CS162
Operating Systems and
Systems Programming
Lecture 9

Deadlock

September 28, 2005

Review: Programming with Monitors

* Monitors represent the logic of the program
- Wait if necessary

- Signal when change something so any waiting threads
can proceed

* Basic structure of monitor-based program:

lock
while (need to wait) { Check and/or update
condvar.wait () ; state variables

Wait if necessary
unlock

do something so no need to wait

. . lock

Prof. John Kubiatowicz

. ; Check and/or update

. ~ d . 1();
http://inst.eecs.berkeley.edu/~cs162 condvar.signal () } <tate variables
unlock
9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.2
Review: Basic Readers/Writers Solution Review: Code for a Reader
+ Correctness Constraints: Reader () {

- Readers can access database when no writers N

- Writers can access database when no readers
- Only one thread manipulates state variables at a time

+ Basic structure of a solution:

— Reader ()
Wait until no writers
Access data base
Check out - wake up a waiting writer

-Writer ()
Wait until no active readers or writers
Access database
Check out - wake up waiting readers or writer
- State variables (Protected by a lock called “lock):
» int AR: Number of active readers; initially = O
» int WR: Number of waiting readers; initially = O
» int AW: Number of active writers; initially = O
» int WW: Number of waiting writers; initially = O
» Condition okToRead = NIL
» Conditioin okToWrite = NIL
9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.3

// First check self into system
lock.Acquire() ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting
AR++; // Now we are active!

lock.release();

// Perform actual read-only access
AccessDatabase (ReadOnly) ;

// Now, check out of system

lock.Acquire() ;

AR--; // No longer active

if (AR == 0 && WW > 0) // No other active readers
okToWrite.signal() ; // Wake up one writer

lock.Release() ;

}

9/28/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 9.4




Review: Code for a Writer

Writer ()
// First check self into system
lock.Acquire() ;

while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
okToWrite.wait (&lock); // Sleep on cond var
) WW--; // No longer waiting
AW++; // Now we are active!

lock.release();

// Perform actual read/write access
AccessDatabase (ReadWrite) ;

// Now, check out of system
lock.Acquire() ;

AW--; // No longer active

if (WWw > 0){ // Give priority to writers
okToWrite.signal(); // Wake up one writer

} else if (WR > 0) { // Otherwise, wake reader

okToRead.broadcast () ; // Wake all readers
lock.Release();

9/;8/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.5

Goals for Today

- Discuss language support for synchronization
- Discussion of Deadlocks

- Conditions for its occurrence

- Solutions for breaking and avoiding deadlock

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.6

Can we construct Monitors from Semaphores?

* Locking aspect is easy: Just use a mutex

+ Can we implement condition variables this way?
Wait () { semaphore.P(); }
Signal() { semaphore.V(); }

- Doesn't work: Wait() may sleep with lock held

- Does this work better?

Wait (Lock lock) {
lock.Release() ;
semaphore.P () ;
lock.Acquire() ;

Signal() { semaphore.V(); }
- No: Condition vars have no history, semaphores have
history:
» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V's and noone is waiting? Increment
» What if thread later does P? Decrement and continue

9/28/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 9.7

Construction of Monitors from Semaphores (con't)
* Problem with previous try:

- P and V are commutative - result is the same no matter
what order they occur

- Condition variables are NOT commutative
+ Does this fix the problem?

Wait (Lock lock) {
lock.Release() ;
semaphore.P () ;
lock.Acquire() ;

Signal() {
if semaphore queue is not empty
semaphore.V () ;

}

- Not legal to look at contents of semaphore queue

- There is a race condition - signaler can slip in after lock
release and before waiter executes semaphore.P()

+ It is actually possible to do this correctly
- Complex solution for Hoare scheduling in book

o/28/55€aN you come up with simpler, Mesgsscheduled solution?




