
CS162
Operating Systems and
Systems Programming

Lecture 16

Page Allocation and
Replacement (con’t)

I/O Systems
October 26, 2005

Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Lec 16.210/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Page Replacement Policies
• FIFO (First In, First Out)

– Throw out oldest page. Be fair – let every page live in
memory for same amount of time.

– Bad, because throws out heavily used pages instead of
infrequently used pages

• MIN (Minimum):
– Replace page that won’t be used for the longest time
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time
guarantees

• LRU (Least Recently Used):
– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a
while, unlikely to be used in the near future.

– Seems like LRU should be a good approximation to MIN.

Lec 16.310/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Clock Algorithm: Not Recently Used

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• Clock Algorithm: pages arranged in a ring
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy

this back to page table when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1→used recently; clear and leave alone

0→selected candidate for replacement
Lec 16.410/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1⇒clear use and also clear counter (used in last sweep)
» 0⇒increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without
page being used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about dirty pages?

– Takes extra overhead to replace a dirty page, so give
dirty pages an extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

Lec 16.510/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list,
mark RW

– Not on SC list: page in to front of Active list, mark RW;
page out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

Ac
ce
ss

New
SC

Victims

Overflow

Lec 16.610/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Goals for Today

• Finish Page Allocation Policies
• Working Set/Thrashing
• I/O Systems

– Hardware Access
– Device Drivers

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Lec 16.710/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes?

– Does every process get the same fraction of memory?
Different fractions?

– Should we completely swap some processes out of memory?
• Each process needs minimum number of pages

– Want to make sure that all processes that are loaded into
memory can make forward progress

– Example: IBM 370 – 6 pages to handle SS MOVE
instruction:
» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame
from set of all frames; one process can take a frame
from another

– Local replacement – each process selects from only its own
set of allocated frames

Lec 16.810/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Fixed/Priority Allocation
• Equal allocation (Fixed Scheme):

– Every process gets same amount of memory
– Example: 100 frames, 5 processes⇒process gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:

si = size of process pi and S = Σsi
m = total number of frames

ai = allocation for pi =

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault,
select for replacement a frame from a process with lower
priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?

m
S
si ×

Lec 16.910/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Page-Fault Frequency Allocation
• Can we reduce Capacity misses by dynamically

changing the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?
Lec 16.1010/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:
– low CPU utilization
– operating system spends most of its time swapping to disk

• Thrashing ≡ a process is busy swapping pages in and out
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?

Lec 16.1110/26/05 Kubiatowicz CS162 ©UCB Fall 2005

• Program Memory Access
Patterns have temporal
and spatial locality
– Group of Pages accessed
along a given time slice
called the “Working Set”

– Working Set defines
minimum number of pages
needed for process to
behave well

• Not enough memory for
Working Set⇒Thrashing
– Better to swap out
process?

Locality In A Memory-Reference Pattern

Lec 16.1210/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Working-Set Model

• Δ ≡ working-set window ≡ fixed number of page
references
– Example: 10,000 instructions

• WSi (working set of Process Pi) = total set of pages
referenced in the most recent Δ (varies in time)
– if Δ too small will not encompass entire locality
– if Δ too large will encompass several localities
– if Δ = ∞ ⇒ will encompass entire program

• D = Σ|WSi| ≡ total demand frames
• if D > m ⇒ Thrashing

– Policy: if D > m, then suspend one of the processes
– This can improve overall system behavior by a lot!

Lec 16.1310/26/05 Kubiatowicz CS162 ©UCB Fall 2005

What about Compulsory Misses?

• Recall that compulsory misses are misses that occur
the first time that a page is seen
– Pages that are touched for the first time
– Pages that are touched after process is swapped
out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the
faulting page

– Since efficiency of disk reads increases with sequential
reads, makes sense to read several sequential pages

• Working Set Tracking:
– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set

Lec 16.1410/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Administrivia
• Exam is graded: grades should be in glookup

– Average: 71.2
– Standard Dev: 12.3

• If you are 2 or more standard-deviations below the
mean, you need to do better:
– You are in danger of getting a D or F
– Feel free to come to talk with me

• Solutions to the Midterm are up on the Handouts page
– They were up there Friday, but don’t know if people
noticed

• Project 2 autograder:
– Will be run a couple of times today and tomorrow
– More times on Wednesday
– Yet more times on Thursday

Lec 16.1510/26/05 Kubiatowicz CS162 ©UCB Fall 2005

The Requirements of I/O
• So far in this course:

– We have learned how to manage CPU, memory
• What about I/O?

– Without I/O, computers are useless (disembodied brains?)
– But… thousands of devices, each slightly different

» How can we standardize the interfaces to these devices?
– Devices unreliable: media failures and transmission errors

» How can we make them reliable???
– Devices unpredictable and/or slow

» How can we manage them if we don’t know what they will do
or how they will perform?

