
CS162
Operating Systems and
Systems Programming

Lecture 17

Disk Management and
File Systems

October 31, 2005
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 17.210/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, Cdrom

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– different enough from block/character to have own
interface

– Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes

Lec 17.310/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: How Does User Deal with Timing?

• Blocking Interface: “Wait”
– When request data (e.g. read() system call), put
process to sleep until data is ready

– When write data (e.g. write() system call), put process
to sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of
bytes successfully transferred

– Read may return nothing, write may write nothing
• Asynchronous Interface: “Tell Me Later”

– When request data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

– When send data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

Lec 17.410/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Device
Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

Review: How does the processor talk to the device?

• CPU interacts with a Controller
– Contains a set of registers that
can be read and written

– May contain memory for request
queues or bit-mapped images

• Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:
– I/O instructions: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

Lec 17.510/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Memory-Mapped Display Controller Example
• Memory-Mapped:

– Hardware maps control registers
and display memory to physical
address space
» Addresses set by hardware jumpers

or programming at boot time
– Simply writing to display memory
(also called the “frame buffer”)
changes image on screen
» Addr: 0x8000F000—0x8000FFFF

– Writing graphics description to
command-queue area
» Say enter a set of triangles that

describe some scene
» Addr: 0x80010000—0x8001FFFF

– Writing to the command register
may cause on-board graphics
hardware to do something
» Say render the above scene
» Addr: 0x0007F004

• Can protect with page tables

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

Lec 17.610/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Goals for Today

• Finish Discussing I/O Systems
– Hardware Access
– Device Drivers

• Disk Performance
– Hardware performance parameters
– Queuing Theory

• File Systems

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Lec 17.710/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Transfering Data To/From Controller
• Programmed I/O:

– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer data to/from memory directly

• Sample interaction with DMA controller (from book):

Lec 17.810/31/05 Kubiatowicz CS162 ©UCB Fall 2005

A Kernel I/O Structure

Lec 17.910/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Device Drivers
• Device Driver: Device-specific code in the kernel that

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with
different device drivers

– Special device-specific configuration supported with the
ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like
open(), close(), read(), write(), ioctl(),
strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep

until finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

Lec 17.1010/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

Lec 17.1110/31/05 Kubiatowicz CS162 ©UCB Fall 2005

I/O Device Notifying the OS
• The OS needs to know when:

– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Handled in bottom half of device driver

» Often run on special kernel-level stack
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
» Could use timer to invoke lower half of drivers occasionally

– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or
unpredictable I/O operations

• Actual devices combine both polling and interrupts
– For instance: High-bandwidth network device:

» Interrupt for first incoming packet
» Poll for following packets until hardware empty

Lec 17.1210/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Administrivia
• Not much to say today

– Better get started on Project 3

Lec 17.1310/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Hard Disk Drives

IBM/Hitachi Microdrive

Western Digital Drive
http://www.storagereview.com/guide/

Read/Write Head
Side View

Lec 17.1410/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Properties of a Hard Magnetic Disk

• Properties
– Independently addressable element: sector

» OS always transfers groups of sectors together—”blocks”
– A disk can access directly any given block of information
it contains (random access). Can access any file either
sequentially or randomly.

– A disk can be rewritten in place: it is possible to
read/modify/write a block from the disk

• Typical numbers (depending on the disk size):
– 500 to more than 20,000 tracks per surface
– 32 to 800 sectors per track

» A sector is the smallest unit that can be read or written
• Zoned bit recording

– Constant bit density: more sectors on outer tracks
– Speed varies with track location

Track

Sector

Platters

Lec 17.1510/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Disk I/O Performance

Response Time = Queue+Disk Service Time

User
Thread

Queue
[OS Paths]

Controller

Disk

• Performance of disk drive/file system
– Metrics: Response Time, Throughput
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» Physical disk media

• Queuing behavior:
– Can lead to big increases of latency as utilization
approaches 100%

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

Lec 17.1610/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Magnetic Disk Characteristic
• Cylinder: all the tracks under the

head at a given point on all surface
• Read/write data is a three-stage

process:
– Seek time: position the head/arm over the proper track
(into proper cylinder)

– Rotational latency: wait for the desired sector
to rotate under the read/write head

