CS162
Operating Systems and
Systems Programming
Lecture 18

File Systems, Naming, and Directories

November 2, 2005
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Track
Review: Magnetic Disk Char‘acfer‘is*l'ic/) Sector

* Cylinder: all the tracks under the

head at a given point on all surface tcad

* Read/write data is a three-stage Cylinder

process: “Platter
- Seek time: position the head/arm over the proper track
(into proper cylinder)
- Rotational latency: wait for the desired sector
to rotate under the read/write head

- Transfer time: transfer a block of bits (sector)
under the read-write head

+ Disk Latency = Queueing Time + Controller time +

Seek Time + Rotation Time + Xfer Time

xI

o ST

8 So(uars % 3 Media Time 4

[> Queue 3 S > >

® : . o3 (Seek+Rot+Xfer) c

9 (Device Driver) 53 =5
8

* Highest Bandwidth:

- transfer large group of blocks sequentially from one track
11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 18.2

Review: Introduction to Queuing Theory

Q
o
S
— 11— 3 o | ——
Arrivals Gueve |8 Departures
Queuing System

* What about queuing time??
- Let's apply some queuing theory
- Queuing Theory applies to long term, steady state
behavior = Arrival rate = Departure rate
« Little's Law:
Mean # tasks in system = arrival rate x mean response time
- Observed by many, Little was first to prove
- Simple interpretation: you should see the same number of
tasks in queue when entering as when leaving.
. Apglies to any system in equilibrium, as long as nothing
in black box is creating or destroying tasks

- Typical queuing theory doesn't deal with transient
behavior, only steady-state behavior
11/02/05 Kubiatowicz €5162 ®UCB Fall 2005 Lec 18.3

Goals for Today

- Finishing Disk Performance
- Hardware performance parameters
- Queuing Theory

- File Systems
- Structure, Naming, Directories

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

11/02/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 18.4

Background: Use of random distributions

- Server spends variable time with customers
- Mean (Average) = Zp(T)xT y
- Variance 62 = Zp(T)x(T-m1)? = Tp(T)xT2-ml
- Squared coefficient of variance: C = g2/m12 _ Distribution
Aggr'ega're description of the distribution. of service times

* Important values of C:

- No variance or deterministic = C=0 mean
- "memoryless” or exponential = C=1 ‘\‘\
» Past tells nothing about future
» Many complex systems (or aggregates) Memoryless
well described as memoryless
- Disk response times C = 1.5 (majority seeks < avg)
* Mean Residual Wait Time, m1(z):
- Mean time must wait for server to complete current task
- Can derive m1(z) = $mix(1 + C)
» Not just $m1 because doesn't capture variance
-C=0=>ml(z)=4m1; C=1=ml(2) = ml
11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 18.5

A Little Queuing Theory: Mean Wait Time

——l
Arrival Rate Service Rate @
A p=1/T,,

* Parameters that describe our system:

- A mean number of arriving customers/second

- T, mean time to service a customer ("m1")

-C: squared coefficient of variance = ¢2/m12

- service rate = 1/T_, .

- u server utilization (O<u<1): u = A/y = A x T,
* Parameters we wish to compute:

- T Time spent in queue

- Ly Length of queue = A x T, (by Little’s law)
* Basic Approach:
- Customers before us must finish;
- If something at server, takes m1(z) to complefeonavg
» m1(z): mean residual wdit time at server= T X 3(1+
» Chance something-df server = u = mean time isCU x m1(zD
» Computation of wait time in queue (T,):
- Ty = Lgx Ty, + ux mi(z)+
11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 18.6

A Little Queuing Theory: M/6/1 and M/M/1
* Computation_of wait time in queue (T,):

Tq = Lq X Tgn + U X Mm1(2) Little's Law
Tg = AX T x T, +uxml() I
T =uxT,+uxml(z) Defn of utilization (u)

T, x(1 - u% =ml(z) xu = T, = m1(z) x u/(1-u) =
T, = x $(1+C) x u/(1 - u)
* Notice that as u—1, T - !
* Assumptions so far:
- System in_equilibrium; No limit to the queue: works
First-In-First-Out

- Time between two successive arrivals in line are random
and memoryless: (M for C=1 exponentially random)

- Server can start on next customer immediately after
prior finishes
 General service distribution (no restrictions), 1 server:
- Called M/6/1 queue: T, = T, x 2(1+C) x u/(1 - u))
* Memoryless service distribution (C = 1):
- Called M/M/1 queue: T, = T, x u/(1 - u)

11/02/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 18.7

A Little Queuing Theory: An Example

+ Example Usage STafisTics:

- User requests 10 x 8KB disk I/Os per second

- Requests & service exponentially distributed (C=1.0)

- Avg. service = 20 ms (controller+seek+rot+Xfertime)
* Questions:

- How utilized is the disk?

