Cs162
Operating Systems and
Systems Programming
Lecture 10

Tips for Handling Group Projects
Thread Scheduling

October 3, 2005
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Deadlock

+ Starvation vs. Deadlock

- Starvation: thread waits indefinitely

- Deadlock: circular waiting for resources

- Deadlock=Starvation, but not other way around
* Four conditions for deadlocks

- Mutual exclusion

» Only one thread at a time can use a resource
- Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

- No preemption
» Resources are released only voluntarily by the threads
- Circular wait

» There exists a set {T;, .., T.} of threads with a cyclic
waiting pattern

10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.2

Review: Resource Allocation Graph Examples
* Recall:
- request edge - directed edge T; — R;
- assignment edge - directed edge R, > T;

R, R, R, R,

AN A\ N '\

Q,

Al

Vi E VidE S
R 2 . =
: R, : R, R,

Simple Resource Allocation Graph Allocation Graph
Allocation Graph With Deadlock With Cycle, but
No Deadlock

10/03/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 10.3

Review: Methods for Handling Deadlocks @

* Allow system to enter deadlock and then recover
- Requires deadlock detection algorithm

- Some technique for selectively preempting resources
and/or terminating tasks

* Ensure that system will never enter a deadlock
- Need to monitor all lock acquisitions
- Selectively deny those that might lead to deadlock

+ Ignore the problem and pretend that deadlocks
never occur in the system

- used by most operating systems, including UNIX

10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.4

Review: Train Example (Wormhole-Routed Network)

+ Circular dependency (Deadlock!)
- Each train wants to turn right
- Blocked by other trains
- Similar problem to multiprocessor networks
* Fix? Imagine grid extends in all four directions
- Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
- Called “dimension ordering” (X then Y)

10/03/05 Lec 10.5

Review: Banker's Algorithm for Preventing Deadlock

* Monitor every request to see if it has the potential to
lead to deadlock

- Every thread must state a “maximum”
expected allocation ahead of time

- Keeps system in a "SAFE" state = there
always exists a sequence {T,, T,, .. T} with
T, able to request all its remaining resources
and finish, then T, able to request all its
remaining resources and finish, etc..

- Evaluate each request and grant if some ordering of
threads is still deadlock free afterward
» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting
[Max, 4.]-[Alloc,,q.] for [Request,]
6rant request if result is deadlock free (conservative!)
- Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.6

Goals for Today

- Tips for Programming in a Project Team
+ Scheduling Policy goals

+ Policy Options

 Implementation Considerations

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.7

Tips for Programming in a Project Team

- Big projects require more than one
person (or long, long, long time)

- Big OS: thousands of person-years!
+ It's very hard to make software
project teams work correctly

- Doesn't seem to be as true of big

construction projects

» Consider building the Empire state
building: staging iron production
thousands of miles away

» Or the Hoover dam: built towns to
hold workers

- Ok to miss deadlines?

"You just have
to get your » We make it free (slip days)

» In reality they're very expensive:
time-to-market is one of the most
important things!

10/03/05 Kubiatowicz €5162 ®UCB Fall 2005 Lec 10.8

synchronization right!”

Big Projects

* What is a big project?
- Time/work estimation is hard

- Programmers are eternal oP'rimistics
(it will only take two days)!

» This is why we bug you about
starting the project early
» Had a grad student who used to say he just needed
"10 minutes” to fix something. Two hours later...
* Can a project be efficiently partitioned?
- Partitionable task decreases in time as

you add people
- But, if you require communication: "

» Time reaches a minimum bound V\—
» With complex interactions, time increases! \v
- Mythical person-month problem:
» You estimate how long a project will take
» Starts to fall behind, so you add more people

» Project takes even more timel
Kubiatowicz CS162 ©UCB Fall 2005 Lec 10.9

10/03/05

Techniques for Partitioning Tasks

* Functional
- Person A implements threads, Person B implements

semaphores, Person C implements locks...
- Problem: Lots of communication across APIs
» If B changes the API, A may need to make changes
» Story: Large airline company spent $200 million on a new
scheduling and booking system. Two teams “working
together.™ After two years, went to merge software.