C-Language Support for Synchronization

* C language: Pretty straightforward synchronization

- Just make sure you know a// the code paths out of a
critical section

int Rtn() { Proc A [0
lock.acquire() ; s
Proc B s
if (exception) ({ Calls setjmp | 9

lock.release() ; Proc C g
return errReturnCode; oc & =
lock.acquire | =
Iock.release() i Proc D |
} return OK; Proc E
. ) Calls longjmp
- Watch out for setjmp/longjmpl
» Can cause a hon-local jump out of procedure
» In example, procedure E calls longjmp, poping stack
back to procedure B
» If Procedure C had lock.acquire, problem!
9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.9

C++ Language Support for Synchronization

* Languages with exceptions like C++

- Languages that supfort exceptions are problematic (easy
to make a non-local exit without releasing lock)

- Consider:

void Rtn() {
lock.acquire() ;

DoFoo () ;
lock.release();
void DoFoo() {

if (exception) throw errException;

}

- Notice that an exception in DoFoo () will exit without
releasing the lock

9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.10

C++ Language Support for Synchronization (con't)

* Must catch all exceptions in critical sections

- Must catch exceptions, release lock, then re-throw the
exception:

void Rtn() {
lock.acquire() ;

try
DoFoo () ;

} cateh () { // catch exception
lock.release(); // release lock
throw; // re-throw the exception

lock.release() ;

void DoFoo() {

if (exception) throw errException;

9/28/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 9.11

Java Language Support for Synchronization

* Java has explicit support for threads and thread
synchronization

* Bank Account example:
class Account {
private int balance;
// object constructor
public Account (int initialBalance) {
balance = initialBalance;

public synchronized int getBalance() {
return balance;

public synchronized void deposit(int amount) {
balance += amount;

}

- Every object has an associated lock which gets
automatically acquired and released on entry and exit
from a synchronized method.

9/28/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 9.12




Java Language Support for Synchronization (con't)

- Java also has synchronized statements:

synchronized (object) {

}

- Since every Java object has an associated lock, this
type of statement acquires and releases the object's
lock on entry and exit of the body

- Works properly even with exceptions:

synchronized (object) {

DoFoo () ;

void DoFoo () {
throw errException;

Java Language Support for Synchronization (con't 2)

* In addition to a lock, every object has a single
condition variable associated with it

- How to wait inside a synchronization method of block:
» void wait (long timeout); // Wait for timeout
» void wait (long timeout, int nanoseconds); //variant
» void wait () ;

- How to signal in a synchronized method or block:
» void notify () ; // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

- Condition variables can wait for a bounded length of
time. This is useful for handling exception cases:
tl = time.now();
while (!ATMRequest()) {
wait (CHECKPERIOD) ;
t2 = time.new();
if (t2 - tl > LONG TIME) checkMachine();

} - Not all Java VMs equivalent!
» Different scheduling policies, not necessarily preemptive!
9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.13 9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.14
Administrivia Resources

* Midterm I coming up in two weeks:
- Wednesday, 10/12, 5:30 - 8:30, Here
- Should be 2 hour exam with extra time
- Closed book, one page of hand-written notes (both sides)
- Topics: Everything up to that Monday, 10/10
* No class on day of Midterm

- I will post extra office hours for people who have
questions about the material (or life, whatever)

9/28/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 9.15

* Resources - passive entities needed by threads to do
their work .

- CPU time, disk space, memory
+ Two types of resources: ;
- Preemptable - can take it away &
» CPU, Embedded security chip
- Non-preemptable - must leave it with the thread
» Disk space, plotter, chunk of virtual address space
» Mutual exclusion - the right to enter a critical section

+ Resources may require exclusive access or may be
sharable

- Read-only files are typically sharable
- Printers are not sharable during time of printing

* One of the major tasks of an operating system is to

mGnGge resources
9/28/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 9.16




Starvation vs Deadlock

)

Starvation vs. Deadlock
- Starvation: thread waits indefinitely

» Example, low-priority thread wai'l'inﬁ for resources
constantly in use by high-priority threads

- Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

- Deadlock = Starvation but not vice versa
» Starvation can end (but doesn't have to)
» Deadlock can't end without external intervention

9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.17

Conditions for Deadlock

* Deadlock doesn't have to be deterministic.
- Consider mutexes 'x' and 'y":

Thread A Thread B
x.P(); yv.P();
y.P(); x.P();

- Deadlock won't always happen with this code
» Have to have exactly the right timing ("wrong” timing?)