» Ans: server utilization, u = AT_,,
- What is the average time spent in the queue?

» Ans: T
- What is the number of requests in the queue?
» Ans: L, = AT

- What is the avg response time for disk request?
» Ans: T, = T+ T (Wait in queue, then get served)
+ Computation:
A (avg # arriving customers/s) = 10/s
T... (avg time to service customer) = 20 ms (0.02s)
u (server utilization) = A x T,.= 10/s x .02s = 0.2
T, a\ég time/customer in ueueeg = T, x u/(1 - u)
L = 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms 805 .005s)

§avg length of queue) = A x T,=10/s x .005s = 0.05
quys avg time/customer in system) =T _+ T..= 25 ms
11/02/705 Kubiatowicz 5162 ©UCB Fall 2005 Lec 18.8

Disk Scheduling

+ Disk can do ong' one request atf a fime: af order do
you choose to do queued requests?

User N Head[<¢
Requests |:> ™ |:> -5
* FIFO Order
- Fair among requesters, but order of arrival may be to
random spots on the disk = Very long seeks
+ SSTF: Shortest seek time first
- Pick the request that's closest on the disk
- Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek
- Con: SSTF good at reducing seeks, but
may lead to starvation
+ SCAN: Implements an Elevator Algorithm: take the
closest request in the direction of travel
- No starvation, but retains flavor of SSTF
- C-SCAN: Circular-Scan: only goes in one direction
- Skips any requests on the wcg back

11/6/f@irer than SCAN, not bigsed towards pages in middle

-

N
N =

N
W)

s:l!"
S =
N o

poaH %siq

Administrivia

* My office hours
- How many people would like me to have an office hour on
Tuesday or Thursday?
* Better get started on Project 3
- Design is due on Monday

11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 18.10

Building a File System

- File System: LaKer' of OS that transforms block
interface of disks (or other block devices) into Files,
Directories, etc.

+ File System Components

- Disk Management: collecting disk blocks into files

- Naming: Interface to find %iles by name, not by blocks

- Protection: Layers to keep data secure

- Reliability/Durability: Keeping of files durable despite
crashes, media failures, attacks, etc

* User vs. System View of a File

- User's view:
» Durable Data Structures

- System's view (system call interface):
» Collection of Bytes (UNIX)

» Doesn't matter to system what kind of data structures you
want to store on diskl
- System'’s view (inside OS):
» Collection of blocks (a block is a logical transfer unit, while
a sector is the physical transfer unit)
» Block size > sector size; in UNIX, block size is 4KB

11/02/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 18.11

Translating from User to System View

* What happens if user says: give me bytes 2—12?
- Fetch block corresponding to those bytes
- Return just the correct portion of the block
* What about: write bytes 2—12?
- Fetch block
- Modify portion
- Write out Block
- Everything inside File System is in whole size blocks

- For example, getc (), putc() = buffers something like
4096 bytes, even if interface is one byte at a time

* From now on, file is a collection of blocks
11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 18.12

Disk Management Policies

Basic entities on a disk:
- File: user-visible group of blocks arranged sequentially in
logical space
- Directory: user-visible index mapping names to files
(next lecture)
Access disk as linear array of blocks. Two Options:
- Identify blocks as vectors [cylinder, surface, sector].
Sort in cylinder-major order. Not used much anymore.
- Logical Block Addressing (LBA). Every block has integer
address from zero up tfo max number of cylinders.
- Controller translates from address = physical position
» First case: OS/BIOS must deal with bad blocks
» Second case: hardware shields OS from structure of disk
Need way to track free disk blocks
- Link free blocks together = too slow toda
- Use bitmap to represent free space on dis
Need way to structure files: File Header
- Track which blocks belong at which offsets within the
logical file structure
- Optimize placement of files disk blocks to match access
and usage patterns

