CS162
Operating Systems and
Systems Programming
Lecture 20

Distributed Systems

November 9, 2005
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: How do we actually access files?

- All information about a file contained in its file header
- UNIX calls this an “inode”
» Inodes are global resources identified by index (“inumber")
- Once you load the header structure, all the other blocks
of the file are locatable
* Naming: The process by which a system translates from
user-visible names to system resources
- In the case of files, need to translate from strings
(textual names) or icons to inumbers/inodes
* Name Resolution: The process of converting a logical
name into a physical resource (like a file)
- Traverse succession of directories until reach target file
- Global file system: May be spread across the network
+ Directory: a relation used for naming
- Just a table of (file name, inumber) pairs
- Directories often stored in files
» Reuse of existing mechanism
» Directory named by inode/inumber like other files

11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.2

Goals for Today

* File Caching
* Data Durability
- Distributed Systems

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

11/09/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 20.3

File System Caching
+ Key Idea: txrloﬁ localify by caching data in memory

- Name translations: Mapping from paths—inodes
- Disk blocks: Mapping from block address—disk content
+ Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations
- Can contain “dirty” blocks (blocks yet on disk)
* Replacement policy? LRU
- Can afford overhead of timestamps for each disk block
- Advantages:
» Works very well for name translation

» Works well in general as long as memor?l is big enough to
accommodate a host's working set of files.

- Disadvantages:
» Fails when some aﬁplicaﬁon scans through file system,
thereby flushing the cache with data used only once
» Example: find . -exec grep foo {} \;
* Other Replacement Policies?
- Some systems allow applications to request other policies
- Example, 'Use Once':

» File system can discard blocks as soon as they are used
11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.4

File System Caching (con't)

* Cache Size: How much memory should the OS allocate
to the buffer cache vs virtual memory?
- Too much memory to the file system cache = won't be
able to run many applications at once
- Too little memory to file system cache = mar?'
applications may run slowly (disk caching not effective)
- Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced
* Read Ahead Prefetching: fetch sequential blocks early
- Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)
- Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications
- How much to prefetch?
» Too many imposes delays on requests by other applications

» Too few causes many seeks (and rotational delays) among
concurrent file requests

11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.5

File System Caching (con't)

* Delayed Writes: Writes to files not immediately sent
out fo disk
- Instead, write () copies data from user space buffer
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written
file blocks in cache for a while

» If some other a&plica‘l’ion tries to read data before
written to disk, file system will read from cache
- Flushed to disk periodically (e.g. in UNIX, every 30 sec)
- Advantages:
» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value
for a file
» Some files need never get written to disk! (e..g temporary
scratch files written /fmp often don't exist for 30 sec)
- Disadvantages
» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file
has been written out? (lose pointer to inode!)

11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.6

Important “ilities”

* Availability: the pr'obabili1'¥ that the system can
accept and process requests
- Often measured in "nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”
- Key idea here is independence of failures
* Durability: the ability of a system to recover data
despite faults
- This idea is fault tolerance applied to data

- Doesn't necessarily implg availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone

* Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)

- Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly

- Includes availability, security, fault tolerance/durability

- Must make sure data survives system crashes, disk

crashes, other problems
11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.7

How to make file system durable?

- Disk blocks contain Reed-Solomon error correcting
codes (ECC) to deal with small defects in disk drive
- Can allow recovery of data from small media defects
* Make sure writes survive in short term
- Either abandon delayed writes or
- use special, battery-backed RAM (called non-volatile RAM
or NVRAM) for dirty blocks in buffer cache.
* Make sure that data survives in long term
- Need to replicatel More than one copy of datal
- Important element: independence of failure
» Could put copies on one disk, but if disk head fails...
» Could put copies on different disks, but if server fails...
» Could put copies on different servers, but if building is
struck by lightning....
» Could put copies on servers in different continents...
* RAID: Redundant Arrays of Inexpensive Disks
- Data stored on multiple disks (redundancy)
- Either in software or hardware

» In hardware case, done by disk controller; file system may

not even know that there is more than one disk in use
11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.8

Hardware RAID: Subsystem Organization

host array

CPU

adapter| |controller

y
manages irrrer‘facel
to host, DMA

control, buffering,
parity logic

physical device
control

- Some systems duplicate
all hardware, namely
controllers, busses, efc.

