
CS162
Operating Systems and
Systems Programming

Lecture 14

Caching and
Demand Paging

October 19, 2005
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 14.210/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Memory Hierarchy of a Modern Computer System

• Take advantage of the principle of locality to:
– Present as much memory as in the cheapest technology
– Provide access at speed offered by the fastest technology

O
n-C

hip
C

ache

R
egisters

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

1s 10,000,000s
(10s ms)

Speed (ns): 10s-100s 100s

100s GsSize (bytes): Ks-Ms Ms

Tertiary
Storage
(Tape)

10,000,000,000s
(10s sec)

Ts

Lec 14.310/19/05 Kubiatowicz CS162 ©UCB Fall 2005

• Compulsory (cold start or process migration, first
reference): first access to a block
– “Cold” fact of life: not a whole lot you can do about it
– Note: If you are going to run “billions” of instruction,
Compulsory Misses are insignificant

• Capacity:
– Cache cannot contain all blocks access by the program
– Solution: increase cache size

• Conflict (collision):
– Multiple memory locations mapped
to the same cache location

– Solution 1: increase cache size
– Solution 2: increase associativity

• Coherence (Invalidation): other process (e.g., I/O)
updates memory

Review: A Summary on Sources of Cache Misses

Lec 14.410/19/05 Kubiatowicz CS162 ©UCB Fall 2005

• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Review: Where does a Block Get Placed in a Cache?

Lec 14.510/19/05 Kubiatowicz CS162 ©UCB Fall 2005

• What line gets replaced on cache miss?
– Easy for Direct Mapped: Only one possibility
– Set Associative or Fully Associative:

» Random
» LRU (Least Recently Used)

• What happens on a write?
– Write through: The information is written to both the
cache and to the block in the lower-level memory

– Write back: The information is written only to the
block in the cache
» Modified cache block is written to main memory only

when it is replaced
» Question is block clean or dirty?

Review: Other Caching Questions

Lec 14.610/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Goals for Today

• Finish discussion of TLBs
• Concept of Paging to Disk
• Page Faults and TLB Faults
• Precise Interrupts
• Page Replacement Policies

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Lec 14.710/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Quick Aside: Protection without Hardware
• Does protection require hardware support for

translation and dual-mode behavior?
– No: Normally use hardware, but anything you can do in
hardware can also do in software (possibly expensive)

• Protection via Strong Typing
– Restrict programming language so that you can’t express
program that would trash another program

– Loader needs to make sure that program produced by
valid compiler or all bets are off

– Example languages: LISP, Ada, Modula-3 and Java
• Protection via software fault isolation:

– Language independent approach: have compiler generate
object code that provably can’t step out of bounds
» Compiler puts in checks for every “dangerous” operation

(loads, stores, etc). Again, need special loader.
» Alternative, compiler generates “proof” that code cannot

do certain things (Proof Carrying Code)
– Or: use virtual machine to guarantee safe behavior
(loads and stores recompiled on fly to check bounds)

Lec 14.810/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same
page (since accesses sequential)

– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Sa
ve

Re
sul

t

Lec 14.910/19/05 Kubiatowicz CS162 ©UCB Fall 2005

TLB organization
• How big does TLB actually have to be?

– Usually small: 128-512 entries
– Not very big, can support higher associativity

• TLB usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

• What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

• Example for MIPS R3000:

0xFA00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

Virtual Address Physical Address Dirty Ref Valid Access ASID

Lec 14.1010/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Example: R3000 pipeline includes TLB “stages”

Inst Fetch Dcd/ Reg ALU / E.A Memory Write Reg
TLB I-Cache RF Operation WB

E.A. TLB D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset
12206

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached
101 Kernel physical space, uncached
11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

Virtual Address Space

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Lec 14.1110/19/05 Kubiatowicz CS162 ©UCB Fall 2005

• As described, TLB lookup is in serial with cache lookup:

• Machines with TLBs go one step further: they overlap
TLB lookup with cache access.
– Works because offset available early

Reducing translation time further

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

Lec 14.1210/19/05 Kubiatowicz CS162 ©UCB Fall 2005

• Here is how this might work with a 4K cache:

• What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else. See CS152/252

• Another option: Virtual Caches
– Tags in cache are virtual addresses
– Translation only happens on cache misses

TLB 4K Cache

10 2
00

4 bytes

index 1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

=FN

Overlapping TLB & Cache Access

Lec 14.1310/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Administrivia
• Exam is graded: grades should be in glookup!

– Average: 71.2
– Standard Dev: 12.3
– Min: 23, Max: 96

• Make sure to come to sections!
– There will be a lot of information about the projects
that I cannot cover in class

– Also supplemental information and detail that we don’t
have time for in class

• One more comment on Problem 3 (and multithreading in
general):
– You should be able to execute things serially!
– I.e. code should work if there is only one thread!

– Final Code works if only one thread!:
void Enqueue(Object newobject) {

QueueEntry newEntry = new QueueEntry(newobject);
QueueEntry oldTail = AtomicSwap(tail,newEntry);
oldTail.next = newEntry;

}

Lec 14.1410/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year
• But they don’t use all their memory all of the time

– 90-10 rule: programs spend 90% of their time in 10%
of their code

– Wasteful to require all of user’s code to be in memory
• Solution: use main memory as cache for disk

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

Tertiary
Storage
(Tape)

Caching

Lec 14.1510/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Page
Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory ⇒
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than
physical memory
» More programs fit into memory, allowing more concurrency

• Principle: Transparent Level of Indirection (page table)
– supports flexible placement of physical data

» Data could be on disk or somewhere across network
– variable location of data transparent to user program

» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
400GB

∞

Virtual
Memory
4 GB

Lec 14.1610/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Demand Paging is Caching

• Since Demand Paging is Caching, must ask:
– What is block size?

