CS162 Operating Systems and Systems Programming Lecture 7

Mutual Exclusion, Semaphores, Monitors, and Condition Variables

September 21, 2005
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Hand Simulating Multiprocessor Example

· Inner loop looks like this:

	Thread A		Thread B
r1=0	load r1, M[i]	1.0	
		r1=0	load r1, M[i]
r1=1	add r1, r1, 1		
		r1=-1	sub r1, r1, 1
M[i]=1	store r1, M[i]		
		M[i] = -1	store r1, M[i]

Hand Simulation:

- And we're off. A gets off to an early start
- B says "hmph, better go fast" and tries really hard
- A goes ahead and writes "1"
- B goes and writes "-1"
- A says "HUH??? I could have sworn I put a 1 there"
- · Could this happen on a uniprocessor?
- Yes! Unlikely, but if you depending on it not happening, 9/21/05it will and your system will break to Lec 7.3

Review: A Concurrent Program Example

- · Two threads, A and B, compete with each other
 - One tries to increment a shared counter
 - The other tries to decrement the counter

Thread A	<u>Thread B</u>	
i = 0;	i = 0;	
while (i < 10)	while (i > -10)	
i = i + 1;	i = i - 1;	
printf("A wins!");	printf("B wins!");	

- · Assume that memory loads and stores are atomic, but incrementing and decrementing are *not* atomic
- · Who wins? Could be either
- Is it guaranteed that someone wins? Why or why not?
- What it both threads have their own CPU running at same speed? Is it guaranteed that it goes on forever?

9/21/05

Kubiatowicz CS162 @UCB Fall 2005

Lec 7.2

Review: Too Much Milk Solution #3

· Here is a possible two-note solution:

```
Thread A

leave note A;
while (note B) {
  do nothing;
  if (noMilk) {
    buy milk;
  }
  remove note A;

Thread B

leave note B;
  if (noNote A) {
    buy milk;
  }
  remove note B;
```

- · Does this work? Yes. Both can guarantee that:
 - It is safe to buy, or
 - Other will buy, ok to quit
- At A:
 - if no note B, safe for A to buy,
 - otherwise wait to find out what will happen
- · At B:
 - if no note A, safe for B to buy
- Otherwise, A is either buying or waiting for B to quit
 9/21/05

 Kubiatowicz C5162 @UCB Fall 2005

 Lec 7.4

Goals for Today

- · Hardware Support for Synchronization
- · Higher-level Synchronization Abstractions
 - Semaphores, monitors, and condition variables
- · Programming paradigms for concurrent programs

Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne

9/21/05 Kubiatowicz CS162 @UCB Fall 2005 Lec 7 5

Where are we going with synchronization?

Programs	Shared Programs	
Higher- level API	Locks Semaphores Monitors Send/Receive	
Hardware	Load/Store Disable Ints Test&Set Comp&Swap	

- We are going to implement various higher-level synchronization primitives using atomic operations
 - Everything is pretty painful if only atomic primitives are load and store
 - Need to provide primitives useful at user-level

High-Level Picture

- The abstraction of threads is good:
 - Maintains sequential execution model
 - Allows simple parallelism to overlap I/O and computation
- Unfortunately, still too complicated to access state shared between threads
 - Consider "too much milk" example
 - Implementing a concurrent program with only loads and stores would be tricky and error-prone
- Today, we'll implement higher-level operations on top of atomic operations provided by hardware
 - Develop a "synchronization toolbox"
 - Explore some common programming paradigms

9/21/05 Kubiatowicz CS162 @UCB Fall 2005 Lec 7.6

How to implement Locks?

- · Lock: prevents someone from doing something
 - Lock before entering critical section and before accessing shared data
 - Unlock when leaving, after accessing shared data
 - Wait if locked
 - » Important idea: all synchronization involves waiting
- Atomic Load/Store: get solution like Milk #3
 - Looked at this last lecture
 - Pretty complex and error prone
- Hardware Lock instruction
 - Is this a good idea?
 - Complexity?
 - » Done in the Intel 432.
 - » Each feature makes hardware more complex and slow
 - What about putting task to sleep?
 - » How do you handle the interface between the hardware and scheduler?

