
CS162
Operating Systems and
Systems Programming

Lecture 9

Deadlock

September 28, 2005
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 9.29/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Programming with Monitors
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads
can proceed

• Basic structure of monitor-based program:
lock
while (need to wait) {

condvar.wait();
}
unlock

do something so no need to wait

lock

condvar.signal();

unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

Lec 9.39/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()

Wait until no writers
Access data base
Check out – wake up a waiting writer

– Writer()
Wait until no active readers or writers
Access database
Check out – wake up waiting readers or writer

– State variables (Protected by a lock called “lock):
» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Conditioin okToWrite = NIL

Lec 9.49/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Code for a Reader
Reader() {
// First check self into system
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!
lock.release();

// Perform actual read-only access
AccessDatabase(ReadOnly);

// Now, check out of system
lock.Acquire();
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

okToWrite.signal(); // Wake up one writer
lock.Release();

}

Lec 9.59/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Writer() {
// First check self into system
lock.Acquire();

while ((AW + AR) > 0) { // Is it safe to write?
WW++; // No. Active users exist
okToWrite.wait(&lock); // Sleep on cond var
WW--; // No longer waiting

}

AW++; // Now we are active!
lock.release();

// Perform actual read/write access
AccessDatabase(ReadWrite);

// Now, check out of system
lock.Acquire();
AW--; // No longer active
if (WW > 0){ // Give priority to writers

okToWrite.signal(); // Wake up one writer
} else if (WR > 0) { // Otherwise, wake reader

okToRead.broadcast(); // Wake all readers
}
lock.Release();

}

Review: Code for a Writer

Lec 9.69/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Goals for Today

• Discuss language support for synchronization
• Discussion of Deadlocks

– Conditions for its occurrence
– Solutions for breaking and avoiding deadlock

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Lec 9.79/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Can we construct Monitors from Semaphores?
• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

Wait() { semaphore.P(); }
Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

Wait(Lock lock) {
lock.Release();
semaphore.P();
lock.Acquire();

}
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have
history:
» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and noone is waiting? Increment
» What if thread later does P? Decrement and continue

Lec 9.89/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter
what order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

Wait(Lock lock) {
lock.Release();
semaphore.P();
lock.Acquire();

}
Signal() {

if semaphore queue is not empty
semaphore.V();

}

– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock
release and before waiter executes semaphore.P()

• It is actually possible to do this correctly
– Complex solution for Hoare scheduling in book
– Can you come up with simpler Mesa-scheduled solution?

Lec 9.99/28/05 Kubiatowicz CS162 ©UCB Fall 2005

C-Language Support for Synchronization

• C language: Pretty straightforward synchronization
– Just make sure you know all the code paths out of a
critical section
int Rtn() {

lock.acquire();
…
if (exception) {

lock.release();
return errReturnCode;

}
…
lock.release();
return OK;

}

– Watch out for setjmp/longjmp!
» Can cause a non-local jump out of procedure
» In example, procedure E calls longjmp, poping stack

back to procedure B
» If Procedure C had lock.acquire, problem!

Proc A

Proc B
Calls setjmp

Proc C
lock.acquire

Proc D

Proc E
Calls longjmp

Stack growth

Lec 9.109/28/05 Kubiatowicz CS162 ©UCB Fall 2005

C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy
to make a non-local exit without releasing lock)

– Consider:
void Rtn() {

lock.acquire();
…
DoFoo();
…
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}

– Notice that an exception in DoFoo() will exit without
releasing the lock

Lec 9.119/28/05 Kubiatowicz CS162 ©UCB Fall 2005

C++ Language Support for Synchronization (con’t)
• Must catch all exceptions in critical sections

– Must catch exceptions, release lock, then re-throw the
exception:

void Rtn() {
lock.acquire();
try {

…
DoFoo();
…

} catch (…) { // catch exception
lock.release(); // release lock
throw; // re-throw the exception

}
lock.release();

}

void DoFoo() {
…
if (exception) throw errException;
…

}
Lec 9.129/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Java Language Support for Synchronization

• Java has explicit support for threads and thread
synchronization

• Bank Account example:
class Account {

private int balance;
// object constructor
public Account (int initialBalance) {

balance = initialBalance;
}
public synchronized int getBalance() {

return balance;
}
public synchronized void deposit(int amount) {

balance += amount;
}

}

– Every object has an associated lock which gets
automatically acquired and released on entry and exit
from a synchronized method.

