CS162
Operating Systems and
Systems Programming
Lecture 16

Page Allocation and
Replacement (con't)
I/0 Systems

October 26, 2005
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Page Replacement Policies

* FIFO (First In, First Out)

- Throw out oldest page. Be fair - let every page live in
memory for same amount of time.
- Bad, because throws out heavily used pages instead of
infrequently used pages
* MIN (Minimum):
- Replace page that won't be used for the longest time
- 6reat, but can't really know future...
- Makes good comparison case, however
* RANDOM:
- Pick random page for every replacement
- Typical solution for TLB's. Simple hardware
- Pretty unpredictable - makes it hard to make real-time
guarantees
* LRU (Least Recently Used):
- Replace page that hasn't been used for the longest time
- Programs have locality, so if something not used for a
while, unlikely to be used in the near future.
- Seems like LRU should be a good approximation to MIN.
10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.2

Review: Clock Algorithm: Not Recently Used

-~
y 4 N\ Advances only on page fault!
/ \ Check for pages not used recently
Mark pages as not used recently
I Set of all pages | =
in Memory /
\ /
~ L s

* Clock Algorithm: pages arranged in a ring

- Hardware “use” bit per physical page:
» Hardware sets use bit on each reference
» If use bit isn't set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy

this back to page table when TLB entry gets replaced

- On page fault:
» Advance clock hand (not real time)
» Check use bit: 1—-used recently: clear and leave alone

O-seleqted, candidate, for orplagement Lec 16.3

10/26/05

Review: Nt Chance version of Clock Algorithm

+ N™ chance algorithm: Give page N chances
- OS keeps counter per page: # sweeps
- On page fault, OS checks use bit:
» 1=>clear use and also clear counter (used in last sweep)
» O=>increment counter; if count=N, replace page
- Means that clock hand has to sweer by N times without
page being used before page is replaced

* How do we pick N?
- Why pick large N? Better approx to LRU
» If N ~ 1K, really good approximation
- Why pick small N? More efficient
» Otherwise might have to look a long way to find free page

* What about dirty pages?
- Takes extra overhead to replace a dirty page, so give
dirty pages an extra chance before replacing?

- Common approach:

» Clean pages, use N=1

» Dirty pages, use N=2 (and write back to disk when N=1)
10/26/05 Kubiatowicz C5162 ®UCB Fall 2005 Lec 16.4

Review: Second-Chance List Algorithm (VAX/VMS)

|_|—> LRV victim

Second
Chance List

Directly
Mapped Pages

Marked: Invalid

List: FIFO [T % List: LRU
. New* New
Page-in Active sc
From disk Pages Victims

- Split memory in two: Active list (RW), SC list (Invalid)
+ Access pages in Active list at full speed
+ Otherwise, Page Fault
- Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid
- Desired Page On SC List: move to front of Active list,
mark RW
- Not on SC list: page in to front of Active list, mark RW;

page out LRU victim at end of SC list

10/26/0 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.5

Goals for Today

* Finish Page Allocation Policies
* Working Set/Thrashing
- I/0 Systems

- Hardware Access

- Device Drivers

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.6

Allocation of Page Frames (Memory Pages)

* How do we allocate memory among different processes?
- Does every process get the same fraction of memory?
Different fractions?
- Should we completely swap some processes out of memory?
* Each process needs minimum number of pages
- Want to make sure that all processes that are loaded into
memory can make forward progress
- Example: IBM 370 - 6 pages to handle SS MOVE
instruction:
» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle fo

* Possible Replacement Scopes:

- Global replacement - process selects replacement frame
from set of all frames: one process can take a frame
from another

- Local replacement - each process selects from only its own

set of allocated frames
10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.7

Fixed/Priority Allocation

* Equal allocation (Fixed Scheme):

- Every process gets same amount of memory
- Example: 100 frames, 5 processes=process gets 20 frames

* Proportional allocation (Fixed Scheme)

- Allocate according to the size of process
- Computation proceeds as follows:

s; = size of process p;and S = Is;

m = total number of frames

S

a; = allocation for p; = gxm

* Priority Allocation:

- Proportional scheme using priorities rather than size
» Same type of computation as previous scheme
- Possible behavior: If process p, generates a page fault,
select for replacement a frame ?rom a process with lower
priority number

* Perhaps we should use an adaptive scheme instead???

