
CS162
Operating Systems and
Systems Programming

Lecture 15

Page Allocation and
Replacement

October 24, 2005
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 15.210/24/05 Kubiatowicz CS162 ©UCB Fall 2005

• PTE helps us implement demand paging
– Valid ⇒ Page in memory, PTE points at physical page
– Not Valid ⇒ Page not in memory; use info in PTE to find
it on disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”
– What does OS do on a Page Fault?:

» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs
another process from ready queue
» Suspended process sits on wait queue

Review: Demand Paging Mechanisms

Lec 15.310/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Software-Loaded TLB
• MIPS/Snake/Nachos TLB is loaded by software

– High TLB hit rate⇒ok to trap to software to fill the
TLB, even if slower

– Simpler hardware and added flexibility: software can
maintain translation tables in whatever convenient format

• How can a process run without hardware TLB fill?
– Fast path (TLB hit with valid=1):

» Translation to physical page done by hardware
– Slow path (TLB hit with valid=0 or TLB miss)

» Hardware receives a “TLB Fault”
– What does OS do on a TLB Fault?

» Traverse page table to find appropriate PTE
» If valid=1, load page table entry into TLB, continue thread
» If valid=0, perform “Page Fault” detailed previously
» Continue thread

• Everything is transparent to the user process:
– It doesn’t know about paging to/from disk
– It doesn’t even know about software TLB handling

Lec 15.410/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Transparent Exceptions

• Hardware must help out by saving:
– Faulting instruction and partial state
– Processor State: sufficient to restart user thread

» Save/restore registers, stack, etc
• Precise Exception ⇒ state of the machine is preserved

as if program executed up to the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as
if they have not even started

– Difficult with pipelining, out-of-order execution, ...
– MIPS takes this position

• Modern techniques for out-of-order execution and
branch prediction help implement precise interrupts

Load TLB

Fa
ul
ti
ng

In
st

 1

Fa
ul
ti
ng

In
st

 1

Fa
ul
ti
ng

In
st

 2

Fa
ul
ti
ng

In
st

 2

Fetch page/
Load TLB

User

OS

TLB Faults

Lec 15.510/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Goals for Today

• Page Replacement Policies
– Clock Algorithm
– Nth chance algorithm
– Second-Chance-List Algorithm

• Page Allocation Policies
• Working Set/Thrashing

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Lec 15.610/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Steps in Handling a Page Fault

Lec 15.710/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Demand Paging Example
• Since Demand Paging like caching, can compute

average access time! (“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = (1 – p) x 200ns + p x 8 ms
= (1 – p) x 200ns + p x 8,000,000ns
= 200ns + p x 7,999,800ns

• If one access out of 1,000 causes a page fault, then
EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– 200ns x 1.1 < EAT ⇒ p < 2.5 x 10-6

– This is about 1 page fault in 400000!
Lec 15.810/24/05 Kubiatowicz CS162 ©UCB Fall 2005

What Factors Lead to Misses?
• Compulsory Misses:

– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later.

• Capacity Misses:
– Not enough memory. Must somehow increase size.
– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)
» Another option: If multiple processes in memory: adjust

percentage of memory allocated to each one!
• Conflict Misses:

– Technically, conflict misses don’t exist in virtual memory,
since it is a “fully-associative” cache

• Policy Misses:
– Caused when pages were in memory, but kicked out
prematurely because of the replacement policy

– How to fix? Better replacement policy

Lec 15.910/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page. Be fair – let every page live in
memory for same amount of time.

– Bad, because throws out heavily used pages instead of
infrequently used pages

• MIN (Minimum):
– Replace page that won’t be used for the longest time
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time
guarantees

Lec 15.1010/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a
while, unlikely to be used in the near future.

– Seems like LRU should be a good approximation to MIN.
• How to implement LRU? Use a list!

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when each page used so that
can change position in list…

– Many instructions for each hardware access
• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

Lec 15.1110/24/05 Kubiatowicz CS162 ©UCB Fall 2005

• Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:
– A B C A B D A D B C B

• Consider FIFO Page replacement:

– FIFO: 7 faults.
– When referencing D, replacing A is bad choice, since
need A again right away

Example: FIFO

C

B

A

D

C

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

Lec 15.1210/24/05 Kubiatowicz CS162 ©UCB Fall 2005

• Suppose we have the same reference stream:
– A B C A B D A D B C B

• Consider MIN Page replacement:

– MIN: 5 faults
– Where will D be brought in? Look for page not
referenced farthest in future.

