Cs162
Operating Systems and
Systems Programming
Lecture 19

File Systems continued
Distributed Systems

November 7, 2005
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: A Little Queuing Theory

Service Rate @
H= 1 /Tser

——l
Arrival Rate
A

* Parameters that describe our system:

- A mean number of arriving customers/second

- T, mean time to service a customer ("m1")

-C: squared coefficient of variance = ¢2/m12

- service rate = 1/T_, .

- u server utilization (O<u<1): u = A/y = A x T,

* Parameters we wish to compute:

- T Time spent in queue
- Ly Length of queue = A x T, (by Little’s law)

* Basic Approach:

- Customers before us must finish; mean time = L x T,
- If something at server, takes m1(z) to complete on avg
» m1(z): mean residual wait time at server= T, Xx 3(1+C)

» Chance something at server = u = mean time is u x m1(z)

+ Computation of wait time in %leue gT f):
X

- T = LgXx T, +uxml(z) = T, x 2(I+C) x u/(1 - u))
11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.2

Review: Disk Scheduling

- Disk"can do ongl one request af a fime;
you choose to do queued requests?

User N Head|[¢
Requests |:> ™ |:> =§
+ FIFO Order
- Fair among requesters, but order of arrival may be to
random spots on the disk = Very long seeks
+ SSTF: Shortest seek time first
- Pick the request that's closest on the disk
- Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek
- Con: SSTF good at reducing seeks, but
may lead to starvation
+ SCAN: Implements an Elevator Algorithm: take the
closest request in the direction of travel
- No starvation, but retains flavor of SSTF
- C-SCAN: Circular-Scan: only goes in one direction
- Skips any r‘eguesfs on the w:g back

11/57/f@irer than SCAN, not biased towards pages in middle

at order do

-

N
N =

stl.“’
o] =
i [

N
W)

poaH %siq

Review: Access and Usage Patterns

+ Sequential Access: bytes read in order (“give me the
next X bytes, then give me next, etc”)
- Almost all file access are of this flavor

+ Random Access: read/write element out of middle of
array (“give me bytes i—j")
- Less frequent, but still important. For example, virtual
memory backing file: page of memory stored in file
- Want this to be fast - don't want to have to read all
bytes to get to the middle of the file
* Most files are small (for example, .login, .c files)
- A few files are big - nachos, core files, etc.; the nachos
executable is as big as all of your .class files combined
- However, most files are small - .class's, .o's, .c's, etc.
* Large files use up most of the disk space and
bandwidth to/from disk
- May seem contradictory, but a few enormous files are
equivalent to an immense # of small files

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.4

Review: Building File Systems

* File System: LaKer' of OS that transforms block
interface of disks (or other block devices) into Files,
Directories, etc
* Access disk as linear array of blocks. Two Options:
- Identify blocks as vectors [cylinder, surface, sector].
Sort in cylinder-major order. Not used much anymore.
- Logical Block Addressing (LBA). Every block has integer
address from zero up tfo max number of cylinders.
» Assumption is that locality within LBA numbers represent
locality on disk
- Use bitmap to represent free space on disk
* Need way to structure files: File Header

- Track which blocks belong at which offsets within the
logical file structure

- Optimize placement of files disk blocks to match access
and usage patterns

+ File System Design Goals:

- Maximize sequential performance
- Easy random access to file
- Easy management of file (growth, truncation, etc)

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.5

Goals for Today

+ Finish Discussion of File Systems
- Structure, Naming, Directories
* File Caching
- Data Durability
* Beginning of Distributed Systems Discussion

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.6

Linked Allocation: File-Allocation Table (FAT)

directary entry

test sse | 217

name start block —_—

217 618}

Indexed Allocation

/__ ___h“\ directory
|—— file index block
o] 1[\2[3J i 1

401 s 61701
8] eCJ1o[X110]
1213 14R]

338

618

no. of disk blocks -1

éj
339 — |

— |

-+

20[J21

e

2425 fes[l27[]

28[J2a[130 131[]

e[l

=

FAT
+ MSDOS links pages together to create a file
- Links not in pages, but in the File Allocation Table (FAT)
» FAT contains an entry for each block on the disk
» FAT Entries corresponding to blocks of file linked together
- Access properies:
» Sequential access expensive unless FAT cached in memory
» Random access expensive always, but really expensive if