- What if some application just needs more memory?
10/26/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 16.8

Page-Fault Frequency Allocation

+ Can we reduce Capacity misses by dynamically
changing the number of pages/application?

increase number
of frames

upper bound

page-fault rate

lower bound [
decrease number|
of frames

number of frames
+ Establish "acceptable” page-fault rate
- If actual rate too low, process loses frame
- If actual rate too high, process gains frame
* Question: What if we just don't have enough memory?

10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.9

Thrashing

i thrashing

CPU utilization

degree of mulliprogramming
- If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:

- low CPU utilization

- operating system spends most of its time swapping to disk
* Thrashing = a process is busy swapping pages in and out
* Questions:

- How do we detect Thrashing?

- What is best response to Thrashing?
10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.10

Locality In A Memory-Reference Pattern

Program Memory Access

Patterns have temporal e

and spatial locality

- Group of Pages accessed
along a given time slice
called the "Working Set"”

- Working Set defines
minimum number of pages

g

menay adiizes
]

needed for process to
behave well

B

Not enough memory for

Working Set=Thrashing

]
=]

- Better to swap out
process?

A8 UM Bs

l; =

emseulipr lime ——»

10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.11

Working-Set Model

page reference table
. ..2615777751623412344434344413234443444 __,

A | A I
L L,
WS(t,) = (1.2.5.6.7} WS(t,) = (3.4}
+ A = working-set window = fixed number of page
references
- Example: 10,000 instructions
+ WS, (working set of Process P) = total set of pages
referenced in the most recent A (varies in time)
- if A too small will not encompass entire locality
- if A too large will encompass several localities
- if A = = will encompass entire program
D = Z|WS] = total demand frames
* if O > m= Thrashing
- Policy: if O > m, then suspend one of the processes

- This can improve overall system behavior by a lot!
10/26/05 Kubiatowicz CS5162 ©UCB Fall 2005 Lec 16.12

What about Compulsory Misses?

+ Recall that compulsory misses are misses that occur
the first time that a page is seen

- Pages that are touched for the first time

- Pages that are touched after process is swapped
out/swapped back in

+ Clustering:

- On a page-fault, bring in multiple pages “around” the
faulting page

- Since efficiency of disk reads increases with sequential
reads, makes sense to read several sequential pages

* Working Set Tracking:
- Use algorithm to try to track working set of application
- When swapping process back in, swap in working set

Administrivia

Exam is graded: grades should be in glookup
- Average: 71.2
- Standard Dev: 12.3
+ If you are 2 or more standard-deviations below the
mean, you need to do better:
- You are in danger of getting a D or F
- Feel free to come to talk with me
Solutions to the Midterm are up on the Handouts page
- They were up there Friday, but don't know if people
noticed
* Project 2 autograder:
- Will be run a couple of times today and tomorrow
- More times on Wednesday
- Yet more times on Thursday

10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.13 10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.14
The Requirements of I/0 — Modern I/0 Systems
+ So far in this course: } —g=
- We have learned how to manage CPU, memory 3| s
* What about I/0? ~~ Y=\ ||
- Without I/0, computers are useless (disembodied brains?) = =" e ®l =
- But.. thousands of devices, each slightly different I
» How can we standardize the interfaces to these devices? e ‘ i H SCS! controller
- Devices unreliable: media failures and transmission errors : /@
» How can we make them reliable??? | | ot . J
- Devices unpredictable and/or slow . | |
» How can we manage them if we don't know what they will do - aN - expansion bus
or how they will perform? s ® == | inferiace @
- Some operational parameters: o I s
- Byte/Block » po ! r
» Some devices provide single byte at a time (e.g. keyboard) : (=g B o }’

» Others provide whole blocks (e.g. disks, networks, etc)
- Sequential/Random

» Some devices must be accessed sequentially (e.g. tape)

» Others can be accessed randomly (e.g. disK, c¢f etc.)
- Polling/Interrupts

» Some devices require continual monitoring

10726105 OThers generale. interrupts yhen fhgy,need service | ¢ 15

10/26/05 Kubiatowicz €5162 ®UCB Fall 2005 ~ Lec 16.16

Example Device-Transfer Rates (Sun Enterprise 6000)

gigaplane
bus.