» So you release a piece of software, and you tested it, and
there it is, controlling a nuclear power plant

- Deadlocks occur with multiple resources
- Means you can't decompose the problem
- Can't solve deadlock for each resource independently

- Example: System with 2 disk drives and two threads
- Each thread needs 2 disk drives to function

- Each thread has managed to get one disk and is waiting

for another one
9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.18

Bridge Crossing Example

Each segment of road can be viewed as a resource
- Car must own the segment under them
- Must acquire segment that they are moving into

For bridge: must acquire both halves
- Traffic only in one direction at a time

- Problem occurs when two cars in opposite directions on
bridge: each acquires one segment and needs next

If a deadlock occurs, it can be resolved if one car
backs up (preempt resources and rollback)

- Several cars may have to be backed up
Starvation is possible
- East-going traffic really fast = no one goes west

9/28/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 9.19

Train Example (Wormhole-Routed Network)

+ Circular dependency (Deadlock!)
- Each train wants to turn right
- Blocked by other trains
- Similar problem to multiprocessor networks
* Fix? Imagine grid extends in all four directions
- Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
- Called “dimension ordering” (X then Y)

9/28/05 Lec 9.20




Dining Lawyers Problem

A

* Five chopsticks/Five lawyers (really cheap restaurant)
- Free-for all: Lawyer will grab any one they can
- Need two chopsticks to eat
* What if all grab at same time?
- Deadlock!
+ How to fix deadlock?
- Make one of them give up a chopstick (Hah!)
- Eventually everyone will get chance to eat
* How to prevent deadlock?
- Never let Iawyer‘ take last chopsflck if no hungry

o/28/05 1aWYer has two chopsticks afterwards

Four requirements for Deadlock

* Mutual exclusion
- Only one thread at a time can use a resource.
* Hold and wait
- Thread holding at least one resource is waiting to
acquire additional resources held by other threads
* No preemption
- Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it
+ Circular wait
- There exists a set {T;, .., T,} of waiting threads
» T, is waiting for a resource that is held by T,

» T, is waiting for a resource that is held by T;
» ...

» T, is waiting for a resource that is held by T;

9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.22

Resource-Allocation Graph

+ System Model Symbols

-Asetof Threads 7,, T, .. ., T, @ @
R

- Resource types R, R,, . . .,

m
CPU cycles, memory space, I/0 devices . :
- Each resource type R has W, instances. R .
1
- Each thread utilizes a resource as follows: R,

» Request () / Use() / Release()

+ Resource-Allocation 6raph:
- V is partitioned into two types:
» T={T;, T,, .., T}, the set threads in the system.
» R={R, R, .., R}, the set of resource types in system
- request edge - directed edge T; - R;
- assignment edge - directed edge R; - T;

9/28/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 9.23

Resource Allocation Graph Examples

* Recall:
- request edge - directed edge T; — R,
- assignment edge - directed edge R, 3 T;

R, Re R, R, R,
10 e s
A

Vi E VK S
R : . =
: R, 20 R, R,

Simple Resource Allocation Graph Allocation Graph
Allocation 6raph With Deadlock With Cycle, but
No Deadlock
9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.24




Methods for Handling Deadlocks @

* Allow system to enter deadlock and then recover
- Requires deadlock detection algorithm

- Some technique for selectively preempting resources
and/or terminating tasks

* Ensure that system will never enter a deadlock
- Need to monitor all lock acquisitions
- Selectively deny those that might lead to deadlock

+ Ignore the problem and pretend that deadlocks
never occur in the system

- used by most operating systems, including UNIX

9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.25

Deadlock Detection Algorithm

* Only one of each type of resource = look for loops
* More General Deadlock Detection Algorithm

- Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):

[FreeResources] : Current free resources each 'r%?e
[Request,] : Current requests from thread
[Alloc,] : Current resources held by thread X

- See if tasks can eventually terminate on their own
[Avail] = [FreeResources] R
2dd all nodes to UNFINISHED 1 @
done = true o=
do { N

Foreach node in UNFINISHED {
if ([Request__, ] <= [Availl) {

node T T
remove node from UNFINISHED 1 3
[Avail]l = [Availl + [Alloc, 4]
done = false e

} until (done)

[
3
- Nodes left in UNFINISHED = deadlocked

9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.26

What to do when detect deadlock?

+ Terminate thread, force it to give up resources

- In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!