– Transfer time: transfer a block of bits (sector)
under the read-write head

• Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

• Highest Bandwidth:
– transfer large group of blocks sequentially from one track

Sector
Track

Cylinder
Head

Platter

Software
Queue

(Device Driver)

H
ardware

Controller

Media Time
(Seek+Rot+Xfer)

Request

Result

Lec 17.1710/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Typical Numbers of a Magnetic Disk
• Average seek time as reported by the industry:

– Typically in the range of 8 ms to 12 ms
– Due to locality of disk reference may only be 25% to 33%
of the advertised number

• Rotational Latency:
– Most disks rotate at 3,600 to 7200 RPM (Up to
15,000RPM or more)

– Approximately 16 ms to 8 ms per revolution, respectively
– An average latency to the desired information is halfway
around the disk: 8 ms at 3600 RPM, 4 ms at 7200 RPM

• Transfer Time is a function of:
– Transfer size (usually a sector): 1 KB / sector
– Rotation speed: 3600 RPM to 15000 RPM
– Recording density: bits per inch on a track
– Diameter: ranges from 1 in to 5.25 in
– Typical values: 2 to 50 MB per second

• Controller time?
– Depends on controller hardware—need to examine each
case individually

Lec 17.1810/31/05 Kubiatowicz CS162 ©UCB Fall 2005

DeparturesArrivals
Queuing System

Introduction to Queuing Theory

• What about queuing time??
– Let’s apply some queuing theory
– Queuing Theory applies to long term, steady state
behavior ⇒ Arrival rate = Departure rate

• Little’s Law:
Mean # tasks in system = arrival rate x mean response time
– Observed by many, Little was first to prove
– Simple interpretation: you should see the same number of
tasks in queue when entering as when leaving.

• Applies to any system in equilibrium, as long as nothing
in black box is creating or destroying tasks
– Typical queuing theory doesn’t deal with transient
behavior, only steady-state behavior

Queue

Controller

Disk

Lec 17.1910/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Background: Use of random distributions
• Server spends variable time with customers

– Mean (Average) m1 = Σp(T)×T
– Variance σ2 = Σp(T)×(T-m1)2 = Σp(T)×T2-m1
– Squared coefficient of variance: C = σ2/m12

Aggregate description of the distribution.
• Important values of C:

– No variance or deterministic ⇒ C=0
– “memoryless” or exponential ⇒ C=1

» Past tells nothing about future
» Many complex systems (or aggregates)

well described as memoryless
– Disk response times C ≈ 1.5 (majority seeks < avg)

• Mean Residual Wait Time, m1(z):
– Mean time must wait for server to complete current task
– Can derive m1(z) = ½m1×(1 + C)

» Not just ½m1 because doesn’t capture variance
– C = 0 ⇒ m1(z) = ½m1; C = 1 ⇒ m1(z) = m1

Mean
(m1)

mean

Memoryless

Distribution
of service times

σ

Lec 17.2010/31/05 Kubiatowicz CS162 ©UCB Fall 2005

A Little Queuing Theory: Mean Wait Time

• Parameters that describe our system:
– λ: mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = σ2/m12

– μ: service rate = 1/Tser
– u: server utilization (0≤u≤1): u = λ/μ = λ × Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue = λ × Tq (by Little’s law)

• Basic Approach:
– Customers before us must finish; mean time = Lq × Tser
– If something at server, takes m1(z) to complete on avg

» m1(z): mean residual wait time at server= Tser × ½(1+C)
» Chance server busy = u ⇒ mean time is u × m1(z)

• Computation of wait time in queue (Tq):
– Tq = Lq × Tser + u × m1(z)

Arrival Rate
 λ

Queue ServerService Rate
 μ=1/Tser

Lec 17.2110/31/05 Kubiatowicz CS162 ©UCB Fall 2005

A Little Queuing Theory: M/G/1 and M/M/1
• Computation of wait time in queue (Tq):

Tq = Lq × Tser + u × m1(z)
Tq = λ × Tq × Tser + u × m1(z)
Tq = u × Tq + u × m1(z)
Tq × (1 – u) = m1(z) × u ⇒ Tq = m1(z) × u/(1-u) ⇒
Tq = Tser × ½(1+C) × u/(1 – u)

• Notice that as u→1, Tq→∞ !
• Assumptions so far:

– System in equilibrium; No limit to the queue: works
First-In-First-Out

– Time between two successive arrivals in line are random
and memoryless: (M for C=1 exponentially random)

– Server can start on next customer immediately after
prior finishes

• General service distribution (no restrictions), 1 server:
– Called M/G/1 queue: Tq = Tser x ½(1+C) x u/(1 – u))

• Memoryless service distribution (C = 1):
– Called M/M/1 queue: Tq = Tser x u/(1 – u)

Little’s Law

Defn of utilization (u)

Lec 17.2210/31/05 Kubiatowicz CS162 ©UCB Fall 2005

A Little Queuing Theory: An Example
• Example Usage Statistics:

– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller+seek+rot+trans)

• Questions:
– How utilized is the disk?

» Ans: server utilization, u = λTser
– What is the average time spent in the queue?

» Ans: Tq
– What is the number of requests in the queue?

» Ans: Lq
– What is the avg response time for disk request?

» Ans: Tsys = Tq + Tser
• Computation:

λ (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
u (server utilization) = λ x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u)

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) = λ x Tq=10/s x .005s = 0.05
Tsys (avg time/customer in system) =Tq + Tser= 25 ms

Lec 17.2310/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Disk Scheduling
• Disk can do only one request at a time; What order do

you choose to do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be to
random spots on the disk ⇒ Very long seeks

• SSTF: Shortest seek time first
– Pick the request that’s closest on the disk
– Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but
may lead to starvation

• SCAN: Implements an Elevator Algorithm: take the
closest request in the direction of travel
– No starvation, but retains flavor of SSTF

• S-SCAN: Circular-Scan: only goes in one direction
– Skips any requests on the way back
– Fairer than SCAN, not biased towards pages in middle

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1

4

2

D
isk H

ead

3

Lec 17.2410/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Building a File System
• File System: Layer of OS that transforms block

interface of disks (or other block devices) into Files,
Directories, etc.

• File System Components
– Disk Management: collecting disk blocks into files
– Naming: Interface to find files by name, not by blocks
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite
crashes, media failures, attacks, etc

• User vs. System View of a File
– User’s view:

» Durable Data Structures
– System’s view (system call interface):

» Collection of Bytes (UNIX)
» Doesn’t matter to system what kind of data structures you

want to store on disk!
– System’s view (inside OS):

» Collection of blocks (a block is a logical transfer unit, while
a sector is the physical transfer unit)

» Block size ≥ sector size; in UNIX, block size is 4KB

Lec 17.2510/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Translating from User to System View

• What happens if user says: give me bytes 2—12?
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about: write bytes 2—12?
– Fetch block
– Modify portion
– Write out Block

• Everything inside File System is in whole size blocks
– For example, getc(), putc() ⇒ buffers something like
4096 bytes, even if interface is one byte at a time

• From now on, file is a collection of blocks

File
System

Lec 17.2610/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Disk Management Policies
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially in
logical space

– Directory: user-visible index mapping names to files
(next lecture)

• Access disk as linear array of blocks. Two Options:
– Identify blocks as vectors [cylinder, surface, sector].
Sort in cylinder-major order. Not used much anymore.

– Logical Block Addressing (LBA). Every block has integer
address from zero up to max number of cylinders.

– Controller translates from address ⇒ physical position
» First case: OS/BIOS must deal with bad blocks
» Second case: hardware shields OS from structure of disk

• Need way to track free disk blocks
– Link free blocks together ⇒ too slow today
– Use bitmap to represent free space on disk

• Need way to structure files: File Header
– Track which blocks belong at which offsets within the
logical file structure

– Optimize placement of files disk blocks to match access
and usage patterns

Lec 17.2710/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Designing the File System: Access Patterns
• How do users access files?