11/09/05

%

single board
disk
controller

single board

disk
controller

single board

in small

disk
controller

single board

—_— disk

controller

Kubiatowicz €S162 ©UCB Fall 2005

often pi fq -backed
‘ormat devices

N ——

RAID 1: Disk Mirroring/Shadowing
o oo
1\recovery

00 OO

Each disk is fully duplicated onto its "shadow"
- For high I/0 rate, high availability environments
- Most expensive solution: 100% capacity overhead
Bandwidth sacrificed on write:
- Logical write = two physical writes
- Highest bandwidth when disk heads and rotation fully
synchronized (hard to do exactly)
* Reads may be optimized
- Can have two independent reads to same data
* Recovery:
- Disk failure = replace disk and copy data to new disk

- Hot Spare: idle disk already attached to system to be
used for immediate replacement

D3=DO®D16D2®PO

* Later in term: talk about spreading information widely

across internet for durability

11/09/05

Kubiatowicz CS162 ©UCB Fall 2005

Lec 20.11

Lec 20.9 11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.10
RAID 5+: High I/0 Rate Parity . Administrivia
Data strérped across e - My office hours
multiple disks - New office hour: Thursday 2:30-3:30
- S;.lccedssive blocks DO| [b1] [D2| |b3]| PO * MIDTERM II: Wednesday November 30th
stored on successive Increasing - 5:30-8:30pm, 10 Evans
(non-parity) dmk? 4] [P9] LB ™ o7 LS?s:ﬁa' - All material from last midterm and up to Monday 11/28
- Increased bandwidth Addresse - Includes virtual memory
over single disk D8([D9| P2 |D10| |D11 - Final Exam
* Parity block (in green) - December 17, 12:30 - 3:30, 220 Hearst Gym
constructed by XORing |[o12| |p3| [p13| [p14| [p15 o o 4
data bocks in stripe
- PO=DO®D16D24D3 P4 | |p16| |p17] [D18| [D19
- gcxrll< dez‘troy"any one
isk and sti
reconstruct data D20| |b21] |D22| |D23| | P5
) fﬁggﬁfn ?,2 cﬁﬁgiﬁu ct: |Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.12

Remote File Systems: Virtual File System (VFS)

| Bo-system intortace l

VFS interface

local file system local file system remote file systam
type 1 type 2 type 1

3 3 -
* VFS: Virtual abstraction similar to local file system
- Instead of “inodes” has “vnodes”
- Compatible with a variety of local and remote file systems
» provides object-oriented way of implementing file systems
* VFS allows the same system call interface (the APT) to
be used for different types of file systems

- The API is to the VFS interface, rather than any specific
1100 TyPe of file system

Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.13

Network File System (NFS)

* Three Layers for NFS system
- UNIX file-system interface: open, read, write, close
calls + file descriptors
- VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
- NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
* NFS Protocol: remote procedure calls (RPC) for file
operations on server
- Reading/searching a directory
- manipulating links and directories
- accessing file attributes/reading and writing files
* NFS servers are stateless; each request provides all
arguments require for execution
* Modified data must be committed to the server's disk
before results are returned to the client
- lose some of the advantages of caching
- Can lead to weird results: write file on one client, read
on other, get old data
11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.14

Schematic View of NFS Architecture

client server

system-calls interface

VFS interface

—* VFS interface

other types of UNIX file NFS NFS UNIX file
file systems system client server system
[
Y
K ‘ RPC/XDR ‘ ‘ RPC/XDR ‘ X

11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.15

Centralized vs Distributed Systems

K=
Client/Server Model

Peer-to-Peer odel

* Centralized System: System in which major functions
are performed by a single physical computer
- Originally, everything on single computer
- Later: client/server model
+ Distributed System: physicallﬁ separate computers
working together on some tas
- Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

- Later models: Eeer‘-fo- eer/wide-spread collaboration
11/09/05 ubiatowicz C5162 ©UCB Fall 2005 Lec 20.16