» 1 page
– What is organization of this cache (i.e. direct-mapped,
set-associative, fully-associative)?
» Fully associative: arbitrary virtual→physical mapping

– How do we find a page in the cache when look for it?
» First check TLB, then page-table traversal

– What is page replacement policy? (i.e. LRU, Random…)
» This requires more explanation… (kinda LRU)

– What happens on a miss?
» Go to lower level to fill miss (i.e. disk)

– What happens on a write? (write-through, write back)
» Definitely write-back. Need dirty bit!

Lec 14.1710/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: What is in a PTE?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=1⇒4MB page (directory only).

Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0 L D A

PCD
PW

T U W P

01234567811-931-12

Lec 14.1810/19/05 Kubiatowicz CS162 ©UCB Fall 2005

• PTE helps us implement demand paging
– Valid ⇒ Page in memory, PTE points at physical page
– Not Valid ⇒ Page not in memory; use info in PTE to find
it on disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”
– What does OS do on a Page Fault?:

» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs
another process from ready queue
» Suspended process sits on wait queue

Demand Paging Mechanisms

Lec 14.1910/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Software-Loaded TLB
• MIPS/Snake/Nachos TLB is loaded by software

– High TLB hit rate⇒ok to trap to software to fill the
TLB, even if slower

– Simpler hardware and added flexibility: software can
maintain translation tables in whatever convenient format

• How can a process run without access to page table?
– Fast path (TLB hit with valid=1):

» Translation to physical page done by hardware
– Slow path (TLB hit with valid=0 or TLB miss)

» Hardware receives a “TLB Fault”
– What does OS do on a TLB Fault?

» Traverse page table to find appropriate PTE
» If valid=1, load page table entry into TLB, continue thread
» If valid=0, perform “Page Fault” detailed previously
» Continue thread

• Everything is transparent to the user process:
– It doesn’t know about paging to/from disk
– It doesn’t even know about software TLB handling

Lec 14.2010/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Transparent Exceptions

• How to transparently restart faulting instructions?
– Could we just skip it?

» No: need to perform load or store after reconnecting
physical page

• Hardware must help out by saving:
– Faulting instruction and partial state

» need to know which instruction caused fault
» Is single PC sufficient to identify faulting position????

– Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc

• What if an instruction has side-effects?

Load TLB

Fa
ul
ti
ng

In
st

 1

Fa
ul
ti
ng

In
st

 1

Fa
ul
ti
ng

In
st

 2

Fa
ul
ti
ng

In
st

 2

Fetch page/
Load TLB

User

OS

TLB Faults

Lec 14.2110/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Consider weird things that can happen
• What if an instruction has side effects?

– Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)

– Example 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?

– Example 2: strcpy (r1), (r2)
» Source and destination overlap: can’t unwind in principle!
» IBM S/370 and VAX solution: execute twice – once

read-only
• What about “RISC” processors?

– For instance delayed branches?
» Example: bne somewhere

ld r1,(sp)
» Precise exception state consists of two PCs: PC and nPC

– Delayed exceptions:
» Example: div r1, r2, r3

ld r1, (sp)
» What if takes many cycles to discover divide by zero,

but load has already caused page fault?
Lec 14.2210/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Precise Exceptions
• Precise ⇒ state of the machine is preserved as if

program executed up to the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as
if they have not even started

– Same system code will work on different implementations
– Difficult in the presence of pipelining, out-of-order
execution, ...

– MIPS takes this position
• Imprecise ⇒ system software has to figure out what is

where and put it all back together
• Performance goals often lead designers to forsake

precise interrupts
– system software developers, user, markets etc. usually
wish they had not done this

• Modern techniques for out-of-order execution and
branch prediction help implement precise interrupts

Lec 14.2310/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• What about MIN?
– Replace page that won’t be used for the longest time
– Great, but can’t really know future…
– Makes good comparison case, however

• What about RANDOM?
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time
guarantees

• What about FIFO?
– Throw out oldest page. Be fair – let every page live in
memory for same amount of time.

– Bad, because throws out heavily used pages instead of
infrequently used pages

Lec 14.2410/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Replacement Policies (Con’t)
• What about LRU?

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a
while, unlikely to be used in the near future.

– Seems like LRU should be a good approximation to MIN.
• How to implement LRU? Use a list!

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when each page used so that
can change position in list…

– Many instructions for each hardware access
• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

Lec 14.2510/19/05 Kubiatowicz CS162 ©UCB Fall 2005

Summary
• TLB is cache on translations

– Fully associative to reduce conflicts
– Can be overlapped with cache access

• Demand Paging:
– Treat memory as cache on disk
– Cache miss ⇒ get page from disk

• Transparent Level of Indirection
– User program is unaware of activities of OS behind scenes
– Data can be moved without affecting application correctness

• Software-loaded TLB
– Fast Path: handled in hardware (TLB hit with valid=1)
– Slow Path: Trap to software to scan page table

• Precise Exception specifies a single instruction for which:
– All previous instructions have completed (committed state)
– No following instructions nor actual instruction have started

• Replacement policies
– FIFO: Place pages on queue, replace page at end
– MIN: replace page that will be used farthest in future
– LRU: Replace page that hasn’t be used for the longest time

