Cs162
Operating Systems and
Systems Programming
Lecture 12

Protection (continued)
Address Translation

October 10, 2005
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Multi-Level Feedback Scheduling

;_L‘_ng-llurming Compute

= _ aslljs ngot_ed (o
e e /—l/ ow Priority
Lb' i FCFS |7y,

+ Another method for exploiting past behavior
- First used in CTSS
- Multiple queues, each with different priority
» Higher priority queues often considered “foreground” tasks
- Each queue has its own scheduling algorithm
» e.g. foreground - RR, background - FCFS

» Sometimes multiple RR priorities with quantum increasing
exponentially (highest:1ms, next:2ms, next: 4ms, etc)

* Adjust each job's priority as follows (details vary)
- Job starts in highest priority queue
- If timeout expires, drop one level

- If timeout doesn't expire, push up one level (or to toP)
10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.2

Review: Lottery Scheduling Example

* Lottery Scheduling Example
- Assume short jobs get 10 tickets, long jobs get 1 ticket

short jobs/ | % of CPU each | % of CPU each
long jobs short jobs gets | long jobs gets
1/1 91% 9%

0/2 N/A 50%

2/0 50% N/A
10/1 9.9% 0.99%
1/10 50% 5%

- What if too many short jobs to give reasonable
response time?

» In UNIX, if load average is 100, hard to make progress
» One approach: log some user out

10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.3

Review: Important Aspects of Memory Multiplexing

+ Controlled overlap:
- Separate state of threads should not collide in physical
memory. Obviously, unexpected overlap causes chaos!
- Conversely, would like the ability to overlap when
desired (zor' communication)
* Translation:
- Ability to translate accesses from one address space
(virtual) to a different one (physical)
- When translation exists, processor uses virtual
addresses, physical memory uses physical addresses
- Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs
- Protection:
- Prevent access to private memory of other processes

» Different pages of memory can be given special behavior
(Read Only, Invisible to user programs, etc).

» Kernel data protected from User programs

» Programs protected from themselves
10/10/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 12.4

Goals for Today

- Finish discussion of protection
- Address Translation Schemes

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.5

Dual-Mode Operation

* To Assist with Protection, Hardware provides at
least two modes (Dual-Mode Operation):

- "Kernel” mode (or “supervisor” or “protected”)

- "User” mode (Normal program mode)

- Mode set with bits in special control register only
accessible in kernel-mode

* Intel processor actually has four “rings” of
protection:
- PL (Priviledge Level) from O - 3
» PLO has full access, PL3 has least

- Privilege Level set in code segment descriptor (CS)

- Mirrored "TIOPL" bits in condition register gives
permission to programs to use the I/O instructions

- Typical OS kernels on Intel processors only use PLO
(“user”) and PL3 (“kernel”)

10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.6

For Protection, Lock User-Programs in Asylum
+ Idea: Lock user programs in padded cell
with no exit or saar'p objects
- Cannot change mode to kernel mode
- User cannot modify page table mapping

- Limited access to memory: cannot
adversely effect other processes

» Side-effect: Limited access to
memorx-mapped I/0 operations =
(I/0 that occurs by reading/writing memory locatio

- Limited access to interrupt controller
- What else needs to be protected?
* A couple of issues
- How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are
the same person. How do you manage this???

- How do programs interact?
- How does one switch between kernel and user modes?
» OS — user (kernel — user mode): getting into cell

» User— OS (user — kernel mode): 2%e'r*ring out of cell
10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec

12.7

How to get from Kernel—-User

+ What does the kernel do to create a new user
process?

- Allocate and initialize address-space control block
- Read program off disk and store in memory
- Allocate and initialize translation table
» Point at code in memory so program can execute
» Possibly point at statically initialized data
- Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program
* How does kernel switch between processes?
- Same saving/restoring of registers as before

- Save/restore hardware pointer to translation table
10/10/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 12.8

User—Kernel (System Call)

* Can't let inmate (user) get out of padded cell on own
- Would defeat purpose of protection!
- So, how does the user program get back into kernel?