• Some operational parameters:
– Byte/Block

» Some devices provide single byte at a time (e.g. keyboard)
» Others provide whole blocks (e.g. disks, networks, etc)

– Sequential/Random
» Some devices must be accessed sequentially (e.g. tape)
» Others can be accessed randomly (e.g. disk, cd, etc.)

– Polling/Interrupts
» Some devices require continual monitoring
» Others generate interrupts when they need service

Lec 16.1610/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Modern I/O Systems

Lec 16.1710/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Example Device-Transfer Rates (Sun Enterprise 6000)

• Device Rates vary over many orders of magnitude
– System better be able to handle this wide range
– Better not have high overhead/byte for fast devices!
– Better not waste time waiting for slow devices

Lec 16.1810/26/05 Kubiatowicz CS162 ©UCB Fall 2005

The Goal of the I/O Subsystem

• Provide Uniform Interfaces, Despite Wide Range
of Different Devices
– This code works on many different devices:

int fd = open(“/dev/something”);
for (int i = 0; i < 10; i++) {

fprintf(fd,”Count %d\n”,i);
}
close(fd);

– Why? Because code that controls devices (“device
driver”) implements standard interface.

• We will try to get a flavor for what is involved in
actually controlling devices in rest of lecture
– Can only scratch surface!

Lec 16.1910/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, Cdrom

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– different enough from block/character to have own
interface

– Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes
Lec 16.2010/26/05 Kubiatowicz CS162 ©UCB Fall 2005

How Does User Deal with Timing?

• Blocking Interface: “Wait”
– When request data (e.g. read() system call), put
process to sleep until data is ready

– When write data (e.g. write() system call), put process
to sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of
bytes successfully transferred

– Read may return nothing, write may write nothing
• Asynchronous Interface: “Tell Me Later”

– When request data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

– When send data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

Lec 16.2110/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Main components of Intel Chipset: Pentium 4

• Northbridge:
– Handles memory
– Graphics

• Southbridge: I/O
– PCI bus
– Disk controllers
– USB controllers
– Audio
– Serial I/O
– Interrupt controller
– Timers

Lec 16.2210/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Device
Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

How does the processor actually talk to the device?

• CPU interacts with a Controller
– Contains a set of registers that
can be read and written

– May contain memory for request
queues or bit-mapped images

• Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:
– I/O instructions: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

Lec 16.2310/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Example: Memory-Mapped Display Controller
• Memory-Mapped:

– Hardware maps control registers
and display memory into physical
address space

– Simply writing to display memory
(also called the “frame buffer”)
changes image on screen
» Addr: 0x8000F000—0x8000FFFF

– Writing graphics description to
command-queue area
» Say enter a set of triangles that

describe some scene
» Addr: 0x80010000—0x8001FFFF

– Writing to the command register
may cause on-board graphics
hardware to do something
» Say render the above scene
» Addr: 0x0007F004

• Can protect with page tables

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

Lec 16.2410/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Transfering Data To/From Controller
• Programmed I/O:

– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer data to/from memory directly

• Sample interaction with DMA controller (from book):

Lec 16.2510/26/05 Kubiatowicz CS162 ©UCB Fall 2005

A Kernel I/O Structure

Lec 16.2610/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Device Drivers
• Device Driver: Device-specific code in the kernel that

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with
different device drivers

– Special device-specific configuration supported with the
ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like
open(), close(), read(), write(), ioctl(),
strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep

until finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

Lec 16.2710/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

Lec 16.2810/26/05 Kubiatowicz CS162 ©UCB Fall 2005

I/O Device Notifying the OS
• The OS needs to know when:

– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Handled in bottom half of device driver

» Often run on special kernel-level stack
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
» Could use timer to invoke lower half of drivers occasionally

– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or
unpredictable I/O operations

• Actual devices combine both polling and interrupts
– For instance: High-bandwidth network device:

» Interrupt for first incoming packet
» Poll for following packets until hardware empty

Lec 16.2910/26/05 Kubiatowicz CS162 ©UCB Fall 2005

Summary
• Working Set:

– Set of pages touched by a process recently
• Thrashing: a process is busy swapping pages in and out

– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process

• I/O Devices Types:
– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns:

» Block Devices, Character Devices, Network Devices
– Different Access Timing:

» Blocking, Non-blocking, Asynchronous
• I/O Controllers: Hardware that controls actual device

– Processor Accesses through I/O instructions, load/store
to special physical memory

– Report their results through either interrupts or a status
register that processor looks at occasionally (polling)

• Device Driver: Device-specific code in kernel