Distributed Systems: Motivation/Issues

. WP}'y do we want distributed systems?
- Cheaper and easier to build lots of simple computers
- Easier to add power incrementally
- Users can have complete control over some components
- Collaboration: Much easier for users to collaborate through
network resources (such as network file systems)
* The promise of distributed systems:
- Higher availability: one machine goes down, use another
- Better durability: store data in multiple locations
- More security: each piece easier to make secure
* Reality has been disappointing
- Worse availability: depend on every machine being Lclr
» Lamport: "a distributed system is one where I cant do work
because some machine I've never heard of isn't working!”
- Worse reliability: can lose data if ang machine crashes
- Worse security: anyone in world can break into system
+ Coordination is more difficult
- Must coordinate multiple copies of shared state information
(using only a network)
- What would be easy in a centralized system becomes a lot
more difficult.

Distributed Systems: Goals/Requirements

* Transparency: the ability of the system to mask its
complexity behind a simple interface
* Possible transparencies:
- Location: Can't tell where resources are located
- Migration: Resources may move without the user knowing
- Replication: Can't tell how many copies of resource exist
- Concurrency: Can't tell how many users there are
- Parallelism: System may speed up large jobs by spliting
them into smaller pieces
- Fault Tolerance: System may hide varoius things that go
wrong in the system
* Transparency and collaboration require some way for
different processors to communicate with one another

Kubiatowicz €5162 ©UCB Fall 2005

11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.17 11/09/05 Lec 20.18
Networking Definitions Broadcast Networks)
< < = A
+ Broadcast Network: Shared Communication Medium \\&7

 Network: physical connection that allows two computers
to communicate

* Packet: unit of transfer, sequence of bits carried over
the network
- Network carries packets from on CPU to another
- Destination gets interrupt when packet arrives
* Protocol: agreement between two parties as to how
information is to be transmitted

11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.19

- A 4 4 3 v
! !

I/0 I/0 I/0
Processor Device | [Device | | Device Memory

- Shared Medium can be a set of wires
» Inside a computer, this is called a bus
» All devices simultaneously connected to devic'gs

> <
- Originally, Ethernet was a broadcast network
» All computers on local subnet connected to one another

- More examples (wireless: medium is air): cellular phones,
GSM GPRS, EDGE, CDMA 1xRTT, and 1evDO

11/09/05 Kubiatowicz €5162 ®UCB Fall 2005 Lec 20.20

Broadcast Netw

Body ea
(Data)

Message

ID:3
(sender)

(receive)

- Delivery: When you broadcast a packet, how does a
receiver know who it is for? (packet goes to everyone!)
- Put header on front of packet: [Destination | Packet]
- Everyone gets packet, discards if not the target
- In Ethernet, this check is done in hardware
» No OS interrupt if not for particular destination
- This is layering: we're going to build complex network

Bro‘l’ocols by layering on top of the ?acket
11/09/05 KubiaTowicz €S162 ©UCB Fall 2005 Lec 20.21

Broadcast Network Arbitration

* Arbitration: Act of negotiating use of shared medium
- What if two senders try to broadcast at same time?
- Concurrent activity but can't use shared memory to
coordinate!
* Aloha network (70's): packet radio within Hawaii
- Blind broadcast, with checksum at end of
packet. If received correctly (not garbled),
send back an acknowledgement. Ifg not
received correctly, discard.
» Need checksum anyway - in case airplane
flies overhead
- Sender waits for a while, and if doesn't
get an acknowledgement, re-transmits.
- If two senders try to send at same time, both get
garbled, both simply re-send later.
- Problem: Stability: what if load increases?
» More collisions = less gets through =more resent = more
load... = More collisions...

» Unfortunately: some sender may have started in clear, get

scrambled without finishin
11/09/05 Kubiatowicz €CS162"©UCB Fall 2005 Lec 20.22

Carrier Sense, Multiple Access/Collision Detection

+ Ethernet (early 80's): first practical local area network

- It is the most common LAN for UNIX, PC, and Mac

- Use wire instead of radio, but still broadcast medium

+ Key advance was in arbitration called CSMA/CD:
Carrier sense, multiple access/collision detection
- Carrier Sense: don't send unless idle
» Don't mess up communications already in process
- Collision Detect: sender checks if packet trampled.
» If so, abort, wait, and retry.
- Backoff Scheme: Choose wait time before trying again
* How long to wait after Trning to send and failing:

- What if everyone waits the same length of time? Then,
they all collide again at some timel

- Must find way to break up shared behavior with nothing
more than shared communication channel

* Adaptive randomized wamng strategy:

- Adaptive and Random: First time, pick random wait time
with some initial mean. If collide again, pick random value
from bigger mean wait time. Etc.