9/21/05

Naïve use of Interrupt Enable/Disable

- · How can we build multi-instruction atomic operations?
 - Recall: dispatcher gets control in two ways.
 - » Internal: Thread does something to relinquish the CPU
 - » External: Interrupts cause dispatcher to take CPU
 - On a uniprocessor, can avoid context-switching by:
 - » Avoiding internal events (although virtual memory tricky)
 - » Preventing external events by disabling interrupts
- · Consequently, naïve Implementation of locks:

```
LockAcquire { disable Ints; }
LockRelease { enable Ints; }
```

- · Problems with this approach:
 - Can't let user do this! Consider following:

```
LockAcquire();
While(TRUE) {;}
```

- Real-Time system—no guarantees on timing!
 - » Critical Sections might be arbitrarily long
- What happens with I/O or other important even

» "Reactor about to meltdown. Help?"

Kubiatowicz CS162 @UCB Fall 2005

Lec 7.9

Better Implementation of Locks by Disabling Interrupts

· Key idea: maintain a lock variable and impose mutual exclusion only during operations on that variable

```
int value = FREE
Acquire() {
                               Release() {
  disable interrupts;
                                 disable interrupts;
  if (value == BUSY) {
                                 if (anyone on wait queue) {
                                    take thread off wait queue
    put thread on wait queue;
                                    Place on ready queue;
    Go to sleep();
                                 } else {
    // Enable interrupts?
                                    value = FREE;
  } else {
    value = BUSY;
                                 enable interrupts;
  enable interrupts;
```

9/21/05 Kubiatowicz CS162 @UCB Fall 2005 Lec 7.10

New Lock Implementation: Discussion

- · Why do we need to disable interrupts at all?
 - Avoid interruption between checking and setting lock value
 - Otherwise two threads could think that they both have lock

```
Acquire() {
  disable interrupts;
  if (value == BUSY) {
     put thread on wait queue;
     Go to sleep();
                                    Critical
     // Enable interrupts?
                                    Section
  } else {
     value = BUSY;
  enable interrupts;
```

- · Note: unlike previous solution, the critical section (inside Acquire()) is very short
 - User of lock can take as long as they like in their own critical section: doesn't impact global machine behavior
 - Critical interrupts taken in time!

Interrupt re-enable in going to sleep

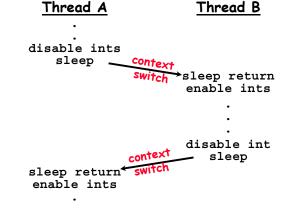
· What about re-enabling ints when going to sleep?

```
Acquire() {
                    disable interrupts;
                    if (value == BUSY) {
Enable Position
                       put thread on wait queue;
Enable Position
                       Go to sleep();
Enable Position
                      else {
                       value = BUSY;
                    enable interrupts;
```

- · Before Putting thread on the wait queue?
 - Release can check the queue and not wake up thread
- · After putting the thread on the wait queue
 - Release puts the thread on the ready queue, but the thread still thinks it needs to go to sleep
 - Misses wakeup and still holds lock (deadlock!)
- Want to put it after sleep(). But how? Kubiatowicz CS162 @UCB Fall 2005

Administrivia

- · First Design Document due Monday 9/26
 - Subsequently need to schedule design review with TA (through web form)
 - Note that Much of the design document grade comes from first version (some from final version)
- · CVS group accounts should be setup
 - Check out the CVS Quick Start Guide for instructions on how to get your CVS repository working
 - If you change your key need to let us know!
- · Anyone interested in being a note-taker?
 - Have a student who needs help with note taking
 - Can receive payment for this help


9/21/05 Kubiatowicz CS162 @UCB Fall 2005

Interrupt disable and enable across context switches

- · An important point about structuring code:
 - In Nachos code you will see lots of comments about assumptions made concerning when interrupts disabled
 - This is an example of where modifications to and assumptions about program state can't be localized within a small body of code
 - In these cases it is possible for your program to eventually "acquire" bugs as people modify code
- · Other cases where this will be a concern?
 - What about exceptions that occur after lock is acquired? Who releases the lock?