11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 18.13

Designing the File System: Access Patterns

+ How do users access files?
- Need to know type of access patterns user is likely to
throw at system
+ Sequential Access: bytes read in order ("give me the
next X bytes, then give me next, etc”)
- Almost all file access are of this flavor

- Random Access: read/write element out of middle of
array (“give me bytes i—j")
- Less frequent, but still important. For example, virtual
memory backing file: page of memory stored in file
- Want this to be fast - don't want to have to read all
bytes to get to the middle of the file
+ Content-based Access: ("find me 100 bytes starting
with KUBIATOWICZ")
- Example: employee records - once Zou find the bytes,
increase my salary by a factor of
- Many systems don't provide this; instead, databases are
built on top of disk access to index content (requires

efficient random access)
11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 18.14

11/02/05 Kubiatowicz €S1

Designing the File System: Usage Patterns

Most files are small (for example, .login, .c files)
- A few files are big - nachos, core files, etfc.: the nachos
executable is as big as all of your .class files combined
- However, most files are small - .class's, .0's, .c's, etc.
Large files use up most of the disk space and
bandwidth to/from disk
- May seem contradictory, but a few enormous files are
equivalent to an immense # of small files
Although we will use these observations, beware usage
patterns:
- 6ood idea to look at usage patterns: beat competitors by
optimizing for frequent patterns
- Except: changes in performance or cost can alter usage
patterns. Maybe UNIX has lots of small files because big
files are really inefficient?
Digression, danger of predicfin% future:
-"In 1950's, marketing sfud?l by IBM said total worldwide
need for computers was 7!
- Company (that you haven't heard of) called "GenRad"
invented oscilloscope; tho ght there was no market, so

u
i]
sold patent to Tektronix gz%'{} %othurzugo\ge heard of tﬁ%%)15

How to organize files on disk

* Goals:
- Maximize sequential performance
- Easy random access to file
- Easy management of file (growth, truncation, etc)
* First Technique: Continuous Allocation
- Use continuous range of blocks in logical block space
» Analogous to base+bounds in virtual memory
» User says in advance how big file will be (disadvantage)
- Search bit-map for space using best fit/first fit
» What if not enough contiguous space for new file?
- File Header Contains:
» First sector/LBA in file
» File size (# of sectors)
- Pros: Fast Sequential Access, Easy Random access
- Cons: External Fragmentation/Hard to grow files
» Free holes get smaller and smaller
» Could compact space, but that would be really expensive
+ Continuous Allocation used by IBM 360
- Result of allocation and management cost: People would

create a big file, put their file in the middle
11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 18.16

Linked List Allocation

- Second Technique: Linked List Approach
- Each block, pointer to next on disk

File Header

S

> Null

- Pros: Can grow files dxnamically, Free list same as file
- Cons: Bad Sequential Access (seek between each block),
Unreliable (lose block, lose rest of file)

- Serious Con: Bad random accessli!

- Technique originally from Alto (First PC, built at Xerox)
» No attempf to allocate contiguous blocks

+ MSDOS used a similar linked ar_prr'oach

- Links not in pages, but in the File Allocation Table (FAT)
» FAT contains an entry for each block on the disk
» FAT Entries corresponding to blocks of file linked together

- Compare with Linked List Approach:
» Sequential access costs more unless FAT cached in memory

» Random access is better if FAT cached in memory L

11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 ec 18.17

Indexed Allocation

P T directory

== e e et

o[l 1[\2[3]
401 501 &[] 701
8] eCJ1o[X110]
1213 14R]

index block
19

file

sl lial |

0] \q
20[Jo1[Je2[A23[] -1
24 J2sf2s[J27(] \ = /

28120 Js0 13171 T
= —a

* Third Technique: Indexed Files (Nachos, VMS)
- System Allocates file header block to hold array of
pointers big enough to point to all blocks
» User pre-declares max file size;
- Pros: Can easily grow up to space allocated for index
Random access is fast
- Cons: Clumsy to grow file bigger than table size

10205 Still lots of seeks: blagks may,be spread over disk

Multilevel Indexed Files (UNIX 4.1)

* Mulfilevel Indexed Files: Like muiTilevel address
translation (from UNIX 4.1 BSD)

- Key idea: efficient for small files, but still allow big files

- File header contains 13 pointers
» Fixed size table, pointers not all equivalent
» This header is called an “inode” in UNIX

- File Header format:
» First 10 pointers are to data blocks
» Block 11 points to “indirect block” containing 256 blocks
» Block 12 points to "doubly indirect block” containing 256

indirect blocks for total of 64K blocks
» Block 13 points to a triply indirect block (16M blocks)
- Discussion
- Basic technique glaces an upper limit on file size that is
approximately 16Gbytes
» Designers thought this was bigger than anything anyone
would need. Much bigger than a disk at Tr\e time...