Faglled! Interfaces had changed (documented, but no one
noticed). Result: would cost another $200 million to fix.

* Task
- Person A designs, Person B writes code, Person C tests
be difficult to find right balance, but can focus on

- Ma
eacgm person's strengths (Theory vs systems hacker)

- Since Debugging is hard, Microsoft has fwo testers for
each programmer
* Most €S162 project teams are functional, but people

ave had success with task-based divisions
10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.10

Communication

* More people mean more communication
- Changes have to be propagated to more people
- Think about person writing code for most
fundamental component of system: everyone depends
on them!
* Miscommunication is common
- "Index starts at 0? I thought you said 1!”

- Who makes decisions?
- Individual decisions are fast but trouble

- 6roup decisions take time
- Centralized decisions require a big picture view (someone
who can be the "system architecf”)

- Often designating someone as the system architect
can be a good thing
- Better not be clueless
- Better have good people skills

- Better let other people do work
Kubiatowicz €S162 ©UCB Fall 2005

10/03/05 Lec 10.11

Coordination

* More people = no one can make all meefings!
- They miss decisions and associated discussion k
- Example from earlier class: one person missed
meetings and did something group had rejected
- Why do we limit groups to 5 people?
» You would never be able to schedule meetings
- Why do we require 3 or 4 people minimum?
» You need to experience groups to get ready for real world
* People have different work styles
- Some people work in the morning, some at night
- How do you decide when to meet or work together?

* What about project slippage?

- It will happen, guaranteed!
- Another example: final project in CS152, everyone busy
but not talking. One person way behind. No one knew

until very end - too late!
* Hard to add people to existing group

- Members have already figured out how to work to
10/03/05 Kubiatowicz €5162 ©UCB Fall 2005

gether

.12

How to Make it Work?

* People are human. Get over it.

- People will make mistakes, miss meetings, miss
deadlines, etc. You need to live with it and adapt

- It is better to anticipate problems than clean up
afterwards.
*+ Document, document, document
- Why Document?
» Expose decisions and communicate to others
» Easier to spot mistakes early
» Easier to estimate progress
- What to document?
» Everything (but don't overwhelm people or no one will read)
- Standardize!

» One programming format: variable naming conventions, tab
indents,etc.

» Comments (Requires, effects, modifies)—javadoc?

10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.13

Suggested Documents for You to Maintain

* Project objectives: goals, constraints, and priorities
* Specifications: the manual plus performance specs

- This should be the first document generated and the
last one finished

* Meeting notes
- Document all decisions
- You can often cut & paste for the design documents
* Schedule: What is your anticipated timing?
- This document is criticall
* Organizational Chart
- Who is responsible for what task?

10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.14

Use Software Tools

+ Source revision control software (CVS)
- Easy to go back and see history
- Figure out where and why a bug got introduced
- Communicates changes to everyone (use CVS's features)
* Use automated testing tools
- Write scripts for non-interactive software
- Use "expect” for interactive software

- Microsoft rebuild the XP kernel every night with the
day's changes. Everyone is running/testing the latest
software

* Use E-mail and instant messaging consistently to
leave a history trail

10/03/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 10.15

Test Continuously

* Integration tests all the time, not at 11pm
on due date!

- Write dummy stubs with simple functionality
» Let's people test continuously, but more work
- Schedule periodic integration tests

» Get everyone in the same room, check out code, build,
and test.

» Don't wait until it is too late!
* Testing types:
- Unit tests: check each module in isolation (use JUnit?)
- Daemons: subject code to exceptional cases
- Random testing: Subject code to random timing changes
* Test early, test later, test again

- Tendency is to test once and forget: what if something
changes in some other part of the code?

10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.16

Administrivia

+ Midterm I coming up in < two weeks:

- Wednesday, 10/12, 5:30 - 8:30, Here

- Should be 2 hour exam with extra time

- Closed book, one page of hand-written notes (both sides)
* No class on day of Midterm

- I will post extra office hours for people who have
questions about the material (or life, whatever)

* Midterm Topics
- Topics: Everything up to that Monday, 10/10

- History, Concurrency, Multithreading, Synchronization,
Protection/Address Spaces

10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.17

CPU Scheduling
:::| ready queus ’\Clhﬁi‘f_
—Q@-—{ O queue H 110 request I‘—

time slice
expired
child fork a
executes child

interrupt walt for an
occurs interrupt

+ Earlier, we talked about the life-cycle of a thread

- Active threads work their way from Ready queue to
Running to various waiting queues.