User process
user mode

(mode bit =1

T
user process executing | calls system call | | return from system call |

\ i

1 X

13 7
K | trap retum
e mode bit=0 mode hit = 1
kemel mode

execute system call ((mode bit = 0

- System call: Voluntary procedure call into kernel
- Hardware for controlled User—Kernel transition
- Can any kernel routine be called?
» No! Only specific ones.
- System call ID encoded into system call instruction
» Index forces well-defined interface with kernel

10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.9

System Call Continued

* What are some system calls?

- I/0: open, close, read, write, Iseek

- Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
- Process: fork, exit, wait (like join)

- Network: socket create, set options

* Are system calls constant across operating systems?

- Not entirely, but there are lots of commonalities
- Also some standardization attempts (POSIX)

* What happens at beginning of system call?

» Hardware entry to kernel sets system to kernel mode
» Handler address fetched from table/Handler started

- System Call argument passing:

- In registers (not very much can be passed)

- Write into user memory, kernel copies into kernel mem
» User addresses must be translatediw
» Kernel has different view of memory than user

- Every Argument must be explicitly checked!

10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.10

User—Kernel (Exceptions: Traps and Interrupts)
+ A system call insfruction causes a synchronous
exception (or “trap”)
- In fact, often called a software “trap” instruction
* Other sources of synchronous exceptions:

- Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

- Segmentation Fault (address out of range)
- Page Fault (for illusion of infinite-sized memory)
+ Interrupts are Asynchronous Exceptions
- Examples: timer, disk ready, network, etc....
- Interrupts can be disabled, traps cannot!
+ On system call, exception, or interrupt:
- Hardware enters kernel mode with interrupts disabled
- Saves PC, then jumps to appropriate handler in kernel

- For some processors (x86), processor also saves
registers, changes stack, etc.

* Actual handler %pically saves registers, other CPU
s FigTe. and switches to kernel stack. Lec 1211

Additions to MIPS ISA to support Exceptions?

- Exception state is kept in "Coprocessor 0"

- Use mfcO read contents of these registers:

» BadVAddr #regisfer 8): contains memory address at which
memory reference error occurred

» Status (register 12): interrupt mask and enable bits
» Cause (register 13): the cause of the exception
» EPC (register 14): address of the affected instruction

15 8 543210
Status M ask klelk|elk|e

old prev cur

- Status Register fields:
- Mask: Interrupt enable
» 1 bit for each of 5 hardware and 3 software interrupts
- k = kernel/user: O=kernel mode
- e = interrupt enable: O=interrupts disabled
- Exception=6 LSB shifted left 2 bits, setting 2 LSB to O:
» run in kernel mode with interrupts disabled

10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.12

Details of Cause Register
15 10 5 2
Status Pending Code

* Pending interrupt: 5 hardware levels
- bit set if interrupt pending but not serviced
- handles cases when:
» more than one interrupt occurs at same time
» Or interrupt requests when interrupts disabled
* Exception Code: Encodes reasons for interrupt
- 0 (INT) => external interrupt
-4 (ADDRL) => address error (load or instr fetch)
- 5 (ADDRS) => address error (store)
- 6 (IBUS) => bus error on instruction fetch
-7 (DBUS) => bus error on data fetch
- 8 (Syscall) => Syscall exception
-9 (BKPT) => Breakpoint exception
- 10 (RI) => Reserved Instruction exception

- 12 (OVF) => Arithmetic overflow exception
10/10/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 12.13

