CS162
Operating Systems and
Systems Programming
Lecture 4

Thread Dispatching

September 12, 2005
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Recall: Modern Process with Multiple Threads

* Process: Operating system abstraction to represent
what is needed to run a single, multithreaded
program

+ Two parts:

- Multiple Threads

» Each thread is a single, sequential stream of execution
- Protected Resources:

» Main Memory State (contents of Address Space)

» I/O state (i.e. file descriptors)

* Why separate the concept of a thread from that of
a process?

- Discuss the "thread” part of a process (concurrency)
- Separate from the “address space” (Protection)
- Heavyweight Process = Process with one thread

9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.2

Recall: Single and Multithreaded Processes

| code || data H files | | code || data || files |

|registers] [ stack | Iregistersl |reglsters] [regisiers]

| stack || stack ” stack |

thread ——= (g ; ; g-—— thread

single-threaded process multithreaded process

* Threads encapsulate concurrency
- "Active” component of a process
* Address spaces encapsulate protection
- Keeps buggy program from trashing the system

- "Passive” component of a process
9/12/05 Kubiatowicz €S5162 ©UCB Fall 2005

Lec 4.3

Recall: Classification

# of addr
spaces

# threads One Many
Per AS:
One MS/DOS, early Traditional UNIX

Macintosh

Embedded systems Mach, 0S/2, Linux

Man (6eoworks, VxWorks, Windows 95???
Y Java0Ss, etc) Win NT to XP.

JavaOs, Pilot(PC) | solaris, HP-UX, OS X
* Real operating systems have either
- One or many address spaces
- One or many threads per address space
- Did Windows 95/98/ME have real memory protection?
- No: Users could overwrite process tables/System DLLs
9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.4




Goals for Today

* Further Understanding Threads
* Thread Dispatching
- Beginnings of Thread Scheduling

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.5

Recall: Execution Stack Example

. A: tmp=1
Alint tmp) { ret=exit

if (tmp<2)

. s B: ret=A+2

B();

printf (tmp) ; C: ret=b+1
} A: tmp=2
B() { S'rack > ret=C+1

Pointer

c();
} Stack Growth
cO {

A2); - Stack holds temporary results
} + Permits recursive execution
A1) * Crucial to modern languages

9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.6

MIPS: Software conventions for Registers

0 . zero constant O 16
1 at reserved for assembler ... (callee must save)
2 v0 expression evaluation & 23
3 vl function results 24 t8 temporary (cont'd)
4 a0 arguments 25 t9
5 al 26 kO reserved for OS kernel
6 a2 27 ki ' ' '
7 a3 28 gp Pointerto global area
8 tO temporary: caller saves 29 sp Stack pointer
30 fp frame pointer
15 t7 31 ra  Return Address (HW)

+ Before calling procedure: - After return, assume
- Save caller-saves regs - Callee-saves reg OK

- Save VO, vi - gp,sp.fp OK (restored!)
- Save ra - Other things trashed
9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.7

Single-Threaded Example

 Imagine the following C program:

main () {
ComputePI (“pi.txt”);
PrintClassList(“clist.text”);

* What is the behavior here?
- Program would never print out class list
- Why? ComputePI would never finish

9/12/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 4.8




Use of Threads
* Version of program with Threads:

main() {
CreateThread (ComputePI (“pi.txt”));
CreateThread (PrintClassList(“clist.text”));

}

* What does “"CreateThread” do?
- Start independent thread running given procedure

* What is the behavior here?
- Now, you would actually see the class list
- This should behave as if there are two separate CPUs

CPU1  CPU2 CPU1 CPU2 CPU1 CPU2

9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.9

Memory Footprint of Two-Thread Example

- If we stopped this program and examined it with a
debugger, we would see

- Two sets of CPU registers Stack 1
- Two sets of Stacks )

* Questions:
- How do we position stacks relative to Stack 2

each other? {

- What maximum size should we choose
for the stacks?

- What happens if threads violate this?
- How might you catch violations?

2o0dg ssaJppy

Global Data

Code

9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.10

Per Thread State

- Each Thread has a Thread Control Block (TCB)

- Execution State: CPU registers, program counter,
pointer to stack

- Scheduling info: State (more later), priority, CPU time

- Accounting Info

- Various Pointers (for implementing scheduling queues)

- Pointer to enclosing process? (PCB)?

- Etc (add stuff as you find a need)
* In Nachos: "Thread” is a class that includes the TCB
+ OS Keeps track of TCBs in protected memory

- In Array, or Linked List, or ..