* Question: How is the OS to decide which of several
tasks to take off a queue?
- Obvious queue to worry about is ready queue
- Others can be scheduled as well, however
* Scheduling: deciding which threads are given access

to resources from moment to moment
10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.18

te—1

Scheduling Assumptions

* CPU scheduling big area of research in early 70s
* Many implicit assumptions for CPU scheduling:
- One program per user
- One thread per program
- Programs are independent
* Clearly, these are unrealistic but they simplify the
problem so it can be solved

- For instance: is “fair” about fairness among users or
programs?
» If I run one compilation job and you run five, you get five
times as much CPU on many operating systems
* The high-level goal: Dole out CPU time to optimize
some desired parameters of system

USER1 USER2 USER3 USER1 USER2

10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.19

Assumption: CPU Bursts

.ii". Weighted toward small bursts

Trequency

1] B 16 24 32
burst duration (milliseconds)

- Execution model: programs alternate between bursts of
CPU and I/0
- Program typically uses the CPU for some period of time,
then does 1/0, then uses CPU again
- Each scheduling decision is about which job to give to the
CPU for use by its next CPU burst
- With timeslicing, thread may be forced to give up CPU

before finishing current CPU burst
10/03/05 ubiatowicz €S162 ©UCB Fall 2005 Lec 10.20

Scheduling Policy Goals/Criteria

* Minimize Response Time
- Mimimize elapsed time to do an operation (or job)
- Response time is what the user sees:
» Time to echo a keystroke in editor
» Time to compile a program
» Realtime Tasks: Must meet deadlines imposed by World
* Maximize Throughput
- Maximize operations (or jobs) per second
- Throughput related to response time, but not identical:

» Minimizing response time will lead to more context
switching than if you only maximized throughput

- Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)
* Fairness
- Share CPU among users in some equitable way
- Fairness is not minimizing average response time:

» Better average response time by making system /ess fair
ubiatowicz €S162 ©UCB Fall 2005 Lec 10.21

10/03/05

First-Come, First-Served (FCFS) Scheduling

* First-Come, First-Served (FCFS)
- Also “"First In, First Out” (FIFO) or “"Run until done”

» In early systems, FCFS meant one program
scheduled until done (including I/0)

» Now, means keep CPU until thread blocks

+ Example: Process Burst Time
P 24
A 3
7, 3

Suppose processes arrive in the order: P, , P, , P;
The Gantt Chart for the schedule is:

P, P, Ps

0 24 27 30
Waiting time for P, = 0: P, = 24; P;= 27
- Average waiting time: (0 + 24 + 27)/3 = 17
- Average Completion time: (24 + 27 + 30)/3 = 27

* Convoy effect: short process behind long process
10/03/05 KubiatowicZ €S162 ©UCB Fall 2005 Lec 10.22

FCFS Scheduling (Cont.)

+ Example continued:

- Suppose that processes arrive in order: P, , P;, P,
Now, the Gantt chart for the schedule is:

P, Ps P,

0 3 6 30

- Waiting time for P, =6,P,=0.P;=3

- Average waiting time: (6 + 0 + 3)/3 = 3

- Average Completion time: (3 + 6 + 30)/3 = 13
+ In second case:

- average waiting time is much better (before it was 17)

- Average completion time is better (before it was 27)
+ FIFO Pros and Cons:

- Simple (+)

- Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of

10/03/05 Small items. Upside: get ¥o read gboyt space aliens! ..

Round Robin (RR)

* FCFS Scheme: Potentially bad for short jobs!
- Depends on submit order

- If you are first in line at supermarket with milk, you
don't care who is behind you, on the other hand..