How to Re-enable After Sleep()?

- · In Nachos, since ints are disabled when you call sleep:
 - Responsibility of the next thread to re-enable ints
 - When the sleeping thread wakes up, returns to acquire and re-enables interrupts

9/21/05 Kubiatowicz CS162 @UCB Fall 2005

Lec 7.14

- Atomic Read-Modify-Write instructions
- Problems with previous solution:
 - Can't give lock implementation to users
 - Doesn't work well on multiprocessor
 - » Disabling interrupts on all processors requires messages and would be very time consuming
- · Alternative: atomic instruction sequences
 - These instructions read a value from memory and write a new value atomically
 - Hardware is responsible for implementing this correctly on both uniprocessors (not too hard) and multiprocessors (requires help from cache coherence protocol)
 - Unlike disabling interrupts, can be used on both uniprocessors and multiprocessors

9/21/05

Examples of Read-Modify-Write

```
/* most architectures */
 test&set (&address) {
      result = M[address];
      M[address] = 1;
• swap (&address, register) { /* x86 */
       temp = M[address];
      M[address] = register;
      register = temp;
• compare&swap (&address, reg1, reg2) { /* 68000 */
      if (reg1 == M[address]) {
          M[address] = reg2;
          return success;
       } else {
          return failure;

    load-linked&store conditional(&address) {

       /* R4000, alpha */
       loop:
          11 r1, M[address];
                                /* Can do arbitrary comp */
          movi r2, 1;
          sc r2, M[address];
          begz r2, loop;
9/21/05
                     Kubiatowicz CS162 @UCB Fall 2005
                                                           Lec 7.17
```

Problem: Busy-Waiting for Lock

- Positives for this solution
 - Machine can receive interrupts
 - User code can use this lock
 - Works on a multiprocessor
- Negatives
 - This is very inefficient because the busy-waiting thread will consume cycles waiting
 - Waiting thread may take cycles away from thread holding lock (no one wins!)
 - Priority Inversion: If busy-waiting thread has higher priority than thread holding lock

 no progress!
- Priority Inversion problem with original Martian rover
- For semaphores and monitors, waiting thread may wait for an arbitrary length of time!
 - Thus even if busy-waiting was OK for locks, definitely not ok for other primitives
 - Homework/exam solutions should not have busy-waiting!

Implementing Locks with test&set

· Another flawed, but simple solution:

```
int value = 0; // Free
Acquire() {
   while (test&set(value)); // while busy
}
Release() {
   value = 0;
}
```

Simple explanation:

int guard = 0;

9/21/05

- If lock is free, test&set reads 0 and sets value=1, so lock is now busy. It returns 0 so while exits.
- If lock is busy, test&set reads 1 and sets value=1 (no change). It returns 1, so while loop continues
- When we set value = 0, someone else can get lock
- · Busy-Waiting: thread consumes cycles while waiting

9/21/05 Kubiatowicz CS162 @UCB Fall 2005 Lec 7.18

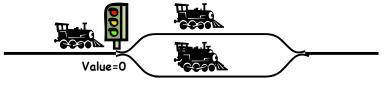
Better Locks using test&set

- · Can we build test&set locks without busy-waiting?
 - Can't entirely, but can minimize!
 - Idea: only busy-wait to atomically check lock value

```
int value = FREE;
                               Release() {
Acquire() {
                                  // Short busy-wait time
  // Short busy-wait time
                                  while (test&set(guard));
  while (test&set(guard));
                                  if anyone on wait queue {
  if (value == BUSY) {
                                    take thread off wait queue
     put thread on wait queue;
                                    Place on ready queue;
     go to sleep() & guard = 0;
                                  } else {
  } else {
                                    value = FREE;
     value = BUSY;
     guard = 0;
                                  quard = 0;
```

Note: sleep has to be sure to reset the guard variable

- Why can't we do it just before or just after the sleep?