SBUS

SCS1 bus

fast
etharnat

hard disk

ethernet

lasar
printer

maodem

mouse

keyboard
1 | || 1

I A
0 001 04 1 10 100
$

- Device Rates vary over many orders of magnitude
- System better be able to handle this wide range
- Better not have high overhead/byte for fast devices!

10/26/05 BeTTer not wagte time waiting £or glow devices ...,

The Goal of the I/0 Subsystem

* Provide Uniform Interfaces, Despite Wide Range
of Different Devices

- This code works on many different devices:
int £d = open(“/dev/something”) ;
for (int i = 0; i < 10; i++) {

fprintf (£4, "Count %d\n”,i);
}
close(fd);

- Why? Because code that controls devices (“device
driver”) implements standard interface.

* We will try to get a flavor for what is involved in
actually controlling devices in rest of lecture

- Can only scratch surface!

10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.18

Want Standard Interfaces to Devices

* Block Devices: e.g. disk drives, tape drives, Cdrom
- Access blocks of data
- Commands include open(), read(), write(), seek()
- Raw I/0 or file-system access
- Memory-mapped file access possible
* Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
- Single characters at a time
- Commands include get (), put ()
- Libraries layered on top allow line editing
* Network Devices: e.g. Ethernet, Wireless, Bluetooth

- different enough from block/character to have own
interface

- Unix and Windows include socket interface

» Separates network protocol from network operation
» Includes select () functionality

- Usage: pipes, FIFOs, streams, queues, mailboxes
10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.19

How Does User Deal with Timing?

+ Blocking Interface: "Wait"

- When request data (e.g. read() system call), put
process to sleep until data is ready

- When write data (e.g. write () system call), put process
to sleep until device is ready for data

* Non-blocking Interface: "Don't Wait"”

- Returns quickly from read or write request with count of
bytes successfully transferred

- Read may return nothing, write may write nothing
* Asynchronous Interface: "Tell Me Later”

- When request data, take pointer to user's buffer, return
immediately; later kernel fills buffer and notifies user

- When send data, take pointer to user's buffer, return
immediately; later kernel takes data and notifies user

10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.20

Main components of Intel Chipset: Pentium 4

* Northbridge:
- Handles memory

- 6raphics
* Southbridge: I/0 ——

- PCI bus)
- Disk controllers N
- USB controllers g LS
- Audio — g f J
- Serial I/0
- Interrupt controller _ j
- Timers

10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.21

How does the processor actually talk to the device? _

/
Processor Memory Bus Regular
Memory
Device "\“
Adar ~=
& ToAddress+ Controller S==—"=
Other Devices Dat
[Device, ata Bus Hardware
[nterrupt] or e nterfacdl Controller
C°“TF°"°“‘ Interrupt Request
read
write Addressable
+ CPVU interacts with a Controller ol Me:‘/""Y
- Contains a set of registers that Registers | Queues
can be read and written (port 0x20) ’
- i Memory Mappe
May contain memory for request Region: 'Oafd08020

queues or bit-mapped images
* Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:
- I/0 instructions: in/out instructions
» Example from the Intel architecture: out 0x21,AL
- Memory ma|:7aed I/0: load/store instructions
» Registers/memory appear in physical address space

» I/0 accomplished with load and store instructions
Kubiatowicz 5162 ©UCB Fall 2005 Lec 16.22

10/26/05

Example: Memory-Mapped Display Controller
* Memory-Mapped:

- Hardware maps control registers) 30020000|:.
and display memory into physical * Graphics

address space Cgt:lrg&gd
- Simply writing to display memor
(alsg Zalled 'rge “frarrr,\e)I,:uffer'")y 0x80010000 Display

changes image on screen
» Addr: 0x8000F000—0x8000FFFF
- Writing graphics description to
command-queue area
» Say enter a set of triangles that 4, 0007r004 Command

describe some scene -
» Addr: 0x80010000—0x8001FFFF 0x0007F000 | Stafus

- Writing to the command register

Memory

0x8000F000

may cause on-board graphics —lh
hardware to do something
» Say render the above scene Physical Address
» Addr: 0x0007F004 ~— ,L Space
* Can protect with page tables =
10/26/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 16.23