* Round Robin Scheme
- Each process gets a small unit of CPU time
(time guantum), usually 10-100 milliseconds
- After quantum expires, the process is preempted
and added to the end of the ready queue.
- n processes in ready queue and time quantum is ¢ =
» Each process gets 1/n of the CPU time
» In chunks of at most ¢ time units
» No process waits more than (#-1)g time units
* Performance
- ¢ large = FCFS
- ¢ small = Interleaved (really small=hyperthreading?)

- g must be large with respect to context switch,
otherwise overhead is too high (all overhead)
10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.24

Example of RR with Time Quantum = 20

* Example . Process Burst Time
P, 53
P, 8
Py 68
P, 24

- The Gantt chart is:

P, Py | Py [Py | Py Py | P | P | Py Py

0 20 28 48 68 88 108 112 125 145 153

- Waiting time for P,=(68-20)+(112-88)=72
P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=88

- Average waiting time = (72+20+85+88)/4=66%

- Average completion time = (125+28+153+112)/4 = 1043

« Thus, Round-Robin Pros and Cons:
- Better for short jobs, Fair (+)

- Context-switching time adds up for long jobs (-)
10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.25

Round-Robin Discussion

* How do you choose time slice?
- What if too big?
» Response time suffers
- What if infinite (c0)?
» Get back FIFO
- What if time slice too small?
» Throughput suffers!
* Actual choices of timeslice:
- Initially, UNIX timeslice one second:
» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo
each keystrokel!
- In practice, need to balance short-job performance
and long-job throughput:
» Typical time slice today is between 10ms - 100ms
» Typical context-switching overhead is 0.1ms - 1ms
» Roughly 1% overhead due to context-switching

10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.26

Comparisons between FCFS and Round Robin

* Assuming zero-cost context-switching time, is RR
always better than FCFS?
+ Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

+ Completion Times: | Job # | FIFO RR

1 100 991
2 200 992
9 900 999

10 1000 1000

- Both RR and FCFS finish at the same time

- Average response time is much worse under RR!
» Bad when all jobs same length

* Also: Cache state must be shared between all jobs with
RR but can be devoted to each job with FIFO

- Total time for RR longer even for zero-cost switch!
10/03/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 10.27

Earlier Example with Different Time Quantum

P P P P
Best FCFS: | [g] | [24] [53] [68]
0 8 32 85 153
Quantum P, P, Py P, Average
Best FCFS | 32 0 85 8 312
Q-1 84 | 22 85 57 62
: Q-5 82 | 20 85 58 612
¥ffn';‘ Q-8 80 8 85 56 573
Q-10 | 8 | 10 85 68 612
Q=20 | 72 | 20 85 88 663
Worst FCFS| 68 | 145 0 121 | 83k
Best FCFS | 85 8 53 | 32 69%
Q-1 137 | 30 | 153 | 81 | 100%
, Q=5 | 135 | 28 | 153 | 82 991
Completion| Q-3 | 133 | 16 | 153 | 80 958
Q-10 | 135 | 18 | 153 | 92 991
Q-20 | 125 | 28 | 153 | 11z | 104}
L Worst FCFS | 121 | 153 | 68 145 | 1213

What if we Knew the Future?

+ Could we always mirror best FCFS?
- Shortest Job First (SJF):

- Run whatever job has the least amount of
computation to do

- Sometimes called “"Shortest Time to
Completion First” (STCF)

- Shortest Remaining Time First (SRTF):

- Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, |mmed|a'l'ely preempt CPU

- Sometimes called "Shortest Remaining Time to
Completion First” (SRTCF)

* These can be applied either to a whole program or
the current CPU burst of each program
- Idea is to get short jobs out of the system
- Big effect on short jobs, only small effect on long ones

- Result is better average response time
10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.29

Discussion

+ SIF/SRTF are the best you can do at minimizing
average response time

- Provably optimal (SJF among non-preemptive, SRTF
among preemptive)

- Since SRTF is always at least as good as SJF, focus
on SRTF

+ Comparison of SRTF with FCFS and RR

- What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

- What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.30

Example to illustrate benefits of SRTF

AorB c
I I " " "
I I
Cs Cs C's

. I/0 I/0 1/0
* Three jobs: /0 o

- A,B: both CPU bound, run for week
C: I/0 bound, loop 1ms CPU, 9ms disk I/0

- If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

+ With FIFO:

- Once A or B get in, keep CPU for two weeks
* What about RR or SRTF?