• What will LRU do?
– Same decisions as MIN here, but won’t always be true!

Example: MIN

C

DC

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

Lec 15.1310/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Administrivia
• Exam is graded: grades should be in glookup

– Average: 71.2
– Standard Dev: 12.3

• If you are 2 or more standard-deviations below the
mean, you need to do better:
– You are in danger of getting a D or F
– Feel free to come to talk with me

• Solutions to the Midterm are up on the Handouts page
– They were up there Friday, but don’t know if people
noticed

• Project 2 autograder:
– Will be run a couple of times today and tomorrow
– More times on Wednesday
– Yet more times on Thursday

• Web mirror:
– Problem with links after last class: people couldn’t get
notes
» Sorry about that! I am the right person to complain to…

– There is a mirror of the course web site at:
http://www.cs.berkeley.edu/~kubitron/cs162

Lec 15.1410/24/05 Kubiatowicz CS162 ©UCB Fall 2005

• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• MIN Does much better:

D

When will LRU perform badly?

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

B

C

DC

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

Lec 15.1510/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Graph of Page Faults Versus The Number of Frames

• One desirable property: When you add memory the
miss rate goes down
– Does this always happen?
– Seems like it should, right?

• No: BeLady’s anomaly
– Certain replacement algorithms (FIFO) don’t have this
obvious property!

Lec 15.1610/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO! (Called Belady’s anomaly)

• After adding memory:
– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with
X pages are a subset of contents with X+1 Page

D
C

E

B
A

D

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

CD4

E
D

B
A

E

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

Lec 15.1710/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Implementing LRU
• Perfect:

– Timestamp page on each reference
– Keep list of pages ordered by time of reference
– Too expensive to implement in reality for many reasons

• Clock Algorithm: Arrange physical pages in circle with
single clock hand
– Approximate LRU (approx to approx to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy

this back to page table when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1→used recently; clear and leave alone

0→selected candidate for replacement
– Will always find a page or loop forever?

» Even if all use bits set, will eventually loop around⇒FIFO
Lec 15.1810/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Clock Algorithm: Not Recently Used

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• What if hand moving slowly?
– Good sign or bad sign?

» Not many page faults and/or find page quickly
• What if hand is moving quickly?

– Lots of page faults and/or lots of reference bits set
• One way to view clock algorithm:

– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?

Lec 15.1910/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1⇒clear use and also clear counter (used in last sweep)
» 0⇒increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without
page being used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about dirty pages?

– Takes extra overhead to replace a dirty page, so give
dirty pages an extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

Lec 15.2010/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Clock Algorithms: Details
• Which bits of a PTE entry are useful to us?

– Use: Set when page is referenced; cleared by clock
algorithm

– Modified: set when page is modified, cleared when page
written to disk

– Valid: ok for program to reference this page
– Read-only: ok for program to read page, but not modify

» For example for catching modifications to code pages!
• Do we really need hardware-supported “modified” bit?

– No. Can emulate it (BSD Unix) using read-only bit
» Initially, mark all pages as read-only, even data pages
» On write, trap to OS. OS sets modified bit, marks page

as read-write.
» Whenever page comes back in from disk, mark read-only

Lec 15.2110/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Clock Algorithms Details (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only

– Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write

– When clock hand passes by, reset use and modified bits
and mark page as invalid again

• Remember, however, that clock is just an
approximation of LRU
– Can we do a better approximation, given that we have
to take page faults on some reads and writes to collect
use information?

– Need to identify an old page, not oldest page!
– Answer: second chance list

Lec 15.2210/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list,
mark RW

– Not on SC list: page in to front of Active list, mark RW;
page out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

Ac
ce
ss

New
SC

Victims

Overflow

Lec 15.2310/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Second-Chance List Algorithm (con’t)
• How many pages for second chance list?