Lec 9.139/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Java Language Support for Synchronization (con’t)

• Java also has synchronized statements:
synchronized (object) {

…
}

– Since every Java object has an associated lock, this
type of statement acquires and releases the object’s
lock on entry and exit of the body

– Works properly even with exceptions:
synchronized (object) {

…
DoFoo();
…

}
void DoFoo() {

throw errException;
}

Lec 9.149/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single

condition variable associated with it
– How to wait inside a synchronization method of block:

» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait();

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of
time. This is useful for handling exception cases:

t1 = time.now();
while (!ATMRequest()) {

wait (CHECKPERIOD);
t2 = time.new();
if (t2 – t1 > LONG_TIME) checkMachine();

}

– Not all Java VMs equivalent!
» Different scheduling policies, not necessarily preemptive!

Lec 9.159/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Administrivia

• Midterm I coming up in two weeks:
– Wednesday, 10/12, 5:30 – 8:30, Here
– Should be 2 hour exam with extra time
– Closed book, one page of hand-written notes (both sides)
– Topics: Everything up to that Monday, 10/10

• No class on day of Midterm
– I will post extra office hours for people who have
questions about the material (or life, whatever)

Lec 9.169/28/05 Kubiatowicz CS162 ©UCB Fall 2005

• Resources – passive entities needed by threads to do
their work
– CPU time, disk space, memory

• Two types of resources:
– Preemptable – can take it away

» CPU, Embedded security chip
– Non-preemptable – must leave it with the thread

» Disk space, plotter, chunk of virtual address space
» Mutual exclusion – the right to enter a critical section

• Resources may require exclusive access or may be
sharable
– Read-only files are typically sharable
– Printers are not sharable during time of printing

• One of the major tasks of an operating system is to
manage resources

Resources

Lec 9.179/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Starvation vs Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources

constantly in use by high-priority threads
– Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

– Deadlock ⇒ Starvation but not vice versa
» Starvation can end (but doesn’t have to)
» Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Lec 9.189/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Conditions for Deadlock

• Deadlock doesn’t have to be deterministic.
– Consider mutexes ‘x’ and ‘y’:

Thread A Thread B
x.P(); y.P();

y.P(); x.P();

– Deadlock won’t always happen with this code
» Have to have exactly the right timing (“wrong” timing?)
» So you release a piece of software, and you tested it, and

there it is, controlling a nuclear power plant
• Deadlocks occur with multiple resources

– Means you can’t decompose the problem
– Can’t solve deadlock for each resource independently

• Example: System with 2 disk drives and two threads
– Each thread needs 2 disk drives to function
– Each thread has managed to get one disk and is waiting
for another one

Lec 9.199/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Bridge Crossing Example

• Each segment of road can be viewed as a resource
– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves
– Traffic only in one direction at a time
– Problem occurs when two cars in opposite directions on
bridge: each acquires one segment and needs next

• If a deadlock occurs, it can be resolved if one car
backs up (preempt resources and rollback)
– Several cars may have to be backed up

• Starvation is possible
– East-going traffic really fast ⇒ no one goes west

Lec 9.209/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

Disallowed

By Rule

Lec 9.219/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Dining Lawyers Problem

• Five chopsticks/Five lawyers (really cheap restaurant)
– Free-for all: Lawyer will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let lawyer take last chopstick if no hungry
lawyer has two chopsticks afterwards

Lec 9.229/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Four requirements for Deadlock

• Mutual exclusion
– Only one thread at a time can use a resource.

• Hold and wait
– Thread holding at least one resource is waiting to
acquire additional resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it

• Circular wait
– There exists a set {T1, …, Tn} of waiting threads

» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1

Lec 9.239/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Symbols
Resource-Allocation Graph

• System Model
– A set of Threads T1, T2, . . ., Tn
– Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
– Each resource type Ri has Wi instances.
– Each thread utilizes a resource as follows:

» Request() / Use() / Release()

• Resource-Allocation Graph:
– V is partitioned into two types:

» T = {T1, T2, …, Tn}, the set threads in the system.
» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge T1 → Rj
– assignment edge – directed edge Rj → Ti

R1
R2

T1 T2

Lec 9.249/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Resource Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Recall:
– request edge – directed edge T1 → Rj
– assignment edge – directed edge Rj → Ti

Lec 9.259/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Methods for Handling Deadlocks

• Allow system to enter deadlock and then recover
– Requires deadlock detection algorithm
– Some technique for selectively preempting resources
and/or terminating tasks

• Ensure that system will never enter a deadlock
– Need to monitor all lock acquisitions
– Selectively deny those that might lead to deadlock

