Cs162
Operating Systems and
Systems Programming
Lecture 2

History of the World Parts 1—5
Operating Systems Structures

August 31, 2005
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: What does an Operating System do?

+ Silerschatz and Gavin:
“An OS is Similar to a government”

- Begs the question: does a government do anything useful by
itself?

+ Coordinator and Traffic Cop:
- Manages all resources
- Settles conflicting requests for resources

- Prevent errors and improper use of the computer
+ Facilitator:

- Provides facilities that everyone needs
- Standard Libraries, Windowing systems

- Make application programming easier, faster, less error-prone
+ Some features reflect both tasks:

- E.g. File system is needed by everyone (Facilitator)
- But File system must be Protected (Traffic Cop)

8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.2

Review: Virtual Machine Abstraction

Application

Virtual Machine Interface

Operating System

Physical Machine Interface
Hardware

+ Software Engineering Problem:

- Turn hardware/software quirks =
what programmers want/need

- Optimize for convenience, utilization, security,
reliability, etc..

* For Any OS area (e.g. file systems, virtual memory,
networking, scheduling):

- What's the hardware interface? (physical reality)
- What's the application interface? (nicer abstraction)
8/31/05 Kubiatowicz CS5162 ©UCB Fall 2005 Lec 2.3

Review: Example of Address Translation

Code Data 2 Code
Data Stack 1 Data
Heap Heap 1 Heap
Stack Code 1 Stack
Stack 2
Prog 1 Prog 2
Virtual Data 1 Virtual
Address Heap 2 Address
Space 1 Code 2 Space 2
/ OS code \
Translation Map 1 OS data | Translation Map 2
OS heap &
Stacks

Plgxsical Address Sgace

8/31/05 iatowicz €CS162 ©UCB Fall 2005 Lec 2.4

Review: Dual Mode Operation

* Hardware provides at least two modes:
- "Kernel” mode (or “supervisor” or “protected”)
- "User” mode: Normal programs executed

+ Some instructions/ops prohibited in user mode:
- Example: cannot modify page tables in user mode

» Attempt to modify = Exception generated

+ Transitions from user mode to kernel mode:

- System Calls, Interrupts, Other exceptions

user process

| user pracess executing —n{ calls system call |

| refurn from system call |

\

user mode
(mode bit = 1

r 4

kernel

LY
trap
mode bit=0

return

mode bit = 1

kernel mode

Goals for Today

+ History of Operating Systems

- Really a history of resource-driven choices
 Operating Systems Structures
- Operating Systems Organizations

Note: Some slides and/or pictures in the following are

y :
| execute system cal GRCUE =0 adapted from slides ©2005 Silberschatz, Galvin, and Gagne
8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.5 8/31/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 2.6
. Dawn of time
Moore’s law change ENIAC: (1945—1955)
TN | T s
1981 2005 Factor
CPU MHz, 10 3800 380
Cycles/inst 3—10 |0.25—-0.5 6—40
DRAM capacity | 128KB 468 32,768
Disk capacity 10MB 1TB 100,000
Net bandwidth | 9600 b/s| 1 6b/s 110,000
addr bits 16 32 2 i
#users/machine| 10s <1 <0.1 * “The machine designed by Drs. Eckert and Mauchly
) was a monstrosity. When it was finished, the
Price $25,000 | $4,000 0.2 ENIAC filled an entire room, weighed thirty tons,

Typical academic computer 1981 vs 2005

8/31/05

Kubiatowicz CS162 ©UCB Fall 2005

Lec 2.7

and consumed two hundred kilowatts of power."”
* http://ei.cs.vt.edu/~history/ENIAC.Richey. HTML

8/31/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 2.8

History Phase 1 (1948—1970)
Hardware Expensive, Humans Cheap Core Memories (1950s & 60s)

* When computers cost millions of $'s, optimize for
more efficient use of the hardware!

- Lack of interaction between user and computer

The first magnetic core
memory, from the IBM 405
Alphabetical Accounting
Machine.