Higher-level Primitives than Locks

- · Goal of last couple of lectures:
 - What is the right abstraction for synchronizing threads that share memory?
 - Want as high a level primitive as possible
- · Good primitives and practices important!
 - Since execution is not entirely sequential, really hard to find bugs, since they happen rarely
 - UNIX is pretty stable now, but up until about mid-80s (10 years after started), systems running UNIX would crash every week or so - concurrency bugs
- Synchronization is a way of coordinating multiple concurrent activities that are using share state
 - This lecture and the next presents a couple of ways of structuring the sharing

9/21/05 Kubiatowicz CS162 @UCB Fall 2005

Semaphores Like Integers Except

- · Semaphores are like integers, except
 - No negative values
 - Only operations allowed are P and V can't read or write value, except to set it initially
 - Operations must be atomic
 - » Two P's together can't decrement value below zero
 - » Similarly, thread going to sleep in P won't miss wakeup from V - even if they both happen at same time
- · Semaphore from railway analogy
 - Here is a semaphore initialized to 2 for resource control:

Semaphores

- · Semaphores are a kind of generalized lock
 - First defined by Dijkstra in late 60s
 - Main synchronization primitive used in original UNIX
- Definition: a Semaphore has a non-negative integer value and supports the following two operations:
 - P(): an atomic operation that waits for semaphore to become positive, then decrements it by 1
 - » Think of this as the wait() operation
 - V(): an atomic operation that increments the semaphore by 1, waking up a waiting P, if any
 - » This of this as the signal() operation
 - Note that P() stands for "proberen" (to test) and V stands for "verhogen" (to increment) in Dutch

9/21/05 Kubiatowicz CS162 @UCB Fall 2005

Lec 7.22

Two Uses of Semaphores

- · Mutual Exclusion (initial value = 1)
 - Also called "Binary Semaphore".
 - Can be used for mutual exclusion:

```
semaphore.P();
// Critical section goes here
semaphore.V();
```

- · Scheduling Constraints (initial value = 0)
 - Locks are fine for mutual exclusion, but what if you want a thread to wait for something?
 - Example: suppose you had to implement ThreadJoin which must wait for thread to terminiate:

```
Initial value of semaphore = 0
ThreadJoin {
    semaphore.P();
}
ThreadFinish {
    semaphore.V();
}
```

9/21/05

Producer-consumer with a bounded buffer

- - Producer puts things into a shared buffer
 - Consumer takes them out
 - Need synchronization to coordinate producer/consumer
- · Don't want producer and consumer to have to work in lockstep, so put a fixed-size buffer between them
 - Need to synchronize access to this buffer
 - Producer needs to wait if buffer is full
 - Consumer needs to wait if buffer is empty
- · Example 1: GCC compiler
 - cpp | cc1 | cc2 | as | ld
- · Example 2: Coke machine
 - Producer can put limited number of cokes in machine
 - Consumer can't take cokes out if machine is empty

9/21/05 Kubiatowicz CS162 @UCB Fall 2005 Lec 7.25

Full Solution to Bounded Buffer

```
Semaphore fullBuffer = 0; // Initially, no coke
Semaphore emptyBuffers = numBuffers;
                           // Initially, num empty slots
Semaphore mutex = 1;
                           // No one using machine
Producer(item) {
   emptyBuffers.P();
                           // Wait until space
   mutex.P();
                           // Wait until buffer free
   Engueue(item);
   mutex.V();
   fullBuffers.V():
                           // Tell consumers there is
                           // more coke
Consumer() {
   fullBuffers.P();
                           // Check if there's a coke
   mutex.P();
                           // Wait until machine free
   item = Dequeue();
   mutex.V();
   emptyBuffers.V();
                           // tell producer need more
   return item;
```