FAT not caclp(ed in.m

emor
11/07/05 ubiatowicz C§‘162Y©UCB Fall 2005 Lec 19.7

+ Indexed Files (Nachos, VMS)
- System Allocates file header block to hold array of
pointers big enough to point to all blocks
» User pre-declares max file size;
- Pros: Can easily grow up to space allocated for index
Random access is fast
- Cons: Clumsy to grow file bigger than table size

omos Sftill lots of seeks:, blogks may,be spread over, disk

Multilevel Indexed Files (UNIX BSD 4.1)

* MulTilevel Indexed Files: Like muiTilevel address
translation (from UNIX 4.1 BSD)
- Key idea: efficient for small files, but still allow big files
- File header contains 13 pointers
» Fixed size table, pointers not all equivalent
» This header is called an “inode” in UNIX
- File Header format:
» First 10 pointers are to data blocks
» Block 11 points to “indirect block” containing 256 blocks

» Block 12 points to "doubly indirect block” containing 256
indirect blocks for total of 64K blocks

» Block 13 points to a triply indirect block (16M blocks)
- Discussion
- Basic technique places an upper limit on file size that is
approximately 16Gbytes
» Designers thought this was bigger than anything anyone
would need. Much bigger than a disk at the time...
» Fallacy: today, EOS producing 2TB of data per day
- Pointers get filled in dynamically: need to allocate
indirect block only when file grows > 10 blocks.

11/07/05 > On small files, .ng indirection needed,s Lec 19.9

Example of Multilevel Indexed Files

+ Sample file in multilevel mode
indexed format: owners @)

- How many accesses for opaIE D)

{data]
blOCk #2 ? (assume file size block count daba]
header accessed on open)? . e

» Two: One for indirect block, — :
one for data ki .
- How about block #5? o [%’ e
» One: One for data single indirect B Qe 5 | data

L -
_ BIOCk #340? doubla indirect _| data . EI::-—"'_'\dai
triple indirect = = f
» Three: double indirect block, F :
indirect block, and data ——ricala

- UNIX 4.1 Pros and cons

- Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy
- Cons: Lots of seeks

Very large files must read many indirect block (four
I/Os per block!)

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.10

File Allocation for Cray-1 DEMOS

, disk group
bﬁe5|?e/ : §'
N 3 g Basic Segmentation Structure:
5] Each segment contiguous on disk
3./
file header NI-3 3

- DEMOS: File system structure similar to segmentation
- Idea: reduce disk seeks by
» using contiguous allocation in normal case
» but allow flexibility to have non-contiguous allocation
- Cray-1 had 12ns cycle time, so CPU:disk speed ratio about
the same as today (a few million instructions per seek)
* Header: table of base & size (10 "block group” pointers)
- Each block chunk is a contiguous group of disk blocks
- Sequential reads within a block chunk can proceed at high
speed - similar to continuous allocation
* How do you find an available block group?

- Use freelist bitmap to find block of O's.
11/07/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 19.11

Large File Version of DEMOS

b i base size disk_group
asesize _,pasesze
\\ N
file heade indirect
ader block group

* What if need much bigger files?
- If need more than 107groups, set flag in header: BIGFILE
» Each table entry now points to an indirect block group
- Suppose 1000 blocks in a block group = 806B max file
» Assuming 8KB blocks, 8byte enfries=
) (10 ptrsx1024 goups/ﬁtrxlooo blocks/group)*8K =8068B
- Discussion of DEMOS scheme
- Pros: Fast sequential access, Free areas merge simpl
Easy to find free block groups (when disk not f{ﬂlg
- Cons: Disk full = No long runs of blocks (fragmentation),
so high overhead allocation/access
- Full disk = worst of 4.1BSD (lots of seeks) with worst of

continuous allocation (lots of recompaction needed)
11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.12

How to keep DEMOS performing well?

+ In many systems, disks are always full
- CS department growth: 300 6B to 1TB in a year
» That's 26B/day! (Now at 3—4 TBI)

- How to fix? Announce that disk space is getting low, so
please delete files?