- User at console: one user at a time
+ Batch monitor: load program, run, print

+ Optimize to better use hardware
- When user thinking at console, computer idle=BAD!
- Feed computer batches and make users wait - Iron “cores” woven into a 2-dimensional mesh of wires
- Autograder for this course is similar - Origin of the ferm “Dump Core"

* No protection: what if batch program has bug? - Rumor that IBM consulted Life Saver company

: See: http://www.columbia.edu/acis/history/core.html

- Core Memory stored data as magnetization in iron rings

8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.9 8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.10

History Phase 13 (late 60s/early 70s) A Multics System (Circa 1976)

* Data channels, Interrupts: overlap I/0 and compute
- DMA - Direct Memory Access for I/0 devices
- I/0 can be completed asynchronously
*+ Multiprogramming: several programs run simultaneously
- Small jobs not delayed by large jobs
- More overlap between I/0 and CPU
- Need memory protection between programs and/or OS
+ Complexity gets out of hand:

- Multics: announced in 1963, ran in 1969 - --x_ﬁx\\ A
» www.multicians.org lists 1777 people who "contributed to —— &
Multics”. Probably 30-40 core dgvelopers. * The 6180 at MIT IPC, skin doors open, circa 1976:
» Turing award lecture from Fernando Corbatd (key - “We usually ran the machine with doors open so the
researcher): "On building systems that will fail operators could see the AQ register display, which
- OS 360: released with 1000 known bugs (APARs) gave you an idea of the machine load, and for
» “Anomalous Program Activity Report” convenient access to the EXECUTE button, which the
- OS finally becomes and important science: oper’c‘ngr"would push to enter BOS if the machine
~ How to dea| with complexity?2? . h'rtcr'a/s/;w;fv multicians.org/multics-stories.html
8/31/65UNIX based O'kuﬁ\gm&scgg;c%ﬁgx Z%I({!)‘phfled Lec 2.11 8/31/05 P ’ Kubia'rowicz.CSI?Z ©UCB Fall 2005 ’ Lec 2.12

Early Disk History

Model 3340 hard disk Model 3370
1979

7.7 ﬁ
2,300 R - ----—"'-.~"—‘-- ;‘_.‘

1973: 1979:
1. 7 Mbit/sq. in 7.7 Mbit/sq. in
140 MBytes 2,300 MBytes

source: New York Times, 2/23/98, page C3,
“Makers of disk drives crowd even more data into even smaller spaces”

8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.13

History Phase 2 (1970 - 1985)
Hardware Cheaper, Humans Expensive

+ Computers available for tens of thousands of dollars
instead of millions

+ OS Technology maturing/stabilizing
+ Interactive timesharing:

- Use cheap terminals (~$1000) to let multiple users
interact with the system at the same time

- Sacrifice CPU time to get better response time
- Users do debugging, editing, and email online

* Problem: Thrashing
- Performance very non-linear

response with load o g
- Thrashing caused by many 33
factors including 3
» Swapping, queueing
Users
8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.14

Administriva: Time for Project Signup

* Project Signup:
- The group signup page is now working
- Only submit once per group!

- Everyone in group must have logged into their cs162-xx
accounts before you register the group

- Make sure that you select at least 2 potential sections
- Due date: Wednesday 9/7 by 11:59pm
+ Next week, go to your pre-assigned section

Section Time Location TA

. . 310 Hearst ..

101 Tu 1:00-2:00P Mining Dominic

102 | W 10:00-11:00A 2 Evans Rajesh

103 W 11:00-12:00P 85 Evans Rajesh

104 W 1:00-2:00P 85 Evans Chris

105 W 2:00-3:00P 85 Evans Chris

8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.15

Administrivia (2)

+ Cs162-xx accounts:

- Make sure you got an account form
- If you haven't logged in yet, you need to do so

+ Clarification of late policy:

- I need to enforce the midnight deadlines

* Nachos readers:

- Available Friday from Northside Copy Central
- Includes printouts of all of the code

- Book Status:

- Campus bookstore is out of the books - new shipment
scheduled next week

- Ned's has 19 of the Silbershatz books and one used copy of
the Free BSD book

+ Web cast archives available off lectures page

- Just click on the title of a lecture for webcast
- Only works for lectures that I have already given!

8/31/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 2.16

History Phase 3 (1981—)
Hardware Very Cheap, Humans Very Expensive

- Computer costs $1K, Programmer costs $100K/year

- If you can make someone 1% more efficient by giving
them a computer, it's worth it!

- Use computers to make people more efficient
* Personal computing:
- Computers cheap, so give everyone a PC
* Limited Hardware Resources Initially:
- OS becomes a subroutine library
- One application at a time (MSDOS, CP/M, ..)
- Eventually PCs become powerful:
- OS regains all the complexity of a "big”" OS
- multiprogramming, memory protection, etc (NT,05/2)

* Question: As hardware gets cheaper does need for
OS go away?