Intel x86 Special Registers
80386 Special Registers

Sequment Legisters

L e [Jowss

13 Cs o] 15 Cs o]

1s ss 0 15 ES 0
1s = 0 15 Gs o
Tndex 'f REL
wu|lw |olo|t|T|s|z a p c
AIT|PL |E|F|E|E|E[F[X|E[X|F[X|F
BPL = Requestol Plivilege Level 15 1413121110 % &8 7 & 3 4+ 3 2 1 0
T1=Table Indicator
. 2 P [T e
R T FEEREle [o=
haers haerihintible 3130 5 4+ 32 10
: Page Fault
Protected Mode segiment selector cr2
. . 31 0
Typical Segment Register PG-paging Ersbe
.. . =Eumlation Ty 10PL=U/0) P vilege Level
Current Priority is RPL TSSToak Surichid Crovarion £rg
E{l\ﬁ&m‘ﬁﬂlefr‘c’PmelE?r - DE=Ditection Flag
ath coprocessot plesel %
Of Code Segmem' (CS) BE=Plotoetod Mods 2hable ITFF‘J—'EE',;” athg
SE=Sign Elag
F=Zelo Flag
AE=Aumiliaty Flag
PE=Patity Elag
. . CE=Caury Flag
10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.14

Communication

* Now that we have isolated processes, how
can they communicate?

- Shared memory: common mapping to physical page

» As long as place objects in shared memory address range,
threads from each process can communicate

» Note that #:wocesses A and B can talk to shared memory
through different addresses

» In some sense, this violates the whole notion of
protection that we have been developing

- If address spaces don't share memory, all inter-
address space communication must go through kernel
(via system calls)

» Byte stream producer/consumer (put/get): Example,
communicate through pipes connecting stdin/stdout

» Message ﬁassin (send/receive): Will explain later how you
can use this to build remote procedure call (RPC)
abstraction so that you can have one program make
procedure calls to another

» File System (read/write): File system is shared statel!
10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.15

Administrivia

Midterm I coming up in two days:

- Wednesday, 10/12, 5:30 - 8:30pm, Here (10 Evans)

- Should be 2 hour exam with extra time

- Closed book, one page of hand-written notes (both sides)
* Make up exam on Tuesday, 10/11

- Meet at 4:00 at my office
Midterm Topics

- Topics: Everything up to (and including) today

- Lectures 1-12, chapters 1-8 (7™ ed) or 1-9 (6™ ed)
Extra office hours

- Rajesh: 8-10pm Monday (10/10), Free Speech Café

- Dominic: 11:00-12:30 Tuesday (10/11), 611 Soda

- Chris: 8-10pm Tuesday (10/11), Free Speech Café

- Kubi: 1-4pm Wednesday (10/12), 673 Soda Hall
Project 2 is started!

- Don't forget that the design document for project 2 due

next Monday (1 week)
- Make sure to look at the lecture schedule to keep up

with the project due dates!
10/10/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 12.16

Simple Segmentation: Base and Limit

Base
Virtual
Physical
Limit Address
Yes: Error!

+ Can use base/limit for dynamic address translation
(Simple form of “segmentation”):

- Alter every address by adding “"base”
- Generate error if address bigger than limit
* This gives program the illusion that it is running on its
own dedicated machine, with memory starting at O
- Program gets continuous region of memory

- Addresses within program do not have to be relocated

when program placed in different region of DRAM
10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.17

Base and Limit segmentation discussion

* Provides level of indirection
- OS Can move bits around behind program’s back

- Can be used to correct if program needs to grow
beyond its bounds or coalesce framents of memory

* Only OS gets to change the base and limit!
- Would defeat protection
* What gets saved/restored on a context switch?
- Everything from before + base/limit values
- Or: How about complete contents of memory (out to
disk)?
» Called “"Swapping”
* Hardware cost
- 2 registers/Adder/Comparator

- Slows down hardware because need to take time to do
add/compare on every access

* Base and Limit Pros: Simple, relatively fast
10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.18

Cons for Simple Segmentation Method
* Fragmentation problem (complex memory ailocafion)
- Not every process is the same size
- Over time, memory space becomes fragmented
- Really bad if want space to grow dynamically (e.g. heap)

process 6 process 6 process 6 process 6

process 5 process 5 process 5 process 5

process 9 process 9

process2 | > (E——) process 10
oS oS 0s 0s

* Other problems for process maintenance
- Doesn't allow heap and stack to grow independently

