
CS162
Operating Systems and
Systems Programming

Lecture 10

Tips for Handling Group Projects
Thread Scheduling

October 3, 2005
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 10.210/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources
– Deadlock⇒Starvation, but not other way around

• Four conditions for deadlocks
– Mutual exclusion

» Only one thread at a time can use a resource
– Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

– No preemption
» Resources are released only voluntarily by the threads

– Circular wait
» There exists a set {T1, …, Tn} of threads with a cyclic

waiting pattern

Lec 10.310/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Resource Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Recall:
– request edge – directed edge T1 → Rj
– assignment edge – directed edge Rj → Ti

Lec 10.410/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Methods for Handling Deadlocks

• Allow system to enter deadlock and then recover
– Requires deadlock detection algorithm
– Some technique for selectively preempting resources
and/or terminating tasks

• Ensure that system will never enter a deadlock
– Need to monitor all lock acquisitions
– Selectively deny those that might lead to deadlock

• Ignore the problem and pretend that deadlocks
never occur in the system
– used by most operating systems, including UNIX

Lec 10.510/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

Disallowed

By Rule

Lec 10.610/03/05 Kubiatowicz CS162 ©UCB Fall 2005

• Monitor every request to see if it has the potential to
lead to deadlock
– Every thread must state a “maximum”
expected allocation ahead of time

– Keeps system in a “SAFE” state ⇒ there
always exists a sequence {T1, T2, … Tn} with
T1 able to request all its remaining resources
and finish, then T2 able to request all its
remaining resources and finish, etc..

– Evaluate each request and grant if some ordering of
threads is still deadlock free afterward
» Technique: pretend each request is granted, then run

deadlock detection algorithm, substituting
[Maxnode]-[Allocnode] for [Requestnode]

Grant request if result is deadlock free (conservative!)
– Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

Review: Banker’s Algorithm for Preventing Deadlock

Lec 10.710/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Goals for Today

• Tips for Programming in a Project Team
• Scheduling Policy goals
• Policy Options
• Implementation Considerations

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Lec 10.810/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Tips for Programming in a Project Team
• Big projects require more than one

person (or long, long, long time)
– Big OS: thousands of person-years!

• It’s very hard to make software
project teams work correctly
– Doesn’t seem to be as true of big
construction projects
» Consider building the Empire state

building: staging iron production
thousands of miles away

» Or the Hoover dam: built towns to
hold workers

– Ok to miss deadlines?
» We make it free (slip days)
» In reality they’re very expensive:

time-to-market is one of the most
important things!

“You just have
to get your

synchronization right!”

Lec 10.910/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Big Projects
• What is a big project?

– Time/work estimation is hard
– Programmers are eternal optimistics
(it will only take two days)!
» This is why we bug you about

starting the project early
» Had a grad student who used to say he just needed

“10 minutes” to fix something. Two hours later…
• Can a project be efficiently partitioned?

– Partitionable task decreases in time as
you add people

– But, if you require communication:
» Time reaches a minimum bound
» With complex interactions, time increases!

– Mythical person-month problem:
» You estimate how long a project will take
» Starts to fall behind, so you add more people
» Project takes even more time!

Lec 10.1010/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Techniques for Partitioning Tasks
• Functional

– Person A implements threads, Person B implements
semaphores, Person C implements locks…

– Problem: Lots of communication across APIs
» If B changes the API, A may need to make changes
» Story: Large airline company spent $200 million on a new

scheduling and booking system. Two teams “working
together.” After two years, went to merge software.
Failed! Interfaces had changed (documented, but no one
noticed). Result: would cost another $200 million to fix.

• Task
– Person A designs, Person B writes code, Person C tests
– May be difficult to find right balance, but can focus on
each person’s strengths (Theory vs systems hacker)

– Since Debugging is hard, Microsoft has two testers for
each programmer

• Most CS162 project teams are functional, but people
have had success with task-based divisions

Lec 10.1110/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Communication
• More people mean more communication

– Changes have to be propagated to more people
– Think about person writing code for most
fundamental component of system: everyone depends
on them!

• Miscommunication is common
– “Index starts at 0? I thought you said 1!”

• Who makes decisions?
– Individual decisions are fast but trouble
– Group decisions take time
– Centralized decisions require a big picture view (someone
who can be the “system architect”)

• Often designating someone as the system architect
can be a good thing
– Better not be clueless
– Better have good people skills
– Better let other people do work

Lec 10.1210/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Coordination
• More people ⇒ no one can make all meetings!

– They miss decisions and associated discussion
– Example from earlier class: one person missed
meetings and did something group had rejected

– Why do we limit groups to 5 people?
» You would never be able to schedule meetings

– Why do we require 3 or 4 people minimum?
» You need to experience groups to get ready for real world

• People have different work styles
– Some people work in the morning, some at night
– How do you decide when to meet or work together?