» Don't really work: people try to store their data faster
- Sidebar: Perhaps we are getting out of this mode with
new disks.. However, let's assume disks full for now
+ Solution:
- Don't let disks get completely full: reserve portion
» Free count = # blocks free in bitmap
» Scheme: Don't allocate data if count < reserve
- How much reserve do you need?
» In practice, 10% seems like enough
- Tradeoff: pay for more disk, get contiguous allocation

» Since seeks so expensive for performance, this is a very
good tradeoff

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.13

Administrivia

* My office hours

- New office hour: Thursday 2:30-3:30

- Will be removing the Monday office hour
* Project 3 design due today
* Project zero-sum game:

- In the end, we will evaluate how to distribute project

points to partners
» Normally, we are pretty even about this

» However, under extreme circumstances, can give many of
points to working members and take them away from non-
working members

- This is a zero-sum game!
* Make sure to do your project evaluations
- This is supposed to be an individual evaluation, not done
together as a group
- This is part of the information that we use to decide
how to distributed points
+ Final Exam
- December 17th, 12:30 - 3:30, 220 Hearst Gym

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.14

UNIX BSD 4.2

- Same as BSD 4.2 (same file header and Trimé indirect
blocks), except incorporated ideas from DEMOS:

- Uses bitmap allocation in place of freelist
- Attempt to allocate files contiguously
- 10% reserved disk space
- Skip-sector positioning (mentioned next slide)
* Problem: When create a file, don't know how big it
will become (in UNIX, most writes are by appending)
- How much contiguous space do you allocate for a file?
- In Demos, power of 2 growth: once it grows past 1MB,
allocate 2MB, etc
- In BSD 4.2, just find some range of free blocks
» Put each new file at the front of different range
» To expand a file, you first try successive blocks in
bitmap, then choose new range of blocks
- Also in BSD 4.2: start files from same directory near
each other

11/07/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 19.15

Attack of the Rotational Delay

* Problem 2: Missingbblocks due to rotational delay
- Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/block!

Skip Secto
[) I—
@ ‘ Track Buffer
(Holds complete track)

- Solutionl: Skip sector positioning (“interleaving:)
» Place the blocks from one file on every other block of a
track: give time for processing to overlap rotation
- Solution2: Read ahead: read next block right after first,
even if application hasn't asked for it yet.
» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have
internal RAM that allows them to read a complete track
* Important Aside: Modern disks+controllers do many
coq|\plex things “under the covers”
- Track buffers, elevator algorithms, bad block filtering
11/07/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 19.16

How do we actually access files?

+ All information about a file contained in its file header
- UNIX calls this an “inode”
» Inodes are global resources identified by index (“inumber")
- Once you load the header structure, all the other blocks
of the file are locatable
* Question: how does the user ask for a particular file?
- One option: user specifies an inode by a number (index).
» Imagine: open("14553344")
- Better option: specify by textual name
» Have to map name—inumber
- Another option: Icon
» This is how Apple made its money. Graphical user
interfaces. Point to a file and click.
* Naming: The process by which a system translates from
user-visible names to system resources
- In the case of files, need to translate from strings
(textual names) or icons to inumbers/inodes
- For global file systems, data may be spread over
globe=>need to translate from strings or icons to some

combination of Ehysical server location and inumber
11/07/05 ubfatowicz 5162 ©UCB Fall 2005 Lec 19.17

Directories

* Directory: a relation used for naming
- Just a table of (file name, inumber) pairs
* How are directories constructed?
- Directories often stored in files
» Reuse of existing mechanism
» Directory named by inode/inumber like other files
- Needs to be quickly searchable
» Options: Simple list or Hashtable
» Can be cached into memory in easier form to search
+ How are directories modified?
- System calls for manipulation: mkdir, rmdir
- Ties to file creation/destruction
» On creating a file by name, new inode grabbed and
associated with new file in particular directory
+ Directory Hierarchy
- Directories organized into a hierarchical structure
» Seems standard, but in early 70s it wasn't
» Permits much easier organization of data structures
- Entries in directory can be either files or directories
- Files named by ordered set (e.g.: /programs/p/list)

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.18

Directory Structure

fe ; rlnﬂ

avi

raot

il

o

| avi |coum| ||.rr.'hex| hex |

mail book

text cr.mnr| book urJhexi hp

* Not really a hierarchy!
- Many systems allow directory structure to be organized
as an acyclic graph or even a (potentially) cgtclic graph
- Hard Links: different names for the same file
» Multiple directory entries point at the same file
- Soft Links: "shortcut” pointers to other files
» Implemented by storing the logical name of actual file
+ Name Resolution: The process of converting a logical
name into a physical resource (like a file)
- Traverse succession of directories until reach target file

- Global file system: May be spread across the network
11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.19

Directory Structure (Con't)

+ How many disk accesses to resolve “/avi/book/count”?
- Read in file header for root (fixed spot on disk)
- Read in first data bock for root

» Table of file name/index pairs. Search linearly - ok since
directories typically very small

- Read in file header for “avi”
- Read in first data block for “avi”; search for “book”
- Read in file header for "book”
- Read in first data block for “book”; search for “count”
- Read in file header for “count”
* Current working directory: Per-address-space pointer
to a directory (inode) used for resolving file names

- Allows user to specify relative filename instead of
absolute path (say CWD="/avi/book” can resolve “count")

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.20

Where are inodes stored?