- Want to ruf these as far apart in virtual memory space
as possible so that they can grow as needed

* Hard to do inter-process sharing
- Want to share code segments when possible

- Want to share memory between processes
10/10/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 12.19

More Flexible Segmentation

1

subroutine stack 4
symbaol
table

2

Sqrt
main
program 3
. user view of physical
logical address : memory space memory space :

* Logical View: multiple separate segments
- Typical: Code, Data, Stack
- Others: memory sharing, etc

+ Each segment is given region of contiguous memory
- Has a base and limit

jo1070€an reside anywhere in physjcal memory Lec 12.20

Implementation of Multi-Segment Model
(>)—Error

Virtual

Offset | -
Address BaseO[LimitO [V

Basel | Limit1

Base2.[LimitZ |V .
Base3 | Limit3 NP Physical
Base4|Limit4 V| Address
Baseb | Limith [N

Baseb6 | Limit6 [N
Base7 | Limit7 [V

- Segment map resides in processor
- Segment number mapped into base/limit pair
- Base added to offset to generate physical address
- Error check catches offset out of range
*+ As many chunks of physical memory as entries
- Segment addressed by portion of virtual address

- However, could be included in instruction instead:
» x86 Example: mov [es:bx],ax.

« What is "V/N"?

- Can mark segments as invalid; requires check as well
10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.21

Example: Four Segments (16 bit addresses)

Seg ID # | Base Limit
Offset | 0 (code) |0x4000 | 0x0800
151413 0 1 (data) 0x4800 | 0x1400
Virtual Address Format 2 (shared) | 0xFO0O0 | 0x1000
3 (stack) |0x0000 | 0x3000
0x0000 0x0000
Might
0x4000 8§1(8)88 == be shared
0x5C00
0x8000
Space for
0xC000 Other Apps
0xF000 Shared with
Other Apps
Virtual Physical PP
Address Space Address Space
10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.22

Example of segment translation

0x240 main: la $a0, varx

0x244 jal strlen Seg ID # | Base Limit
0x360 seetem: 14 Sv0, 0 . | [©-¢code) T0x4000 [0x0800
X strlen: ak, v, ;jcoun

0x364 1loop: 1b $t0, ($a0) 1 (data) |0x4800 | 0x1400
0x368 beq $r0,$tl, done 2 (shared) | 0xFOOO | 0x1000

3 (stack) | 0x0000 | 0x3000

0x4050 wvarx dw 0x314159

Let's simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x240. Virtual segment #? 0: Offset? 0x240
Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC

2. Fetch Ox244. Translated to Physical=-0x4244. Get "jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC

3. Fetch 0x360. Translated to Physical=0x4360. Get “li $v0,0"
Move 0x0000 — $vO, Move PC+4—PC

4. Fetch 0x364. Translated to Physical=-0x4364. Get "Ib $t0,($a0)"
Since $a0 is 0x4050, try to load byte from 0x4050
Translate 0x4050. Virtual segmenf #? 1. Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850,

Load Byte from 0x4850—%$10, Move PC+4—PC
10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.23

Observations about Segmentation

Virtual address space has holes
- Segmentation efficient for sparse address spaces

- A correct program should never address gaps (except
as mentioned in moment)

» If it does, trap to kernel and dump core
When it is ok to address outside valid range:
- This is how the stack and heap are allowed to grow

- For instance, stack takes fault, system automatically
increases size of stack

Need protection mode in segment table
- For example, code segment would be read-only
- Data and stack would be read-write (stores allowed)
- Shared segment could be read-only or read-write
What must be saved/restored on context switch?
- Segment table stored in CPU, not in memory (small)

- Might store all of processes memory onto disk when
switched (called “swapping™)

10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.24

Schematic View of Swapping

opearating —
system

.:1) swap oul
[e

(2 s
|_3/ swap in

user - |

space backing store

main memory

- Extreme form of Context Switch: Swapping

- In order to make room for next process, some or all
of the previous process is moved to disk

» Likely need to send out complete segments
- This greatly increases the cost of context-switching
* Desirable alternative?