• What about project slippage?
– It will happen, guaranteed!
– Another example: final project in CS152, everyone busy
but not talking. One person way behind. No one knew
until very end – too late!

• Hard to add people to existing group
– Members have already figured out how to work together

Lec 10.1310/03/05 Kubiatowicz CS162 ©UCB Fall 2005

How to Make it Work?
• People are human. Get over it.

– People will make mistakes, miss meetings, miss
deadlines, etc. You need to live with it and adapt

– It is better to anticipate problems than clean up
afterwards.

• Document, document, document
– Why Document?

» Expose decisions and communicate to others
» Easier to spot mistakes early
» Easier to estimate progress

– What to document?
» Everything (but don’t overwhelm people or no one will read)

– Standardize!
» One programming format: variable naming conventions, tab

indents,etc.
» Comments (Requires, effects, modifies)—javadoc?

Lec 10.1410/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Suggested Documents for You to Maintain

• Project objectives: goals, constraints, and priorities
• Specifications: the manual plus performance specs

– This should be the first document generated and the
last one finished

• Meeting notes
– Document all decisions
– You can often cut & paste for the design documents

• Schedule: What is your anticipated timing?
– This document is critical!

• Organizational Chart
– Who is responsible for what task?

Lec 10.1510/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Use Software Tools

• Source revision control software (CVS)
– Easy to go back and see history
– Figure out where and why a bug got introduced
– Communicates changes to everyone (use CVS’s features)

• Use automated testing tools
– Write scripts for non-interactive software
– Use “expect” for interactive software
– Microsoft rebuild the XP kernel every night with the
day’s changes. Everyone is running/testing the latest
software

• Use E-mail and instant messaging consistently to
leave a history trail

Lec 10.1610/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Test Continuously

• Integration tests all the time, not at 11pm
on due date!
– Write dummy stubs with simple functionality

» Let’s people test continuously, but more work
– Schedule periodic integration tests

» Get everyone in the same room, check out code, build,
and test.

» Don’t wait until it is too late!
• Testing types:

– Unit tests: check each module in isolation (use JUnit?)
– Daemons: subject code to exceptional cases
– Random testing: Subject code to random timing changes

• Test early, test later, test again
– Tendency is to test once and forget; what if something
changes in some other part of the code?

Lec 10.1710/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Administrivia

• Midterm I coming up in < two weeks:
– Wednesday, 10/12, 5:30 – 8:30, Here
– Should be 2 hour exam with extra time
– Closed book, one page of hand-written notes (both sides)

• No class on day of Midterm
– I will post extra office hours for people who have
questions about the material (or life, whatever)

• Midterm Topics
– Topics: Everything up to that Monday, 10/10
– History, Concurrency, Multithreading, Synchronization,
Protection/Address Spaces

Lec 10.1810/03/05 Kubiatowicz CS162 ©UCB Fall 2005

CPU Scheduling

• Earlier, we talked about the life-cycle of a thread
– Active threads work their way from Ready queue to
Running to various waiting queues.

• Question: How is the OS to decide which of several
tasks to take off a queue?
– Obvious queue to worry about is ready queue
– Others can be scheduled as well, however

• Scheduling: deciding which threads are given access
to resources from moment to moment

Lec 10.1910/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Scheduling Assumptions
• CPU scheduling big area of research in early 70s
• Many implicit assumptions for CPU scheduling:

– One program per user
– One thread per program
– Programs are independent

• Clearly, these are unrealistic but they simplify the
problem so it can be solved
– For instance: is “fair” about fairness among users or
programs?
» If I run one compilation job and you run five, you get five

times as much CPU on many operating systems
• The high-level goal: Dole out CPU time to optimize

some desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time
Lec 10.2010/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Assumption: CPU Bursts

• Execution model: programs alternate between bursts of
CPU and I/O
– Program typically uses the CPU for some period of time,
then does I/O, then uses CPU again

– Each scheduling decision is about which job to give to the
CPU for use by its next CPU burst

– With timeslicing, thread may be forced to give up CPU
before finishing current CPU burst

Weighted toward small bursts

Lec 10.2110/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Scheduling Policy Goals/Criteria
• Minimize Response Time

– Mimimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Realtime Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context
switching than if you only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair
Lec 10.2210/03/05 Kubiatowicz CS162 ©UCB Fall 2005

First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
» In early systems, FCFS meant one program

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks

• Example: Process Burst Time
P1 24
P2 3
P3 3

– Suppose processes arrive in the order: P1 , P2 , P3 The Gantt Chart for the schedule is:

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time: (0 + 24 + 27)/3 = 17
– Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect: short process behind long process

P1 P2 P3

24 27 300

Lec 10.2310/03/05 Kubiatowicz CS162 ©UCB Fall 2005

FCFS Scheduling (Cont.)
• Example continued:

– Suppose that processes arrive in order: P2 , P3 , P1
Now, the Gantt chart for the schedule is:

– Waiting time for P1 = 6; P2 = 0; P3 = 3
– Average waiting time: (6 + 0 + 3)/3 = 3
– Average Completion time: (3 + 6 + 30)/3 = 13

• In second case:
– average waiting time is much better (before it was 17)
– Average completion time is better (before it was 27)

• FIFO Pros and Cons:
– Simple (+)
– Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of
small items. Upside: get to read about space aliens!

P1P3P2

63 300

Lec 10.2410/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Round Robin (RR)
• FCFS Scheme: Potentially bad for short jobs!

– Depends on submit order
– If you are first in line at supermarket with milk, you
don’t care who is behind you, on the other hand…

• Round Robin Scheme
– Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q ⇒
» Each process gets 1/n of the CPU time
» In chunks of at most q time units
» No process waits more than (n-1)q time units

• Performance
– q large ⇒ FCFS
– q small ⇒ Interleaved (really small⇒hyperthreading?)
– q must be large with respect to context switch,
otherwise overhead is too high (all overhead)

Lec 10.2510/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Example of RR with Time Quantum = 20
• Example: Process Burst Time

P1 53
P2 8
P3 68
P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼
– Average completion time = (125+28+153+112)/4 = 104½

• Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)
– Context-switching time adds up for long jobs (-)

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

Lec 10.2610/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Round-Robin Discussion
• How do you choose time slice?

– What if too big?
» Response time suffers

– What if infinite (∞)?
» Get back FIFO

– What if time slice too small?
» Throughput suffers!

• Actual choices of timeslice:
– Initially, UNIX timeslice one second:

» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo

each keystroke!
– In practice, need to balance short-job performance
and long-job throughput:
» Typical time slice today is between 10ms – 100ms
» Typical context-switching overhead is 0.1ms – 1ms
» Roughly 1% overhead due to context-switching

Lec 10.2710/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Comparisons between FCFS and Round Robin
• Assuming zero-cost context-switching time, is RR

always better than FCFS?
• Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR!

» Bad when all jobs same length
• Also: Cache state must be shared between all jobs with

RR but can be devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

1000100010
9999009
………

9922002
9911001
RRFIFOJob #

Lec 10.2810/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum

P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

Lec 10.2910/03/05 Kubiatowicz CS162 ©UCB Fall 2005

What if we Knew the Future?

• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has the least amount of
computation to do

– Sometimes called “Shortest Time to
Completion First” (STCF)

• Shortest Remaining Time First (SRTF):
– Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

– Sometimes called “Shortest Remaining Time to
Completion First” (SRTCF)

• These can be applied either to a whole program or
the current CPU burst of each program
– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average response time

Lec 10.3010/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Discussion

• SJF/SRTF are the best you can do at minimizing
average response time
– Provably optimal (SJF among non-preemptive, SRTF
among preemptive)

– Since SRTF is always at least as good as SJF, focus
on SRTF

• Comparison of SRTF with FCFS and RR
– What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

– What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

Lec 10.3110/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Example to illustrate benefits of SRTF

• Three jobs:
– A,B: both CPU bound, run for week
C: I/O bound, loop 1ms CPU, 9ms disk I/O

– If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

• With FIFO:
– Once A or B get in, keep CPU for two weeks

• What about RR or SRTF?
– Easier to see with a timeline

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

Lec 10.3210/03/05 Kubiatowicz CS162 ©UCB Fall 2005

SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

CA BC

RR 100ms time slice

C’s
I/O

AC

C’s
I/O

AA

SRTF

Disk
Utilization:
Approx 90%

Disk
Utilization:

90%

Disk
Utilization:

9/201 ~ 4.5%

Lec 10.3310/03/05 Kubiatowicz CS162 ©UCB Fall 2005

SRTF Further discussion
• Starvation

– SRTF can lead to starvation if many small jobs!
– Large jobs never get to run

• Somehow need to predict future
– How can we do this?
– Some systems ask the user

» when you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

– But: Even non-malicious users have trouble predicting
runtime of their jobs

• Bottom line, can’t really know how long job will take
– However, can use SRTF as a yardstick
for measuring other policies

– Optimal, so can’t do any better
• SRTF Pros & Cons

– Optimal (average response time) (+)
– Hard to predict future (-)
– Unfair (-)