– If 0 ⇒ FIFO
– If all ⇒ LRU, but page fault on every page reference

• Pick intermediate value. Result is:
– Pro: Few disk accesses (page only goes to disk if unused
for a long time)

– Con: Increased overhead trapping to OS (software /
hardware tradeoff)

• With page translation, we can adapt to any kind of
access the program makes
– Later, we will show how to use page translation /
protection to share memory between threads on widely
separated machines

• Question: why didn’t VAX include “use” bit?
– Strecker (architect) asked OS people, they said they
didn’t need it, so didn’t implement it

– He later got blammed, but VAX did OK anyway
Lec 15.2410/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other
technique (“Pageout demon”)

– Dirty pages start copying back to disk when enter list
• Like VAX second-chance list

– If page needed before reused, just return to active set
• Advantage: Faster for page fault

– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:
Advances as needed to keep
freelist full (“background”)

D

D

Free Pages
For Processes

Lec 15.2510/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Demand Paging (more details)

• Does software-loaded TLB need use bit?
Two Options:
– Hardware sets use bit in TLB; when TLB entry is
replaced, software copies use bit back to page table

– Software manages TLB entries as FIFO list; everything
not in TLB is Second-Chance list, managed as strict LRU

• Core Map
– Page tables map virtual page → physical page
– Do we need a reverse mapping (i.e. physical page →
virtual page)?
» Yes. Clock algorithm runs through page frames. If sharing,

then multiple virtual-pages per physical page
» Can’t push page out to disk without invalidating all PTEs

Lec 15.2610/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes?

– Does every process get the same fraction of memory?
Different fractions?

– Should we completely swap some processes out of memory?
• Each process needs minimum number of pages

– Want to make sure that all processes that are loaded into
memory can make forward progress

– Example: IBM 370 – 6 pages to handle SS MOVE
instruction:
» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame
from set of all frames; one process can take a frame
from another

– Local replacement – each process selects from only its own
set of allocated frames

Lec 15.2710/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Fixed/Priority Allocation
• Equal allocation (Fixed Scheme):

– Every process gets same amount of memory
– Example: 100 frames, 5 processes⇒process gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:

si = size of process pi and S = Σsi
m = total number of frames

ai = allocation for pi =

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault,
select for replacement a frame from a process with lower
priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?

m
S
si ×

Lec 15.2810/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Page-Fault Frequency Allocation
• Can we reduce Capacity misses by dynamically

changing the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?

Lec 15.2910/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:
– low CPU utilization
– operating system spends most of its time swapping to disk

• Thrashing ≡ a process is busy swapping pages in and out
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?

Lec 15.3010/24/05 Kubiatowicz CS162 ©UCB Fall 2005

• Program Memory Access
Patterns have temporal
and spatial locality
– Group of Pages accessed
along a given time slice
called the “Working Set”

– Working Set defines
minimum number of pages
needed for process to
behave well

• Not enough memory for
Working Set⇒Thrashing
– Better to swap out
process?

Locality In A Memory-Reference Pattern

Lec 15.3110/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Working-Set Model

• Δ ≡ working-set window ≡ fixed number of page
references
– Example: 10,000 instructions

• WSi (working set of Process Pi) = total set of pages
referenced in the most recent Δ (varies in time)
– if Δ too small will not encompass entire locality
– if Δ too large will encompass several localities
– if Δ = ∞ ⇒ will encompass entire program

• D = Σ|WSi| ≡ total demand frames
• if D > m ⇒ Thrashing

– Policy: if D > m, then suspend one of the processes
– This can improve overall system behavior by a lot!

Lec 15.3210/24/05 Kubiatowicz CS162 ©UCB Fall 2005

What about Compulsory Misses?

• Recall that compulsory misses are misses that occur
the first time that a page is seen
– Pages that are touched for the first time
– Pages that are touched after process is swapped
out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the
faulting page

– Since efficiency of disk reads increases with sequential
reads, makes sense to read several sequential pages

• Working Set Tracking:
– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set

Lec 15.3310/24/05 Kubiatowicz CS162 ©UCB Fall 2005

Summary
• Replacement policies

– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approx LRU
– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approx LRU
– Divide pages into two groups, one of which is truly LRU
and managed on page faults.

• Working Set:
– Set of pages touched by a process recently

• Thrashing: a process is busy swapping pages in and out
– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process