• Ignore the problem and pretend that deadlocks
never occur in the system
– used by most operating systems, including UNIX

Lec 9.269/28/05 Kubiatowicz CS162 ©UCB Fall 2005

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
• Only one of each type of resource ⇒ look for loops
• More General Deadlock Detection Algorithm

– Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):
[FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X
[AllocX]: Current resources held by thread X

– See if tasks can eventually terminate on their own
[Avail] = [FreeResources]
Add all nodes to UNFINISHED
done = true
do {

Foreach node in UNFINISHED {
if ([Requestnode] <= [Avail]) {

remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

– Nodes left in UNFINISHED ⇒ deadlocked

Lec 9.279/28/05 Kubiatowicz CS162 ©UCB Fall 2005

What to do when detect deadlock?
• Terminate thread, force it to give up resources

– In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!

– Shoot a dining lawyer
– This isn’t always possible: for instance, with a mutex,
can’t shoot a thread and leave world inconsistent

• Preempt resources without killing off thread
– Take away resources from thread temporarily
– Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads
– Hit the rewind button on TIVO, pretend last few
minutes never happened

– For bridge example, make one car roll backwards (may
require others behind him)

– Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may
reenter deadlock once again

• Many operating systems use other options
Lec 9.289/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Techniques for Preventing Deadlock
• Infinite resources

– Include enough resources so that no one ever runs out
of resources. Doesn’t have to be infinite, just large

– Give illusion of infinite resources (e.g. virtual memory)
– Examples:

» Bay bridge will 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

• No Sharing of resources (totally independent threads)
– Not very realistic

• Don’t allow waiting
– How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the
phone lines, but if blocked get busy signal.

– Technique used in ethernet/some multiprocessor nets
» Everyone speaks at once. If collision, back off and try

again
– Inefficient, since have to keep retrying

» Consider: trying to drive to San Francisco; when hit
traffic jam, suddenly you were transported bck home and
told to try again!

Lec 9.299/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Techniques for Preventing Deadlock (con’t)

• Make all threads request everything they’ll need at
the beginning.
– Problem: Predicting future is hard, tend to over-
estimate resources

– Example:
» If need 2 chopsticks, request both at same time
» Don’t leave home until we know no one is using any

intersection between here and where you want to go; only
one car on the Bay Bridge at a time

• Force all threads to request resources in a particular
order Prevents any cyclic use of resources
– Thus preventing deadlock
– Example

» Make tasks request disk, then memory, then…
» Keep from deadlock on freeways around SF by requiring

everyone to go clockwise
Lec 9.309/28/05 Kubiatowicz CS162 ©UCB Fall 2005

• Toward right idea:
– State maximum resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) ≥ max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting

[Maxnode]-[Allocnode] for [Requestnode]
Grant request if result is deadlock free (conservative!)

» Keeps system in a “SAFE” state, i.e. there exists a
sequence {T1, T2, … Tn} with T1 requesting all remaining
resources, finishing, then T2 requesting all remaining
resources, etc..

– Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

Banker’s Algorithm for Preventing Deadlock

Lec 9.319/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Banker’s Algorithm Example

• Banker’s algorithm with dining lawyers
– “Safe” (won’t cause deadlock) if when try to grab
chopstick either:
» Not last chopstick
» Is last chopstick but someone will have

two afterwards
– What if k-handed lawyers? Don’t allow if:

» It’s the last one, no one would have k
» It’s 2nd to last, and no one would have k-1
» It’s 3rd to last, and no one would have k-2
» … Lec 9.329/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Summary
• Language support for synchronization:

– Be careful of exceptions within critical sections
– Java provides synchronized keyword and one condition-
variable per object (with wait() and notify())

• Starvation vs. Deadlock
– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion

» Only one thread at a time can use a resource
– Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

– No preemption
» Resources are released only voluntarily by the threads

– Circular wait
» There exists a set {T1, …, Tn} of threads with a cyclic

waiting pattern

Lec 9.339/28/05 Kubiatowicz CS162 ©UCB Fall 2005

Summary (2)

• Techniques for addressing Deadlock
– Allow system to enter deadlock and then recover
– Ensure that system will never enter a deadlock
– Ignore the problem and pretend that deadlocks never
occur in the system

• Deadlock detection
– Attempts to assess whether waiting graph can every
make progress

• Deadlock prevention
– Assess, for each allocation, whether it has the
potential to lead to deadlock

– Banker’s algorithm gives one way to assess this