- Some way to keep only active portions of a process in
memory at any one time

Paging: Physical Memory in Fixed Size Chunks

+ Problems with segmentafion?

- Must fit variable-sized chunks into physical memory

- May move processes multiple times to fit everything

- Limited options for swapping to disk
+ Fragmentation: wasted space

- External: free gaps between allocated chunks

- Internal: don't need all memory within allocated chunks
* Solution to fragmentation from segments?

- Allocate physical memory in fixed size chunks (“pages”)

- Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 .. 110010

» Each bit represents page of physical memory
1=allocated, O=free

+ Should pages be as big as our previous segments?
- No: Can lead to lots of internal fragmentation
» Typically have small pages (1K-16K)

- Need finer granularity control over 5physiccxl memory - Consequently: need mulﬁPIe Bag;es/segmen‘r
10/10/05 Kubiatowicz 5162 ©UCB Fall 200! Lec 12.25 10/10/05 Kubiatowicz €S162 ©UCB Fall 200! Lec 12.26
How to Implement Paging? What about Sharing?
Virtual Address: Virgual AddAr'ess
¥ cess A):
PageTablePtr page #0 | V.R Offset (roce)
'Eg: z; .v) Physical Address PageTablePirAl- "I page zo V.R
- R, age #1 | V.R
PageTableSize > £ zi V,l:l,W \W —}{T(gim
| page #2 age #3 V,R.W
Access page #5 [V.R.W Access £ Sl
Error J Error | page #4 Page
- Page Table (One per process) page #5 V.R.W
- Resides in physical memorgl PageTablePtrB "[page #0] V.R
- Contains physical page and permission for each virtual page page #1

» Permissions include: Valid bits, Read, Write, etc
* Virtual address mapping
- Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
- Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

- Check Page Table bounds and permissions
10/10/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 12.27

This physical page
#H2 VAW
p:9: 73 {, appears in address

space of both processes
page #4| V.R
page #5 V.R.W

Virtual Address:
Process B

10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.28

Simple Page Table Discussion

- What needs to be switched on
;--.....----------....----------.....---------.....-: a Con-l-ex-l- swi-'-ch?

0x00 . 0x00 i - Page table pointer and limit
c 1 0X04 Anglysis
j i -Pros
0x04 =85 3 i'(» Simple memory alocation
f 1| oxos » Easy to Share
¥ i - Con: What if address space is
0x08 |- Page Ox0C gl sparse?
j | Table f : » E.g. on UNIX, code starts at
k g : 0, stack starts at (23!-1).
] : » With 1K pages, need 2 million
Virtual 0x10 =4 : page 'rablg gm‘r'ies!
Memory 2 - Con: What if table really big?
; : » Not all pages used all the
Physical time = would be nice to have
ysical : working set of page table in
Memory : memory

Example (4 byte pages) "+ How about combining paging

and segmentation?
10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.29

Multi-level Translation
+ What abouf a free of Tables?
- Lowest level page table=>memory still allocated with bitmap
- Higher levels often segmented
+ Could have any number of levels. Example (top segment):

Virtual
Address: i
page #0 | V,R y
BaseO | Limi age #1 | V.R Offset
SEEl R Physical Address
Base3 | Limit
Base4 | Limit4
Base5 | Limit5 page #5 |V.R. W EEEALEC
Base6 Limit6 N‘G) Access Acc‘ess
Base7 | Limit7 |V — Error Error

* What must be saved/restored on context switch?
- Contents of top-level segment registers (for this example)

- Pointer to top-level table (page table)
10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.30

What about Sharing (Complete Segment)?