Correctness constraints for solution

- · Correctness Constraints:
 - Consumer must wait for producer to fill buffers, if none full (scheduling constraint)
 - Producer must wait for consumer to empty buffers. if all full (scheduling constraint)
 - Only one thread can manipulate buffer queue at a time (mutual exclusion)
- · Remember why we need mutual exclusion
 - Because computers are stupid
 - Imagine if in real life: the delivery person is filling the machine and somebody comes up and tries to stick their money into the machine
- · General rule of thumb: Use a separate semaphore for each constraint

```
- Semaphore fullBuffers; // consumer's constraint
- Semaphore emptyBuffers; // producer's constraint
- Semaphore mutex;
                           // mutual exclusion
               Kubiatowicz CS162 @UCB Fall 2005
```

Discussion about Solution

· Why asymmetry?

9/21/05

- **Producer does**: emptyBuffer.P(), fullBuffer.V()
- Consumer does: fullBuffer.P(), emptyBuffer.V()
- Is order of P's important?
 - Yes! Can cause deadlock
- · Is order of V's important?
 - No, except that it might affect scheduling efficiency
- · What if we have 2 producers or 2 consumers?
 - Do we need to change anything?

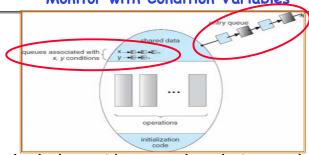
9/21/05

Lec 7.27

Motivation for Monitors and Condition Variables

- Semaphores are a huge step up; just think of trying to do the bounded buffer with only loads and stores
 - Problem is that semaphores are dual purpose:
 - » They are used for both mutex and scheduling constraints
 - » Example: the fact that flipping of P's in bounded buffer gives deadlock is not immediately obvious. How do you prove correctness to someone?
- Cleaner idea: Use locks for mutual exclusion and condition variables for scheduling constraints
- Definition: Monitor: a lock and zero or more condition variables for managing concurrent access to shared data
 - Some languages like Java provide this natively
 - Most others use actual locks and condition variables

9/21/05 Kubiatowicz CS162 @UCB Fall 2005 Lec 7.29


Simple Monitor Example

· Here is an (infinite) synchronized queue

9/21/05

```
Lock lock:
Condition dataready;
Queue queue;
AddToQueue(item) {
   lock.Acquire();
                              // Get Lock
  queue.enqueue(item);
                              // Add item
   dataready.signal();
                              // Signal any waiters
  lock.Release();
                              // Release Lock
RemoveFromQueue() {
  lock.Acquire();
                              // Get Lock
  while (queue.isEmpty()) {
     dataready.wait(&lock); // If nothing, sleep
   item = queue.dequeue(); // Get next item
  lock.Release();
                              // Release Lock
   return(item);
            Kubiatowicz CS162 @UCB Fall 2005
                                              Lec 7.31
```

Monitor with Condition Variables

- · Lock: the lock provides mutual exclusion to shared data
 - Always acquire before accessing shared data structure
 - Always release after finishing with shared data
 - Lock initially free
- Condition Variable: a queue of threads waiting for something inside a critical section
 - Key idea: make it possible to go to sleep inside critical section by atomically releasing lock at time we go to sleep

Summary

- · Important concept: Atomic Operations
 - An operation that runs to completion or not at all
 - These are the primitives on which to construct various synchronization primitives
- Talked about hardware atomicity primitives:
 - Disabling of Interrupts, teståset, swap, compåswap, load-locked/store conditional
- · Showed several constructions of Locks
 - Must be very careful not to waste/tie up machine resources
 - » Shouldn't disable interrupts for long
 - » Shouldn't spin wait for long
 - Key idea: Separate lock variable, use hardware mechanisms to protect modifications of that variable
- Talked about Semaphores, Monitors, and Condition Variables
- Higher level constructs that are harder to "screw up"
 9/21/05 Kubiatowicz C5162 @UCB Fall 2005 Lec 7.3