- Easier to see with a timeline

10/03/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 10.31

SRTF Example continued:

(Disk
Utilization:

A B 9/201 ~ 4.5%

C

I I

Il I
—_—

C's RR 100ms time slice Dlsk
I/0 Utilization:
CABAB.. C Approx 90%

1111

e 1
— —
Disk
Utilization:
90%

RR 1ms time slice
C's C's
I/0 1I/0

C A A A

SRTF
C s C s
I/0 I/0
10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.32

SRTF Further discussion

- Starvafion
- SRTF can lead to starvation if many small jobs!
- Large jobs never get to run

+ Somehow need to predict future
- How can we do this?

- Some systems ask the user
» when you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

- But: Even non-malicious users have trouble predicting
runtime of their jobs

* Bottom line, can't really know how long job will take

- However, can use SRTF as a yardstick
for measuring other policies

- Optimal, so can't do any better
SRTF Pros & Cons

- Optimal (average response time) (+)

- Hard to predict future (-)

10/03/‘0é.}nf0|f‘ (-) Kubiatowicz €S162 ©UCB Fall 2005

Predicting the Length of the Next CPU Burst

* Adaptive: Changing policy based on past behavior
- CPU scheduling, in virtual memory, in file systems, etc
- Works because programs have predictable behavior
» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help
+ Example: SRTF with estimated burst length

- Use an estimator function on previous bursts:
Let t,_4, t,.2, T,.3. etc. be previous CPU burst lengths.
Estimate next Burst 1, = f(f,.1, 1, to.s.)

- Function f could be one of many different time series
estimation schemes (Kalman filters, etc)

- For instance,
exponential averaging
T, = ot +(1-a)t
with (O<a<1)

n-1

o

10/03/05 Kubiatowicz c{£ ™™ = ' % 0 ® O F 10,34

Multi-Level Feedback Scheduling

quantum = 8

| e ——— asks Demoted to
quantum = 16 |

/—l// Low Priority

* Another method for exploiting past behavior
- First used in CTSS
- Multiple queues, each with different priority
» Higher priority queues often considered “foreground” tasks
- Each queue has its own scheduling algorithm
» e.g. foreground - RR, background - FCFS

» Sometimes multiple RR priorities with quantum increasing
exponentially (highest:1ms, next:2ms, next: 4ms, etc)

* Adjust each job's priority as follows (details vary)
- Job starts in highest priority queue
- If timeout expires, drop one level

- If timeout doesn't expire, push up one level (or to top)
10/03/05 Kubiatowicz €S5162 ©UCB Fall 2005 Lec 10.35

ﬂ

_li:Flg-Running Compute

Scheduling Details

* Result approximates SRTF:
- CPU bound jobs drop like a rock
- Short-running I/0 bound jobs stay near top
+ Scheduling must be done between the queues
- Fixed priority scheduling:
» serve all from highest priority, then next priority, etc.
- Time slice:
» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest
* Countermeasure: user action that can foil intent of
the OS designer
- For multilevel feedback, put in a bunch of meaningless
I/0 to keep job's priority high
- Of course, if everyone did this, wouldn't work!
+ Example of Othello program:

- Playing against competitor, so key was to do computing
at higher priority the competitors.

10/03/05 > Put in printfis, ran much, faster!, .05 Lec 10.36

What about Fairness?

* What about fairness?
- Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):
» long running jobs may never get CPU
» In Multics, shut down machine,found 10-year-old job
- Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run
- Tradeoff: fairness gained by hurting avg response timel
* How to implement fairness?
- Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express
lanes get so long, get better service by going into one of
the other lines
- Could increase priority of jobs that don't get service
» What is done in UNIX
» This is ad hoc—what rate should you increase priorities?