Process
4 page FO[VR
page #1 | V.R
page #2 |V,R,W
page #3 |V,R,W
page #4| N
Limit3 |N page #5 |V.R.W
Limit4 |V Shared Segment
Baseb | Limith [N —
Base6 | Limit6 [N Base LimitQ ¥
Base7 [Limit7 [V Ll
Limit3 [N
Base4 | Limit4 |V
Baseb | Limith |N
Base6 | Limité [N
Base7 | Limit7 |V
Process
B
10/10/05 Kubiatowicz €S162 ®UCB Fall 2005 Lec 12.31

Another common example: 'rm:-!evel page table

10 bits 10 bits 12 bits

Virtual
Address:

PageTablePtr

—> 4 bytes «—

* Tree of Page Tables
* Tables fixed size (1024 entries)
- On context-switch: save single SsiEi
PageTablePtr register s
* Valid bits on Page Table Entries —
- Don't need every 2"-level table
- Even when exist, 2"-level tables

can reside on disk if not in use
10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.32

—> 4 bytes «—

Multi-level Translation Analysis

* Pros:
- Only need to allocate as many page table entries as we
need for application

» In other wards, sparse address spaces are easy

- Easy memory allocation

- Easy Sharing
» Share at segment or page level (need additional reference

counting)

* Cons:
- One pointer per page (typically 4K - 16K pages today)
- Page tables need to be contiguous
» However, previous example keeps tables to exactly one
page in size
- Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.33

Inverted Page Table

+ With all previous examples (Forward Page Tables")
- Size of page table is at least as large as amount of
virtual memory allocated to processes
- Physical memory may be much less
» Much of process space may be out on disk or not in use

Hash
Table

* Answer: use a hash table

- Called an "Inverted Page Table”

- Size is independent of virtual address space

- Directly related to amount of physical memory

- Very attractive option for 64-bit address spaces
+ Cons: Complexity of managing hash changes

- i |
10/10/0501:1'2“ n hardml!l%ﬁ?t;wicz CS162 ©UCB Fall 2005 Lec 12.34

Closing thought: Protection without Hardware

* Does protection require hardware support for
translation and dual-mode behavior?
- No: Normally use hardware, but anyfhinq you can do in
hardware can also do in software (possibly expensive)
* Protection via Strong Typing
- Restrict pro ramming language so that you can't express
program that would trash another program
- Loader needs to make sure that program produced by
valid compiler or all bets are off
- Example languages: LISP, Ada, Modula-3 and Java
* Protection via software fault isolation:
- Language independent approach: have compiler generate
object code that provably can't step out of bounds
» Compiler puts in checks for every “dangerous” operation
(loads, stores, efc). Again, need special loader.
» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)
- Or: use virtual machine to guarantee safe behavior

5(Ioads and stores recompiled on flg to check bounds
o] Kubiatowicz €S162 ©UCB Fall 2005 Lec“12.35

10/10/

Summary (1/2)

* Memory is a resource that must be shared
- Controlled Overlap: only shared when appropriate

- Translation: Change Virtual Addresses into Physical
Addresses

- Protection: Prevent unauthorized Sharing of resources
* Dual-Mode

- Kernel/User distinction: User restricted

- User—Kernel: System calls, Traps, or Interrupts

- Inter-process communication: shared memory, or
through kernel (system calls)

+ Exceptions
- Synchronous Exceptions: Traps (including system calls)’
- Asynchronous Exceptions: Interrupts

10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.36

Summary (2/2)

+ Segment Mapping
- Segment registers within processor
- Segment ID associated with each access
» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)
- Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base
* Page Tables
- Memory divided into fixed-sized chunks of memory

- Virtual page number from virtual address mapped
through page table to physical page number

- Offset of virtual address same as physical address
- Large page tables can be placed into virtual memory
* Multi-Level Tables
- Virtual address mapped to series of tables
- Permit sparse population of address space
+ Inverted page table

- Size of page table related to physical memory size
10/10/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 12.37