8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.17

History Phase 3 (con't)
Graphical User Interfaces

+ €S160 = All about GUIs
+ Xerox Star: 1981

- Originally a research
project (Al'ro)

- First “mice”, “windows”
- Apple Lisa/Machintosh: 1984
- "Look and Feel” suit 1988
* Microsoft Windows:
- Win 1.0 (1985) Single
- Win 3.1 (1990) Level
- Win 95 (1995)
- Win NT (1993) HAL/Protection
- Win 2000 (2000)| HAL/
- Win XP (2001) Full Prot

JD4S X0J2X

1°€ SMopuIm

8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.18

History Phase 4 (1989—): Distributed Systems

* Networking (Local Area Networking)
- Different machines share resources
- Printers, File Servers, Web Servers
- Client - Server Model

- Services
- Computing
- File Storage
‘ client l | client ‘ | client |
| | | | network
server
8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.19

History Phase 5 (1995—): Mobile Systems

+ Ubiquitous Mobile Devices
- Laptops, PDAs, phones
- Small, portable, and inexpensive
» Recently twice as many smart phones as PDAs
» Many computers/person!

- Limited capabilities (memory, CPU, power, etc..)
* Wireless/Wide Area Networking
- Leveraging the infrastructure
- Huge distributed pool of resources extend devices

- Traditional computers split into pieces. Wireless
keyboards/mice, CPU distributed, storage remote

* Peer-to-peer systems
- Many devices with equal responsibilities work together
- Components of "Operating System” spread across globe
8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.20

8/31/05

CITRIS's Model:
A Societal Scale Information System

Center for Information
Technology Research in the
Interest of Society

The Network is the OS

- Functionality spread
throughout network

Kubiatowicz €S162 ©UCB Fall 2005

Lec 2.21

Moore's Law Reprise: My new X41 tablet

1981 2005 2005 Laptop
CPU MHz, 10 3800 1500
Cycles/inst 3—10 |0.25—0.5 0.25—0.5

DRAM capacity | 128KB 4GB 1.568B

Disk capacity 10MB 1TB 60GB
Net bandwidth | 9600 b/s | 1 6b/s | 1 6b/s (wired)
54 Mb/s (wireless)
2 Mb/s (wide-area)
addr bits 16 32 32
#users/machine 10s <1 <%
Price $25,000 | $4,000 $2000

8/31/05

Kubiatowicz €S162 ©UCB Fall 2005

Lec 2.22

Migration of Operating-System Concepts and Features

8/31/05

1950 1960 18970 1980 1990 2000
) MULTICS
mainframes <
compilers time \ distributed
software shared multiuser systems
batch multiprocessor
resit_den! joiprked fault tolerant
monitors
G UNIX
minicomputers
no compilers
e time multiuser multiprocessor
resident shared . fault tolerant
monitors 5
clustered
UNIX
desktop comp - \
no compilers
fty i multip
mulliuser p3iworked
NI
handheld computers \'U 2
compilers no
software
interactive
networked

Kubiatowicz €S5162 ©UCB Fall 2005

Lec 2.23

8/31/05

Compare: Performance Trends (from €S152)

Supercomputers
Mainframes
Minicomputers

Microprocessors

Log of Performance

T T T T T T Year
1970 1975 1980 1985 1990 1995

Kubiatowicz CS162 ©UCB Fall 2005

Lec 2.24

History of OS: Summary

* Change is continuous and OSs should adapt
- Not: look how stupid batch processing was
- But: Made sense at the time
+ Situation today is much like the late 60s
- Small OS: 100K lines
- Large OS: 10M lines (5M for the browser!)
- 100-1000 people-years
+ Complexity still reigns
- NT under development from early 90's to late 90's
» Still doesn't work very well
- Jury still out on Windows 2000/XP
- Windows “Longhorn” delayed many times
» Latest release date of 2006+
» Promised by removing some of the intended technology
+ €5162: understand OSs to simplify them

8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.25

Now for a quick tour of OS Structures

8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.26

Operating Systems Components
(What are the pieces of the OS)

* Process Management

* Main-Memory Management
- I/0 System management

- File Management

* Networking

* User Interfaces

8/31/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 2.27

Operating System Services
(What things does the OS do?)
+ Services that (more-or-less) map onto components
- Program execution
» How do you execute concurrent sequences of instructions?
- I/0 operations
» Standardized interfaces to extremely diverse devices
- File system manipulation
» How do you read/write/preserve files?
» Looming concern: How do you even find files???
- Communications
» Networking protocols/Interface with CyberSpace?
* Cross-cutting capabilities
- Error detection & recovery
- Resource allocation
- Accounting
- Protection

8/31/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 2.28

System Calls (What is the APT)

- See Chapter 2 of 7t edition or Chapter 3 of 6t

I ==V = B
< user application TN
e
R
open ()
user
mode | -
1 system call interface ‘
kernel
mode A
| open ()
‘ Implementation
i = » ofopen()
system call
return
8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.29

Operating Systems Structure
(What is the organizational Principle?)