» Fallacy: today, EOS producing 2TB of data per day

- Pointers get filled in dynamically: need to allocate

indirect block only when file grows > 10 blocks.

11/02/05 > On small files, no indirection needed,; Lec 18.19

Example of Multilevel Indexed Files

- Sample file in multilevel mode
indexed format: W)

- How many accesses for et (G

block #23? (assume file s _—
header accessed on open)? __I_.@

» Two: One for indirect block,

ohe for‘ data direct blocks T :
J [da
- How about block #5? __[__"Jf B
» One: One fOl" data single indirect ——.t _—]___ B —+{ dala |

_ BIOCk #3407 double indirect _ £ —{Gala] . EI::-—"'—'{WJ
» Three: double indirect block,[— —
indirect block, and data = 2

- UNIX 4.1 Pros and cons

- Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy

- Cons: Lots of seeks
Very large files must read many indirect block (four
I/Os per block!)

11/02/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 18.20

File Allocation for Cray-1 DEMOS
basegze/vd's r':up

=

AW

3
N _,_4_% Basic Segmentation Structure:
%] Each segment contiguous on disk

/
3
file header 9

- DEMOS: File system structure similar to segmentation
- Idea: reduce disk seeks by
» using contiguous allocation in normal case
» but allow flexibility to have non-contiguous allocation
- Cray-1 had 12ns cycle time, so CPU:disk speed ratio about
the same as today (a few million instructions per seek)
* Header: table of base & size (10 "block group” pointers)
- Each block chunk is a contiguous group of disk blocks
- Sequential reads within a block chunk can proceed at high
speed - similar to continuous allocation
* How do you find an available block group?

- Use freelist bitmap to find block of O's.
11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 18.21

AW

Large File Version of DEMOS

basesize __,Dasesize disk_group
— "
‘\\ N
file heade indirect
ader block group

* What if need much bigger' files?
- If need more than 10 groups, set flag in header: BIGFILE
» Each table entry now points to an indirect block group
- Suppose 1000 blocks in a block group = 806B max file
» Assuming 8KB blocks, 8byte enfries=
. (10 ptrsx1024 goups/ﬁfrxlooo blocks/group)*8K =8068B
- Discussion of DEMOS scheme
- Pros: Fast sequential access, Free areas merge simpl
Easy to find free block groups (when disk not ullg
- Cons: Disk full = No long runs of blocks (fragmentation),
so high overhead allocation/access
- Full disk = worst of 4.1BSD (lots of seeks) with worst of

continuous allocation (lots of recompaction needed)
11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 18.22

How to keep DEMOS performing well?

+ In many systems, disks are always full
- CS department growth: 300 GB to 1TB in a year
» That's 26B/day! (Now at 3—4 TBI)

- How to fix? Announce that disk space is getting low, so
please delete files?

» Don't really work: people try to store their data faster
- Sidebar: Perhaps we are getting out of this mode with
new disks.. However, let's assume disks full for now
+ Solution:
- Don't let disks get completely full: reserve portion
» Free count = # blocks free in bitmap
» Scheme: Don't allocate data if count < reserve
- How much reserve do you need?
» In practice, 10% seems like enough
- Tradeoff: pay for more disk, get contiguous allocation

» Since seeks so expensive for performance, this is a very
good tradeoff

11/02/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 18.23

UNIX BSD 4.2

- Same as BSD 4.2 (same file header and triply indirect
blocks), except incorporated ideas from DEB\ES:
- Uses bitmap allocation in place of freelist
- Attempt to allocate files contiguously
- 10% reserved disk space
- Skip-sector positioning (mentioned next slide)
* Problem: When create a file, don't know how big it
will become (in UNIX, most writes are by appending)
- How much contiguous space do you allocate for a file?
- In Demos, power of 2 growth: once it grows past 1MB,
allocate 2MB, etc
- In BSD 4.2, just find some range of free blocks
» Put each new file at the front of different range
» To expand a file, you first try successive blocks in
bitmap, then choose new range of blocks
- Also in BSD 4.2: start files from same directory near
each other

11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 18.24

Attack of the Rotational Delay

* Problem 2: Missingbblocks due to rotational delay
- Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/block!