9/12/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 4.11

Lifecycle of a Thread (or Process)

admitted interrupt exi { terminated )

scheduler dispatch

IO or event completion 1/O or event wait

waiting

* As a thread executes, it changes state:
- new: The thread is being created
- ready: The thread is waiting to run
- running: Instructions are being executed
- waiting: Thread waiting for some event to occur
- terminated: The thread has finished execution
+ “Active” threads are represented by their TCBs

- TCBs organized into queues based on their state
9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.12




Ready Queue And Various I/0 Device Queues

*+ Thread not running = TCB is in some scheduler queue
- Separate queue for each device/signal/condition
- Each queue can have a different scheduler policy

Ready | Head Link Link Link —
Queue Tail Registers Registers Registers| =
Other Other Other
Tape Head [T State State State
Unit o R = TCB, TCB, TCB,,
D':Sk Head Link Link ]
Unit O Tail Registers Registers| =
Other Other
Disk Head L State State
Unit 2 Tail __l_T TCB, TCB,
Ether [ Head 7R ".i"r L
. egisters -
Netwk O [ Til e
State
TCB,
9/12/05 KUBTaTowicz €S162 ©UCB Fall 2005 Lec 4.13

Administrivia
+ Group assignments now posfed on website
- Check out the “"Group/Section Assignment” link
- Please attend your newly assigned section
* Nachos readers:
- Available from Northside Copy Central
- Includes printouts of all of the code
* Warning: you will be prompted for a passphrase
- We need to autogenerate ssh keys for you
- When prompted for a pass phrase, don't forget it!
- This is needed for group collaboration tools
* Not everyone has run the register program!

- This should happen automatically when you login, but
you need to avoid hitting control-C

* Time to start Project 1
- 60 to Nachos page and start reading up

- Start reading fhrough the Nachos code (reader)
9/12/05 Kubiatowltz €S162 ©UCB Fall 2005 Lec

4.14

Asside: Implementation Java OS
* Many threads, one Address Space
* Why another OS?
- Recommended Minimum memory sizes:
» UNIX + X Windows: 32MB
» Windows 98: 16-32MB
» Windows NT: 32-64MB Java APPS

» Windows 2000/XP: 64-128MB -

- What if want a cheap network
point-of -sale computer?
» Say need 1000 terminals Hardware
» Want < 8MB

* What language to write this OS in?

- C/C++/ASM? Not terribly high-level.
Hard to debug.

- Java/Lisp? Not quite sufficient - need

direct access to HW/memory management
9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.15

Java OS
Structure

Dispatch Loop

+ Conceptually, the dispatching loop of the operating system
looks as follows:

Loop {
RunThread () ;
ChooseNextThread() ;
SaveStateOfCPU(curTCB) ;
LoadStateO£fCPU (newTCB) ;

}

- This is an infinite loop
- One could argue that this is all that the OS does
+ Should we ever exit this loop???
- When would that be?
- Emergency crash of operating system called “"panic ()"

9/12/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 4.16




Running a thread

Consider first portion: RunThread/()

* How do I run a thread?
- Load its state (registers, PC, stack pointer) into CPU
- Load environment (virtual memory space, etc)
- Jump to the PC

* How does the dispatcher get control back?

- Internal events: thread returns control voluntarily
- External events: thread gets prempted

9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.17

Internal Events

* Blocking on I/0

- The act of requesting I/0 implicitly yields the CPU
* Waiting on a "signal” from other thread

- Thread asks to wait and thus yields the CPU
- Thread executes a yield()

- Thread volunteers to give up CPU

computePI() {
while (TRUE) {
ComputeNextDigit () ;
yield () ;

9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.18

Stack for Yielding Thread

ComputePL

yield
Trap to OS C

yimoub o015

* How do we run a new thread?
run_new thread() {
newThread = PickNewThread() ;
switch(curThread, newThread) ;
ThreadHouseKeeping () ; /* next Lecture */

}
* How does dispatcher switch to a new thread?
- Save anything next thread may trash: PC, regs, stack

- Maintain isolation for each thread
9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.19

What do the stacks look like?

+ Consider the following

code blocks:
proc A() { Thread S Thread T
B () H - A A
E 1 .
} e B(while) B (while)
(S)]
proc B() { é yield yield
while (TRUE) { &
yield () ;
}
}

* Suppose we have 2
threads:

- Threads Sand T

9/12/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 4.20




Saving/Restoring state (often called “"Context Switch)
Switch (tCur, tNew) {
/* Unload old thread */
TCB[tCur] .regs.r7 = CPU.r7;

TCB[tCur] .regs.r0 = CPU.r0;
TCB[tCur] .regs.sp = CPU.sp;
TCB[tCur] .regs.retpc = CPU.retpc; /*return addr*/

/* Load and execute new thread */
CPU.r7 = TCB[tNew] .regs.r7;

CPU.r0 TCB[tNew] .regs.r0;
CPU.sp

CPU.retpc = TCB[tNew] .regs.retpc;

TCB[tNew] .regs.sp;

return; /* Return to CPU.retpc */

9/12/0; Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.21

Switch Details

+ How many registers need to be saved/restored?
- MIPS 4k: 32 In#(32b), 32 Float(32b)
- Pentium: 14 Int(32b), 8 Float(80b), 8 SSE(128b),...