+ In early UNIX and DOS/Windows FAT file sysfem,
headers stored in special array in outermost cylinders
- Header not stored near the data blocks. To read a small
file, seek to get header, seek back to data.
- Fixed size, set when disk is formatted. At formatting
time, a fixed number of inodes were created (They were
each given a unique number, called an “/number')

+ Later versions of UNIX moved the header information
to be closer to the data blocks

- Often, inode for file stored in same “cylinder group” as
parent directory of the file (makes an /s of that
directory run fast).

- Pros:

» UNIX BSD 4.2 puts a portion of the file header array on

each cylinder. For small directories, can fit all data, file
headers, etc in same cylinder=no seeks!

» File headers much smaller than whole block (a few hundred
bytes), so multiple headers fetched from disk at same time

» Reliability: whatever happens to the disk, you can find

many of the files (even if directories disconnected)
11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.21

In-Memory File System Structures

directory structure
open (file nams) 1

directory structure

file-control block

" Kermel memary secondary slorage

+ Open system call:
- Resolves file name, finds file control block (inode)
- Makes entries in rer‘-grocess and system-wide tables
- Returns index (called “file handle”) in open-file table

index

N
| | /'cL-n:n blocks
read (nvdex) | s] 17

per-process system-wide file-control block
open-file table open-file lable

user space kel memory secondary storage

* Read/write system calls:
- Use file handle to locate inode
- Perform appropriate reads or writes

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.22

File System Caching

+ Key Idea: Exploif localify by caching data in memory
- Name translations: Mapping from paths—inodes
- Disk blocks: Mapping from block address—disk content
+ Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations
- Can contain “dirty” blocks (blocks yet on disk)
* Replacement policy? LRU
- Can afford overhead of timestamps for each disk block
- Advantages:
» Works very well for name translation

» Works well in general as long as memor?l is big enough to
accommodate a host's working set of files.

- Disadvantages:
» Fails when some aﬁplicaﬁon scans through file system,
thereby flushing the cache with data used only once
» Example: find . -exec grep foo {} \;
* Other Replacement Policies?
- Some systems allow applications to request other policies
- Example, 'Use Once':

» File system can discard blocks as soon as they are used
11/07/05 Kubiatowicz €S5162 ©UCB Fall 2005 Lec 19.

23

File System Caching (con't)

* Cache Size: How much memory should the OS allocate
to the buffer cache vs virtual memory?
- Too much memory to the file system cache = won't be
able to run many applications at once

- Too little memory to file system cache = man¥
applications may run slowly (disk caching not effective)

- Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced
* Read Ahead Prefetching: fetch sequential blocks early

- Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)

- Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications
- How much to prefetch?
» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among
concurrent file requests

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.24

File System Caching (con't)

* Delayed Writes: Writes to files not immediately sent
out fo disk
- Instead, write () copies data from user space buffer
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written
file blocks in cache for a while

» If some other application tries to read data before
written to disk, file system will read from cache

- Flushed to disk periodically (e.g. in UNIX, every 30 sec)
- Advantages:
» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value
for a file
» Some files need never get written to disk! (e..g temporary
scratch files written /fmp often don't exist for 30 sec)
- Disadvantages
» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file
has been written out? (lose pointer to inode!)

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.25

Important “ilities"

* Availability: the pr‘obabili‘l’¥ that the system can
accept and process requests
- Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”
- Key idea here is independence of failures
- Durability: the ability of a system to recover data
despite faults
- This idea is fault tolerance applied to data
- Doesn't necessarily implg availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone
- Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)
- Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly
- Includes availability, security, fault tolerance/durability
- Must make sure data survives system crashes, disk

crashes, other problems
11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.26

How to make file system durable?