Skip Secto
[) I—
@ Track Buffer
(Holds complete track)

- Solutionl: Skip sector positioning (“interleaving:)
» Place the blocks from one file on every other block of a
track: give time for processing to overlap rotation
- Solution2: Read ahead: read next block right after first,
even if application hasn't asked for it yet.
» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have
internal RAM that allows them to read a complete track
+ Important Aside: Modern disks+controllers do many
corwlex things “under the covers”
- Track buffers, elevator algorithms, bad block filtering
11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 18.25

How do we actually access files?

- All information about a file contained in its file header
- UNIX calls this an “inode”
» Inodes are global resources identified by index (“inumber")
- Once you load the header structure, all the other blocks
of the file are locatable
* Question: how does the user ask for a particular file?
- One option: user specifies an inode by a number (index).
» Imagine: open("14553344")
- Better option: specify by textual name
» Have to map name—inumber
- Another option: Icon
» This is how Apple made its money. Graphical user
interfaces. Point to a file and click.
* Naming: The process by which a system translates from
user-visible names to system resources
- In the case of files, need to translate from strings
(textual names) or icons to inumbers/inodes
- For global file systems, data may be spread over
globe=>need to translate from strings or icons to some

combination of Ehysical server location and inumber
11/02/05 ubfatowicz 5162 ©UCB Fall 2005 Lec 18.26

Directories
"”"l woﬂ,] b }!ujgwlr:lsl
~ \\.
|sIn .-ml-l us|| find |wi.--x .I-Iu |wulu’ur| P . |.’r.*<|'l|
o) "\\b(booab/ \\O
'wﬁmg_; ot o] oo e Twa| [[on]
N 0 0 [|
LTl T ©©
I
OO0 O 00

+ Hierarchical name space: Files named by ordered set
(e.g.: /programs/p/list)
- Directories: a special type of relation
- Just a table of (file name, inumber) pairs
- Question: how is the relation stored?
» Directories often stored just like files
» Can store inumber for directories or files in other directories
- Question: how is the directory structured?

» Needs to be quickly searchable!
11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 18.27

Where are inodes stored?

+ In early UNIX and DOS/Windows™ FAT file sysfem,
headers stored in special array in outermost cylinders
- Header not stored anywhere near the data blocks. To
read a small file, seek to get header, see back to data.
- Fixed size, set when disk is formatted. At formatting
time, a fixed number of inodes were created (They were
each given a unique number, called an “/number")

+ Later versions of UNIX moved the header information
to be closer to the data blocks

- Often, inode for file stored in same “cylinder group” as
parent directory of the file (makes an /s of that
directory run fast).

- Pros:

» Reliability: whatever happens to the disk, you can find all
of the files (even if directories might be disconnected)

» UNIX BSD 4.2 puts a portion of the file header array on
each cylinder. For small directories, can fit all data, file
headers, etc in same cylinder=no seeks!

» File headers much smaller than whole block (a few hundred

bytes), so multiple headers fetched from disk at same time
11/02/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 18.28

Summary

* Queuing Latency:
- M/M/1 and M/6/1 queues: simplest to analyze
- As utilization approaches 100%, latency — oo
Ty = Toer X #(1+C) x u/(1 - u))
+ File System:
- Transforms blocks into Files and Directories
- Optimize for access and usage patterns
- Maximize sequential access, allow efficient random access
* File (and directory) defined by header
- Called “inode” with index called “inumber”
* Multilevel Indexed Scheme
- Inode contains file info, direct pointers to blocks,
- indirect blocks, doubly indirect, etc..
- DEMOS:
- CRAY-1 scheme like segmentation
- Emphsized contiguous allocation of blocks, but allowed to
use non-contiguous allocation when necessary
+ Naming: the process of turning user-visible names into

1 pgsources (such qs files) . oo rui 2005