- Simple

- Only one or two levels of code
- Layered

- Lower levels independent of upper levels
* Microkernel

- OS built from many user-level processes

* Modular
- Core kernel with Dynamically loadable modules

8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.30

Simple Structure

* MS-DOS - written to provide the most functionality
in the least space

- Not divided into modules
- Interfaces and levels of functionality not well

separated
application program »

resident system program

MS-DOS device drivers|

ROM BIOS device drivers

8/31/05 Kubiatowicz €S5162 ©UCB Fall 2005 Lec 2.31

UNIX: Also "Simple” Structure

+ UNIX - limited by hardware functionality

+ Original UNIX operating system consists of two
separable parts:
- Systems programs
- The kernel

» Consists of everything below the system-call
interface and above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system
functions:

» Many interacting functions for one level

8/31/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 2.32

UNIX System Structure

Layered Structure

Operating system is divided many layers (levels)
- Each built on top of lower layers

- Bottom layer (layer O) is hardware
- Highest layer (layer N) is the user interface

* Each layer uses functions (operations) and services of
only lower-level layers

- Advantage: modularity = Easier debugging/Maintenance
- Not always fosmble Does process scheduler lie above or
below virtual memory layer:

» Need to reschedule processor while waiting for paging
» May need to page in information about tasks

Important: Machine-dependent vs independent layers
- Easier migration between platforms

- Easier evolution of hardware platform
- Good idea for you as well!

8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.34

Applications (the users)
User Mode —— =
o shells and commands
Standard Libs compilers and interpreters
system libraries
system-call interface to the kernel
i signals terminal file system CPU scheduling
Kernel Mode | ¢ handling swapping block /O page replacement
2 character /O system system demand paging
terminal drivers disk and tape drivers virtual memory
kernel interface to the hardware
terminal controllers device controllers memory controllers
Hardware terminals disks and tapes physical memory
8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.33
Layered Operating System
B layer N
user interface
> . s \
. ey ., N
4 - e . \\.
layer 1 N k. \
I.".I / f —— \'\\ \"\‘ \.
III f I.l". \'\I II !
[‘ [layer0 | !
| | { hardware] J |
I". ll' \ A / / |
L I'\ A £ _r' .-'
\ \ y / /
\ .) Vi /__,
b o . 4
\ - /// '
8/31/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 2.35

Microkernel Structure

Moves as much from the kernel into “user” space
- Small core OS running at kernel level

- OS Services built from many independent user-level
processes

Communication between modules with message passing
* Benefits:

- Easier to extend a microkernel

- Easier to port OS to new architectures

- More reliable (less code is running in kernel mode)

- Fault Isolation (parts of kernel protected from other
parts)

- More secure
Detriments:

- Performance overhead severe for naive implementation
8/31/05

Kubiatowicz CS162 ©UCB Fall 2005 Lec 2.36

Modules-based Structure

* Most modern operating systems implement modules
- Uses object-oriented approach
- Each core component is separate
- Each talks to the others over known interfaces
- Each is loadable as needed within the kernel
* Overall, similar to layers but with more flexible

device and
bus drivers

miscellaneous
modules

scheduling
classes

core Solaris
kernel

STREAMS
modules

loadable
system calls

executable
formats

8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.37

Operating System Design Goals
(What is this OS trying to achieve?)
- $2000 price point?
- Fault tolerance/Fast failover/High Availability?
* High Performance?
* Real Time Capable?

8/31/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 2.38

Implementation Issues
(How is the OS implemented?)

* Policy vs. Mechanism

- Policy: What do you want to do?

- Mechanism: How are you going to do it?

- Should be separated, since policies change
+ Algorithms used

- Linear, Tree-based, Log Structured, etc..
- Event models used

- threads vs event loops
* Backward compatability issues

- Very important for Windows 2000
- System generation/configuration

- How to make generic OS fit on specific hardware

8/31/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 2.39

Conclusion

* Rapid Change in Hardware Leads to changing OS

- Batch = Multiprogramming = Timeshare =
6raphical UL = Ubiquitous Devices =
Cyberspace/Metaverse/??

- OS features migrated from mainframes = PCs
+ Standard Components and Services

- Process Control

- Main Memory

- I/0

- File System

-Ur
* Policy vs Mechanism

- Crucial division: not always properly separated!
+ Complexity is always out of control

- However, “"Resistance is NOT Useless!”

8/31/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 2.40