- Disk blocks contain Reed-Solomon error correcting
codes (ECC) to deal with small defects in disk drive
- Can allow recovery of data from small media defects
* Make sure writes survive in short term
- Either abandon delayed writes or
- use special, battery-backed RAM (called non-volatile RAM
or NVRAM) for dirty blocks in buffer cache.
* Make sure that data survives in long term
- Need to replicatel More than one copy of datal
- Important element: independence of failure
» Could put copies on one disk, but if disk head fails...
» Could put copies on different disks, but if server fails...
» Could put copies on different servers, but if building is
struck by lightning....
» Could put copies on servers in different continents...
* RAID: Redundant Arrays of Inexpensive Disks
- Data stored on multiple disks (redundancy)
- Either in software or hardware

» In hardware case, done by disk controller and file system

may not even know that there is more than one disk in use
11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.27

Hardware RAID: Subsystem Organization

N
single board —
CPU host [_[array disk
adapter| |controller controller
—
S R ——
manages interface single board
to host, DMA // 9disk
controller
control, buffering, | —
parity logic o
single board
. . disk
physical device controller
control ~——
N
sing‘lje Board —
. . — is
Some systems duplicate controller
all hardware, namely : —
controllers, busses, etc. often piagy- backed.
in small format devices

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.28

RAID 1: Disk Mirroring/Shadowing

oo, 0dg

“—_recovery
group
Each disk is fully duplicated onto its "shadow"
- For high I/0 rate, high availability environments
- Most expensive solution: 100% capacity overhead
Bandwidth sacrificed on write:
- Logical write = two physical writes
- Highest bandwidth when disk heads and rotation fully
synchronized (hard to do exactly)
Reads may be optimized
- Can have two independent reads to same data
Recovery:
- Disk failure = replace disk and copy data to new disk

- Hot Spare: idle disk already attached to system to be
used for immediate replacement

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.29

* Data sTr':JJ_ped across Stripe
i

* Parity block (in green)

RAID 5+: High I/0O Rate Parity

Unit

multiple disks

- Successive blocks
stored on successive

DO D1 D2 D3 PO

i - Increasing
(non-parity) disks D4 |D5| [D6| |P1 D7 ngiﬁal
. IS|
- Increased bandwidth Addresses

over single disk D8| |D9| |P2| |D10| [D11

constructed by XORing ||p12| |pP3 |p13| |p14| [b15
data bocks in stripe

- PO=DO®D16D26D3 P4 | [D16| [D17

D18 D19
- gar'\(dez‘l’roy"any one
isk and sti
reconstruct data D20 |b21f [D22| |D23| | P5

- Suppose D3 fails,
then can reconstruct:
D3=D0®D1®D2®PO

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

* Later in term: talk about spreading information widely

across internet for durability.

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.30

Remote File Systems: Virtual File System (VFS)

Bo-system interlace ‘

VFS interface

[

|

local fila system local file system remate file system
pe 2 1
sk

L

J L kil

5 8

* VFS: Virtual abstraction similar to local file system
- Instead of “inodes” has “vnodes”
- Compatible with a variety of local and remote file systems
» provides object-oriented way of implementing file systems
* VFS allows the same system call interface (the APT) to
be used for different types of file systems

- The API is to the VFS interface, rather than any specific
11/07/3'g/pe of file system

Kubiatowicz €S5162 ©UCB Fall 2005 Lec 19.31

|

Network File System (NFS)

Three Layers for NFS system

- UNIX file-system interface: open, read, write, close
calls + file descriptors

- VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
- NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
NFS Protocol: remote procedure calls (RPC) for file
operations on server
- Reading/searching a directory
- manipulating links and directories
- accessing file attributes/reading and writing files
NFS servers are stateless; each request provides all
arguments require for execution
Modified data must be committed to the server's disk
before results are returned to the client
- lose some of the advantages of caching

- Can lead to weird results: write file on one client, read
on other, get old data

11/07/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 19.32

Schematic View of NFS Architecture Conclusion

*+ Cray DEMOS: optimization for sequential access
ot L - Inode holds set of disk ranges, similar to segmentation
4.2 BSD Multilevel index files

- Inode contains pointers to actual blocks, indirect blocks,

system-calls interface

double indirect blocks, etc
; | - Optimizations for sequential access: start new files in
VFS interface —™ VFS interface open ranges of fr‘ee 1|°Cks
- Rotational Optimization
v | S ; * Naming: act of translating from user-visible names to
other types of UNIX file NFS NFS UNIX file actual system resources
file systems system client server ‘ system ‘ - Directories used for naming for local file systems

1 * Important system properties

- Availability: how often is the resource available?

- Durability: how well is data preserved against faults?
[-J . . - Reliability: how often is resource performing correctly?

RAID: Redundant Arr'a{s of Inexpensive Disks
diE8 - RAID1: mirroring, RAID5: Parity block

—= VFS: Virtual File System layer

- NFS: An example use of the VFS layer

11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.33 11/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 19.34

— [network

