
merly Reliable Software Technologies) in Dulles, Va. Con-
tact him at jviega@cigital.com.

Jeffrey Voas is chief scientist at Cigital. Contact him at
voas@cigital.com.

o

e

. September [October 200¢ IT Pro 45 .