Transfering Data To/From Controller

* Programmed I/0:
- Each byte transferred via processor in/out or load/store
- Pro: Simple hardware, easy to program
- Con: Consumes processor cycles proportional to data size
* Direct Memory Access:
- Give controller access to memory bus
- Ask it to transfer data to/from memory dir'ecﬂl
+ Sample interaction with DMA controller (from book):

1. device driver is told |

to transfer disk data | CPU
to buffer at address X|
5. DMA confroller 2, device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes r | z
memory addrass from disk to buffer cache
and decreasing C at address X L iSzciinas,
until G =0 W'
LS. r .
6. when C = 0, DMa - 1 X
intermupts CPU o signal lnlt::rr:;:gl |- CPU memory bus —| memory bul‘iol.
transfer completion i £
: PCI bus
= 3. disk controller initiates.
IDE disk DMA transfer
controller 4. disk controller sends
I each byte to DMA
controller
10/26/05 Lec 16.24

A Kernel I/0 Structure

Device Drivers

- Device Driver: Device-specific code in the kernel that
o interacts directly with the device hardware
- Supports a standard, internal interface
0 - Same kernel I/0 system can interact easily with
;:gu kernel I/O subsystem different device drivers
3 . - Special device-specific configuration supported with the
SCsl | keyboard | mouse PClbus | floppy | ATAPI ioctl() system call
Gotioo | sewieo.) oo s denm | e e - Device Drivers typically divided into two pieces:
: - Top half: accessed in call path from system calls
sCSl | keyboard | mouse PClbus | floppy | ATAPI » implements a set of standard, cross-device calls like
device device device e device device device open() , close ()) read ()) write () , loctl () ,
0 controller | controller | controller controller | controller | controller strategy ()
E I I I I I I I » This is the kernel's interface to the device driver
s - AT » Top half will start I/O to device, may put thread to sleep
scs| floppy- devices until finished
devioes | (KE¥PORIS) | etser) |BESE) | BREE [fiee | [0 - Bottom half: run as interrupt routine
drives) » Gets input or transfers next block of output
» May wake sleeping threads if I/0 now complete
10/26/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 16.25 10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.26
Life Cycle of An I/O Request I/0O Device Notifying the OS
User * The OS needs to know when: .
st pocess | LKL SRS o - The I/0 device has completed an operation
Program - The I/0 operation has encountered an error
FTT .oy - - I/0 Interrupt:
i - Device c?enerates an interrupt whenever it needs service
Kernel I/0 Carorortoss - Handled in bottom half of device driver
Subsystem » Often run on special kernel-level stack

Device Driver
Top Half

send request bo device
ariver, BIGEK process i
opTte W

PIOCHSS IOQUES!, BEUS

cOMmMAnds k0 conlrosar, oavice
configuen controlis 1o diver
block until nfemupled

detarrming which

complgted, indicata state
changa 1o V0 subaysiom

Vo

Device Driver —

Bottom Half

receive inedmupd, store
data n device-dmvar buflar
it inpu, signal [0 nblock

device difver

Device
Hardware

10/26/05

davica
monilor devics, criroliar
milzmupl when 1O
complatad

| time

VO complotd

ganarate internpt

>
v

Kubiat

Lec 16.27

-Pro: handles unpredictable events well
P- ﬁon: interrupts relatively high overhead
* Polling:
- OSg eriodically checks a device-specific status register
» 1/0 device puts completion information in status register
» Could use timer to invoke lower half of drivers occasionally
-Pro: low overhead
- Con: may waste many cycles on polling if infrequent or
unpredictable I/O operations
* Actual devices combine both polling and interrupts
- For instance: High-bandwidth network device:
» Interrupt for first incoming packet
» Poll for following packets until hardware empty

10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.28

Summary

* Working Set:
- Set of pages touched by a process recently
* Thrashing: a process is busy swapping pages in and out
- Process will thrash if working set doesn't fit in memory
- Need to swap out a process
+ I/0 Devices Types:
- Many different speeds (0.1 bytes/sec to GBytes/sec)
- Different Access Patterns:
» Block Devices, Character Devices, Network Devices
- Different Access Timing:
» Blocking, Non-blocking, Asynchronous
+ I/0 Controllers: Hardware that controls actual device
- Processor Accesses through I/O instructions, load/store
to special physical memory
- Report their results through either interrupts or a status
register that processor looks at occasionally (polling)

- Device Driver: Device-specific code in kernel
10/26/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 16.29