– Need to know type of access patterns user is likely to
throw at system

• Sequential Access: bytes read in order (“give me the
next X bytes, then give me next, etc”)
– Almost all file access are of this flavor

• Random Access: read/write element out of middle of
array (“give me bytes i—j”)
– Less frequent, but still important. For example, virtual
memory backing file: page of memory stored in file

– Want this to be fast – don’t want to have to read all
bytes to get to the middle of the file

• Content-based Access: (“find me 100 bytes starting
with KUBIATOWICZ”)
– Example: employee records – once you find the bytes,
increase my salary by a factor of 2

– Many systems don’t provide this; instead, databases are
built on top of disk access to index content (requires
efficient random access)

Lec 17.2810/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Designing the File System: Usage Patterns
• Most files are small (for example, .login, .c files)

– A few files are big – nachos, core files, etc.; the nachos
executable is as big as all of your .class files combined

– However, most files are small – .class’s, .o’s, .c’s, etc.
• Large files use up most of the disk space and

bandwidth to/from disk
– May seem contradictory, but a few enormous files are
equivalent to an immense # of small files

• Although we will use these observations, beware usage
patterns:
– Good idea to look at usage patterns: beat competitors by
optimizing for frequent patterns

– Except: changes in performance or cost can alter usage
patterns. Maybe UNIX has lots of small files because big
files are really inefficient?

• Digression, danger of predicting future:
– In 1950’s, marketing study by IBM said total worldwide
need for computers was 7!

– Company (that you haven’t heard of) called “GenRad”
invented oscilloscope; thought there was no market, so
sold patent to Tektronix (bet you have heard of them!)

Lec 17.2910/31/05 Kubiatowicz CS162 ©UCB Fall 2005

How to organize files on disk
• Goals:

– Maximize sequential performance
– Easy random access to file
– Easy management of file (growth, truncation, etc)

• First Technique: Continuous Allocation
– Use continuous range of blocks in logical block space

» Analogous to base+bounds in virtual memory
» User says in advance how big file will be (disadvantage)

– Search bit-map for space using best fit/first fit
» What if not enough contiguous space for new file?

– File Header Contains:
» First sector/LBA in file
» File size (# of sectors)

– Pros: Fast Sequential Access, Easy Random access
– Cons: External Fragmentation/Hard to grow files

» Free holes get smaller and smaller
» Could compact space, but that would be really expensive

• Continuous Allocation used by IBM 360
– Result of allocation and management cost: People would
create a big file, put their file in the middle

Lec 17.3010/31/05 Kubiatowicz CS162 ©UCB Fall 2005

How to organize files on disk (continued)
• Second Technique: Linked List Approach

– Each block, pointer to next on disk

– Pros: Can grow files dynamically, Free list same as file
– Cons: Bad Sequential Access (seek between each block),

Unreliable (lose block, lose rest of file)
– Serious Con: Bad random access!!!!
– Technique originally from Alto (First PC, built at Xerox)

» No attempt to allocate contiguous blocks
• MSDOS used a similar linked approach

– Links not in pages, but in the File Allocation Table (FAT)
» FAT contains an entry for each block on the disk
» FAT Entries corresponding to blocks of file linked together

– Compare with Linked List Approach:
» Sequential access costs more unless FAT cached in memory
» Random access is better if FAT cached in memory

Null

File Header

Lec 17.3110/31/05 Kubiatowicz CS162 ©UCB Fall 2005

How to Organize Files on Disk (continued)

• Third Technique: Indexed Files (Nachos, VMS)
– System Allocates file header block to hold array of
pointers big enough to point to all blocks
» User pre-declares max file size;

– Pros: Can easily grow up to space allocated for index
Random access is fast

– Cons: Clumsy to grow file bigger than table size
Still lots of seeks: blocks may be spread over disk Lec 17.3210/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Where do we still have to go?

• Still don’t have good internal file structure
– Want to minimize seeks, maximize sequential access
– Want to be able to handle small and large files efficiently

• Don’t yet know how to name/locate files
– What is a directory?
– How do we look up files?

• Don’t yet know how to make file system fast
– Must figure out how to use caching

• Will address these issues next time….

Lec 17.3310/31/05 Kubiatowicz CS162 ©UCB Fall 2005

Summary
• I/O Controllers: Hardware that controls actual device

– Processor Accesses through I/O instructions, load/store
to special physical memory

– Report their results through either interrupts or a status
register that processor looks at occasionally (polling)

• Disk Performance:
– Queuing time + Controller + Seek + Rotational + Transfer
– Rotational latency: on average ½ rotation
– Transfer time: spec of disk depends on rotation speed
and bit storage density

• Queuing Latency:
– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency → ∞

Tq = Tser x ½(1+C) x u/(1 – u))
• File System:

– Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access