- Randomness is important to decouple colliding senders

- Scheme figures out how many people are trying to send!
11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.23

Jauuzjur
y

w7
X

all? Why not simplify and
only have point-to-point links + routers/switches?
- Didn't used to be cost-effective
- Now, easy to make high-speed switches and routers that
can forward packets from a sender to a receiver.
* Point-to-point network: a network in which every
physical wire is connected to only two computers
+ Switch: a bridge that transforms a shared-bus
configuration into a point-to-point network.
* Router: a device that acts as a junction between two

networks to transfer data ?acke s_among them.
11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.24

Point-to-Point Networks Discussion

+ Advantages:
- Higher link performance
» Can drive point-to-point link faster than broadcast link
since less capacitance/less echoes (from impedance
mismatches)
- 6reater aggregate bandwidth than broadcast link
» Can have multiple senders at once
- Can add capacity incrementally
» Add more links/switches to get more capacity
- Better fault tolerance (as in the Internet)
- Lower LaTenc¥
» No arbitrafion to send, although need buffer in the switch
- Disadvantages:

- More expensive than having everyone share broadcast link
- However, technology costs now much cheaper

. Exar_|'1_ples

- ATM (asynchronous transfer mode)
» The first commercial point-to-point LAN
» Inspiration taken from telephone network
- Switched Ethernet
» Same packet format and signaling as broadcast Ethernet,

but only two machines on each efhernet.
11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.25

Point-to-Point Network design

>
Outputs

e

e

Control
(processor]
+ Switches look like computers: inputs, memory, outputs

- In fact probably contains a processor

* Function of switch is to forward packet to output that
gets it closer to destination

* Can build big crossbar by combining smaller switches

o O —ig
U\ / N §. w _§'.
a8 \ S \
5
11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.26

Flow control options
AB L 1A

(4 B.CD
D_E
What if everyone sends to the same output?

- Congestion—packets don't flow at full rate
+ In general, what if buffers fill up?

- Need flow control policy

+ Option 1: no flow control. Packets get dropped if

they arrive and there's no space

- If someone sends a lot, they are given buffers and
packets from other senders are dropped

- Internet actually works this way
Option 2: Flow control between switches
- When buffer fills, stop inflow of packets
- Problem: what if path from source to destination is

completely unused, but goes through some switch that

has buffers filled up with unrelated traffic?
11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.27

Flow Control (con't)
+ OpfTion 37 Per-flow flow confrol.

- Allocate a separate set of buffers to each end-to-
end stream and use separate “don't send me more”
control on each end-to-end stream

aaaq ababab, acbcac, | dadcdhdc
kbbb, ccee, -dddd,)

* Problem: fairness
- Throughput of each stream is entirely dependent on
topology, and relationship to bottleneck
* Automobile Analogy

- At traffic jam, one strategy is merge closest to the
bottleneck

» Why people get off at one exit, drive 50 feet, merge
back into flow
» Ends up slowing everybody else a huge emount
- Also why have control lights at on-ramps

» Try to keep from injecting more cars than capacity of

road (and thus avoid congestion)
11/09/05 Kubiatowicz €S162° ©UCB Fall 2005 Lec 20.28

Conclusion

+ Buffer Cache: Memory used to cache kernel
resources, including disk blocks and name translations
- Read Ahead Prefetching: fetch sequential blocks early
- Delayed Writes: Writes to files not immediately sent

out to disk
* Important system properties
- Availability: how often is the resource available?
- Durability: how well is data preserved against faults?
- Reliability: how often is resource performing correctly?
* RAID: Redundant Arrays of Inexpensive Disks
- RAID1: mirroring, RAID5: Parity block
* VFS: Virtual File System layer
- NFS: An example use of the VFS layer
* Network: physical connection that allows two
computers to communicate

- Packet: unit of transfer, sequence of bits carried over
the network

11/09/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 20.29