» And, as system gets overloaded, no job gets CPU time, so

everyone increases in griorifyzﬂmeracﬁve Jjobs suffer
10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.37

Lottery Scheduling

* Yet another alternative: Lottery Scheduling
- Give each job some number of lottery tickets
- On each time slice, randomly pick a winning ticket

- On average, CPU time is proportional to number of
tickets given to each job
* How to assign tickets?
- To approximate SRTF, short running jobs get more,
long running jobs get fewer
- To avoid starvation, every job gets at least one
ticket (everyone makes progress)

+ Advantage over strict priority scheduling: behaves
gracefully as load changes

- Adding or deleting a job affects all jobs
proportionally, independent of how many tickets each
Job possesses

10/03/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.38

Lottery Scheduling Example

* Lottery Scheduling Example
- Assume short jobs get 10 tickets, long jobs get 1 ticket

short jobs/ | % of CPU each | % of CPU each
long jobs short jobs gets long jobs gets
1/1 91% 9%

0/2 N/A 50%

2/0 50% N/A
10/1 9.9% 0.99%
1/10 50% 5%

- What if too many short jobs to give reasonable
response time?

» In UNIX, if load average is 100, hard to make progress
» One approach: log some user out

10/03/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 10.39

How to Evaluate a Scheduling algorithm?

+ Deterministic modeling

- takes a predetermined workload and compute the
performance of each algorithm for that workload

* Queueing models
- Mathematical approach for handling stochastic workloads
+ Implementation/Simulation:

- Build system which allows actual algorithms to be run
against actual data. Most flexible/general.

performance
simulation $ statistics
/ | for FCFS
A FCFS |
CPU 10F
1o 213
actual CPU 12 performance
process —p VO 112 m—p SimMulation =P sialistics
eecution CPU 2 for SJF
Vo 147
F
CPU 173 = 2
trace tape s 0
gy el
performance
\ﬁ simulation = statistics
[for RR (g = 14
AR (g = 14}

10/03/05 —___ Kubiarowicz C5162 ©UCB Fail 2005 Lec 10.40

A Final Word on Scheduling

When do the details of the scheduling policy and

fairness really matter?
- When there aren't enough resources to go around

* When should you simply buy a faster computer?

- (Or network link, or expanded highway, or ..)
- One approach: Buy it when it will pay
for itself in improved response time

» Assuming you're paying for worse
response time in reduced productivity,
customer angst, etc..

Id buy a
&%,

» Might think that you shou
faster X when X is utilized 10

LV]I
asuodsay

%007

but usually, response time
to infinity as ufilization=100%

* An interesting implication of this curve:
- Most scheduling algorithms work fine in the “linear”
portion of the Toad curve, fail otherwise

10/03/05 Kubiatowicz €S162 ©UCB Fall 2005

8oes
Utilization

- Argues for buying a faster X when hit “knee" of curve

+ Scheduling:

Summary

+ Suggestions for dealing with Project Partners

- Start Early, Meet Often
- Develop Good Organizational Plan, Document Everything,

Use the right tools
- Develop a Comprehensive Testing Plan

- (Oh, and add 2 years to every deadline!)
selecting a waiting process from the ready

queue and allocating the CPU to it

+ FCFS Scheduling:

- Run threads to completion in order of submission

- Pros: Simple
- Cons: Short jobs get stuck behind long ones

* Round-Robin Scheduling:
- Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

- Pros: Better for short jobs

- Cons: Poor when jobs are same length

Kubiatowicz €S162 ©UCB Fall 2005 Lec 10.42

10/03/05

Summary (2)

Shortest Job First (SJF)/Shortest Remaining Time

First (SRTF):

- Run whatever job has the least amount of computation

to do/least remaining amount of computation to do
- Pros: Optimal (average response time)
- Cons: Hard to predict future, Unfair
* Multi-Level Feedback Scheduling:
- Multiple queues of different priorities
- Automatic promotion/demotion of process priority
order to approximate SJF/SRTF

* Lottery Scheduling:
- Give each thread a pr'ior'i'ry-deper)\den'r number of

tokens (short tasks=>more tokens

- Reserve a minimum number of tokens for every thread

to ensure forward progress/fairness

10/03/05 Kubiatowicz €S162 ©UCB Fall 2005

in

Lec 10.43