Lec 10.3410/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Predicting the Length of the Next CPU Burst
• Adaptive: Changing policy based on past behavior

– CPU scheduling, in virtual memory, in file systems, etc
– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help

• Example: SRTF with estimated burst length
– Use an estimator function on previous bursts:
Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.
Estimate next burst τn = f(tn-1, tn-2, tn-3, …)

– Function f could be one of many different time series
estimation schemes (Kalman filters, etc)

– For instance,
exponential averaging
τn = αtn-1+(1-α)τn-1
with (0<α≤1)

Lec 10.3510/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Multi-Level Feedback Scheduling

• Another method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to

Low Priority

Lec 10.3610/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Scheduling Details
• Result approximates SRTF:

– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling:

» serve all from highest priority, then next priority, etc.
– Time slice:

» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest

• Countermeasure: user action that can foil intent of
the OS designer
– For multilevel feedback, put in a bunch of meaningless
I/O to keep job’s priority high

– Of course, if everyone did this, wouldn’t work!
• Example of Othello program:

– Playing against competitor, so key was to do computing
at higher priority the competitors.
» Put in printf’s, ran much faster!

Lec 10.3710/03/05 Kubiatowicz CS162 ©UCB Fall 2005

What about Fairness?
• What about fairness?

– Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):
» long running jobs may never get CPU
» In Multics, shut down machine,found 10-year-old job

– Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run

– Tradeoff: fairness gained by hurting avg response time!
• How to implement fairness?

– Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express

lanes get so long, get better service by going into one of
the other lines

– Could increase priority of jobs that don’t get service
» What is done in UNIX
» This is ad hoc—what rate should you increase priorities?
» And, as system gets overloaded, no job gets CPU time, so

everyone increases in priority⇒Interactive jobs suffer
Lec 10.3810/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Lottery Scheduling

• Yet another alternative: Lottery Scheduling
– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of
tickets given to each job

• How to assign tickets?
– To approximate SRTF, short running jobs get more,
long running jobs get fewer

– To avoid starvation, every job gets at least one
ticket (everyone makes progress)

• Advantage over strict priority scheduling: behaves
gracefully as load changes
– Adding or deleting a job affects all jobs
proportionally, independent of how many tickets each
job possesses

Lec 10.3910/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Lottery Scheduling Example

• Lottery Scheduling Example
– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable
response time?
» In UNIX, if load average is 100, hard to make progress
» One approach: log some user out

5%50%1/10
0.99%9.9%10/1
N/A50%2/0
50%N/A0/2
9%91%1/1

% of CPU each
long jobs gets

% of CPU each
short jobs gets

short jobs/
long jobs

Lec 10.4010/03/05 Kubiatowicz CS162 ©UCB Fall 2005

How to Evaluate a Scheduling algorithm?
• Deterministic modeling

– takes a predetermined workload and compute the
performance of each algorithm for that workload

• Queueing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms to be run
against actual data. Most flexible/general.

Lec 10.4110/03/05 Kubiatowicz CS162 ©UCB Fall 2005

A Final Word on Scheduling
• When do the details of the scheduling policy and

fairness really matter?
– When there aren’t enough resources to go around

• When should you simply buy a faster computer?
– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay
for itself in improved response time
» Assuming you’re paying for worse

response time in reduced productivity,
customer angst, etc…

» Might think that you should buy a
faster X when X is utilized 100%,
but usually, response time goes
to infinity as utilization⇒100%

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear”
portion of the load curve, fail otherwise

– Argues for buying a faster X when hit “knee” of curve

Utilization

Response
tim

e 100%

Lec 10.4210/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Summary
• Suggestions for dealing with Project Partners

– Start Early, Meet Often
– Develop Good Organizational Plan, Document Everything,
Use the right tools

– Develop a Comprehensive Testing Plan
– (Oh, and add 2 years to every deadline!)

• Scheduling: selecting a waiting process from the ready
queue and allocating the CPU to it

• FCFS Scheduling:
– Run threads to completion in order of submission
– Pros: Simple
– Cons: Short jobs get stuck behind long ones

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

– Pros: Better for short jobs
– Cons: Poor when jobs are same length

Lec 10.4310/03/05 Kubiatowicz CS162 ©UCB Fall 2005

Summary (2)

• Shortest Job First (SJF)/Shortest Remaining Time
First (SRTF):
– Run whatever job has the least amount of computation
to do/least remaining amount of computation to do

– Pros: Optimal (average response time)
– Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities
– Automatic promotion/demotion of process priority in
order to approximate SJF/SRTF

• Lottery Scheduling:
– Give each thread a priority-dependent number of
tokens (short tasks⇒more tokens)

– Reserve a minimum number of tokens for every thread
to ensure forward progress/fairness