- Shoot a dining lawyer

- This isn't always possible: for instance, with a mutex,
can't shoot a thread and leave world inconsistent

* Preempt resources without killing off thread

- Take away resources from thread temporarily

- Doesn't always fit with semantics of computation
* Roll back actions of deadlocked threads

- Hit the rewind button on TIVO, pretend last few
minutes never happened

- For bridge example, make one car roll backwards (may
require others behind him)

- Common technique in databases (transactions)

- Of course, if you restart in exactly the same way, may
reenter deadlock once again

* Many operating systems use other ogﬁons
9/28/05 Kubiatowicz €S162 ©UCB Fall 200!

Lec 9.27

Techniques for Preventing Deadlock

- Infinite resources
- Include enough resources so that no one ever runs out
of resources. Doesn't have to be infinite, just large
- Give illusion of infinite resources (e.g. virtual memory)
- Examples:
» Bay bridge will 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)
* No Sharing of resources (totally independent threads)
- Not very realistic
+ Don't allow waiting
- How the phone company avoids deadlock
» Call to your Mom in Toledo, works its way through the
phone lines, but if blocked get busy signal.
- Technique used in ethernet/some multiprocessor nets
» Everyone speaks at once. If collision, back off and try
again
- Inefficient, since have to keep retrying
» Consider: trying to drive to San Francisco; when hit

traffic jam, suddenly you were transported bck home and
told to fry aggin!

iatowicz CS162 ©UCB Fall 2005 Lec 9.28

9/28/05




Techniques for Preventing Deadlock (con't)

* Make all threads request everything they'll need at
the beginning.
- Problem: Predicting future is hard, tend to over-
estimate resources
- Example:
» If need 2 chopsticks, request both at same time

» Don't leave home until we know no one is using any
intersection between here and where you want to go: only
one car on the Bay Bridge at a time

* Force all threads to request resources in a particular
order Prevents any cyclic use of resources
- Thus preventing deadlock
- Example
» Make tasks request disk, then memory, then..

» Keep from deadlock on freeways around SF by requiring

everyone to go clockwise
9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.29

Banker's Algorithm for Preventing Deadlock

*+ Toward right idea:
- State maximum resource needs in advance
- Allow particular thread to proceed if:
(available resources - #requested) > max
remaining that might be needed by any thread
* Banker's algorithm (less conservative):

- Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting
[Maxnode]'[A”ocnode] for [Reques‘rnod ]
Grant request if result is deadlock free fconser'vaﬁve!)
» Keeps system in a "SAFE"” state, i.e. there exists a
sequence {T,, T,, .. T,} with T, requesting all remaining
resources, #inishing, then T, requesting all remaining
resources, etc..

- Algorithm allows the sum of maximum resource needs of all

current threads to be greater than total resources
9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.30

Banker's Algorithm Example

%‘ \ e\ 4

W £O " O\
\ = O f; L

L

- \ -'r___)\\. ; N S S
> 4o

| ¥

* Banker's algorithm with dining lawyers

- "Safe” (won't cause deadlock) if when try to grab
chopstick either:

» Not last chopstick

» Is last chopstick but someone will have
two afterwards

- What if k-handed lawyers? Don't allow if:
» It's the last one, no one would have k
» It's 2" to last, and no one would have k-1

» It's 3™ to last, and no one would have k-2
» ..

9/28/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 9.31

Summary

* Language support for synchronization:

- Be careful of exceptions within critical sections

- Java provides synchronized keyword and one condition-

variable per object (with wait () and notify())

+ Starvation vs. Deadlock

- Starvation: thread waits indefinitely

- Deadlock: circular waiting for resources
* Four conditions for deadlocks

- Mutual exclusion

» Only one thread at a time can use a resource
- Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

- No preemption
» Resources are released only voluntarily by the threads
- Circular wait

» There exists a set {7}, .., T} of threads with a cyclic
waiting pattern
9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.32




Summary (2)

* Techniques for addressing Deadlock
- Allow system to enter deadlock and then recover
- Ensure that system will never enter a deadlock

- Ignore the problem and pretend that deadlocks never
occur in the system

+ Deadlock detection

- Attempts to assess whether waiting graph can every
make progress

* Deadlock prevention

- Assess, for each allocation, whether it has the
potential to lead to deadlock

- Banker's algorithm gives one way to assess this

9/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 9.33