- Sparc(v7): 8 Regs(32b), 16 Int regs (32b) * 8 windows =
136 (32b)+32 Float (32b)

- Itanium: 128 Int (64b), 128 Float (82b), 190ther(64b)
e retpc is where the return should jump to.

- In reality, this is implemented as a jump
* There is a real implementation of switch in Nachos.

- See switch.s

» Normally, switch is implemented as assembly!
- Of course, it's magical!
- But you should be able to follow it!

9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.22

Switch Details (continued)

* What if you make a mistake in implementing switch?
- Suppose you forget to save/restore reg 4

- Get intermittent failures depending on when context switch
occurred and whether new thread uses reg 4

- System will give wrong result without warning
+ Can you devise an exhaustive test to test switch code?
- No! Too many combinations and inter-leavings
+ Cautionary tail:
- For speed, Topaz kernel saved one instruction in switch()
- Carefully documented!
» Only works As long as kernel size < 1MB
- What happened?
» Time passed, People forgot

» Later, they added features to kernel (noone removes
features!)

» Very weird behavior started happening

- Moral of story: Design for simplicity
9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.23

What happens when thread blocks on I/0?

CopyFile

read
Trap to OS C

Y4moub 3o04s

* What happens when a thread requests a block of
data from the file system?

- User code invokes a system call
- Read operation is initiated
- Run new thread/switch
* Thread communication similar
- Wait for Signal/Join

- Networking
9/12/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 4.24




External Events

* What happens if thread never does any I/0,
never waits, and never yields control?

- Could the ComputePI program grab all resources
and never release the processor?

» What if it didn't print to console?
- Must find way that dispatcher can regain control!
* Answer: Utilize External Events

- Interrupts: signals from hardware or software
that stop the running code and jump to kernel

- Timer: like an alarm clock that goes off every
some many milliseconds

+ If we make sure that external events occur
frequently enough, can ensure dispatcher runs

9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.25

External Interrupt

Example: Network Interrupt

Raise priority \

S
AQ,b&,é bq,Reenable All Ints
oo [&) \ (s .
add $rl, $r2,$r3 Q(",og\(\‘\ Salve registers )
subi $rd,Srl,#4 ‘O\ o Dispatch to Handlefr =

slli $r4,3r4,#2 0

%>
|:> Pipeline Flush

Transfer Network
Packet from hardware
to Kernel Buffers

'
Interrupt Handler

1w $r2,0($r4)
1w $r3, 4 (5rd) Restore registers
add $r2,8r2,$r3
Clear current Int k

sw 8($r4),sr2 .
Disable All Ints

Restore priority

RTI /

* An interrupt is a hardware-invoked context switch
- No separate step to choose what to run next

- Always run the interrupt handler immediately
9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.26

Use of Timer Interrupt to Return Control

+ Solution to our dispatcher problem
- Use the timer interrupt to force scheduling decisions

Some Routine

Interrupt

yimoub o0i5

+ Timer Interrupt routine:
TimerInterrupt ()
DoPeriodicHouseKeeping () ;
run_new thread() ;

}

+ I/0 interrupt: same as timer interrupt except that
DoHousekeeping () replaced by ServiceIO().

9/12/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 4.27

Choosing a Thread to Run

* How does Dispatcher decide what to run?
- Zero ready threads - dispatcher loops
» Alternative is to create an “idle thread”
» Can put machine into low-power mode
- Exactly one ready thread - easy
- More than one ready thread: use scheduling priorities
* Possible priorities:
- LIFO (last in, first out):
» put ready threads on front of list, remove from front
- Pick one at random
- FIFO (first in, first out):
» Put ready threads on back of list, pull them from front
» This is fair and is what Nachos does
- Priority queue:

» keep ready list sorted by TCB priority field
9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.28




Summary

+ The state of a thread is contained in the TCB
- Registers, PC, stack pointer
- States: New, Ready, Running, Waiting, or Terminated
* Multithreading provides simple illusion of multiple CPUs
- Switch registers and stack to dispatch new thread
- Provide mechanism to ensure dispatcher regains control
+ Switch routine
- Can be very expensive if many registers
- Must be very carefully constructed!
* Many scheduling options

- Decision of which thread to run complex enough for
complete lecture

9/12/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 4.29




