
CS162
Operating Systems and
Systems Programming

Lecture 20

Distributed Systems

November 9, 2005
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 20.211/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: How do we actually access files?
• All information about a file contained in its file header

– UNIX calls this an “inode”
» Inodes are global resources identified by index (“inumber”)

– Once you load the header structure, all the other blocks
of the file are locatable

• Naming: The process by which a system translates from
user-visible names to system resources
– In the case of files, need to translate from strings
(textual names) or icons to inumbers/inodes

• Name Resolution: The process of converting a logical
name into a physical resource (like a file)
– Traverse succession of directories until reach target file
– Global file system: May be spread across the network

• Directory: a relation used for naming
– Just a table of (file name, inumber) pairs
– Directories often stored in files

» Reuse of existing mechanism
» Directory named by inode/inumber like other files

Lec 20.311/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Goals for Today

• File Caching
• Data Durability
• Distributed Systems

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Lec 20.411/09/05 Kubiatowicz CS162 ©UCB Fall 2005

File System Caching
• Key Idea: Exploit locality by caching data in memory

– Name translations: Mapping from paths→inodes
– Disk blocks: Mapping from block address→disk content

• Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations
– Can contain “dirty” blocks (blocks yet on disk)

• Replacement policy? LRU
– Can afford overhead of timestamps for each disk block
– Advantages:

» Works very well for name translation
» Works well in general as long as memory is big enough to

accommodate a host’s working set of files.
– Disadvantages:

» Fails when some application scans through file system,
thereby flushing the cache with data used only once

» Example: find . –exec grep foo {} \;
• Other Replacement Policies?

– Some systems allow applications to request other policies
– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used

Lec 20.511/09/05 Kubiatowicz CS162 ©UCB Fall 2005

File System Caching (con’t)
• Cache Size: How much memory should the OS allocate

to the buffer cache vs virtual memory?
– Too much memory to the file system cache ⇒ won’t be
able to run many applications at once

– Too little memory to file system cache ⇒ many
applications may run slowly (disk caching not effective)

– Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced

• Read Ahead Prefetching: fetch sequential blocks early
– Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)

– Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications

– How much to prefetch?
» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among

concurrent file requests
Lec 20.611/09/05 Kubiatowicz CS162 ©UCB Fall 2005

File System Caching (con’t)
• Delayed Writes: Writes to files not immediately sent

out to disk
– Instead, write() copies data from user space buffer
to kernel buffer (in cache)
» Enabled by presence of buffer cache: can leave written

file blocks in cache for a while
» If some other application tries to read data before

written to disk, file system will read from cache
– Flushed to disk periodically (e.g. in UNIX, every 30 sec)
– Advantages:

» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value

for a file
» Some files need never get written to disk! (e..g temporary

scratch files written /tmp often don’t exist for 30 sec)
– Disadvantages

» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file

has been written out? (lose pointer to inode!)

Lec 20.711/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Important “ilities”
• Availability: the probability that the system can

accept and process requests
– Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”

– Key idea here is independence of failures
• Durability: the ability of a system to recover data

despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone

• Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)
– Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk
crashes, other problems

Lec 20.811/09/05 Kubiatowicz CS162 ©UCB Fall 2005

How to make file system durable?
• Disk blocks contain Reed-Solomon error correcting

codes (ECC) to deal with small defects in disk drive
– Can allow recovery of data from small media defects

• Make sure writes survive in short term
– Either abandon delayed writes or
– use special, battery-backed RAM (called non-volatile RAM
or NVRAM) for dirty blocks in buffer cache.

• Make sure that data survives in long term
– Need to replicate! More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is

struck by lightning….
» Could put copies on servers in different continents…

• RAID: Redundant Arrays of Inexpensive Disks
– Data stored on multiple disks (redundancy)
– Either in software or hardware

» In hardware case, done by disk controller; file system may
not even know that there is more than one disk in use

Lec 20.911/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Hardware RAID: Subsystem Organization

CPU array
controller

single board
disk

controller

single board
disk

controller

single board
disk

controller

single board
disk

controller

host
adapter

manages interface
to host, DMA

control, buffering,
parity logic

physical device
control

often piggy-backed
in small format devices

• Some systems duplicate
all hardware, namely
controllers, busses, etc.

Lec 20.1011/09/05 Kubiatowicz CS162 ©UCB Fall 2005

RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its "shadow“
– For high I/O rate, high availability environments
– Most expensive solution: 100% capacity overhead

• Bandwidth sacrificed on write:
– Logical write = two physical writes
– Highest bandwidth when disk heads and rotation fully
synchronized (hard to do exactly)

• Reads may be optimized
– Can have two independent reads to same data

• Recovery:
– Disk failure ⇒ replace disk and copy data to new disk
– Hot Spare: idle disk already attached to system to be
used for immediate replacement

recovery
group

Lec 20.1111/09/05 Kubiatowicz CS162 ©UCB Fall 2005

• Data stripped across
multiple disks
– Successive blocks
stored on successive
(non-parity) disks

– Increased bandwidth
over single disk

• Parity block (in green)
constructed by XORing
data bocks in stripe
– P0=D0⊕D1⊕D2⊕D3
– Can destroy any one
disk and still
reconstruct data

– Suppose D3 fails,
then can reconstruct:
D3=D0⊕D1⊕D2⊕P0

• Later in term: talk about spreading information widely
across internet for durability.

RAID 5+: High I/O Rate Parity

Increasing
Logical
Disk

Addresses

Stripe
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Lec 20.1211/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Administrivia
• My office hours

– New office hour: Thursday 2:30-3:30
• MIDTERM II: Wednesday November 30th

– 5:30-8:30pm, 10 Evans
– All material from last midterm and up to Monday 11/28
– Includes virtual memory

• Final Exam
– December 17th, 12:30 – 3:30, 220 Hearst Gym

Lec 20.1311/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Remote File Systems: Virtual File System (VFS)

• VFS: Virtual abstraction similar to local file system
– Instead of “inodes” has “vnodes”
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to

be used for different types of file systems
– The API is to the VFS interface, rather than any specific
type of file system

Lec 20.1411/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: remote procedure calls (RPC) for file
operations on server
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• NFS servers are stateless; each request provides all
arguments require for execution

• Modified data must be committed to the server’s disk
before results are returned to the client
– lose some of the advantages of caching
– Can lead to weird results: write file on one client, read
on other, get old data

Lec 20.1511/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Schematic View of NFS Architecture

Lec 20.1611/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Centralized vs Distributed Systems

• Centralized System: System in which major functions
are performed by a single physical computer
– Originally, everything on single computer
– Later: client/server model

• Distributed System: physically separate computers
working together on some task
– Early model: multiple servers working together

» Probably in the same room or building
» Often called a “cluster”

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model

Lec 20.1711/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Distributed Systems: Motivation/Issues
• Why do we want distributed systems?

– Cheaper and easier to build lots of simple computers
– Easier to add power incrementally
– Users can have complete control over some components
– Collaboration: Much easier for users to collaborate through
network resources (such as network file systems)

• The promise of distributed systems:
– Higher availability: one machine goes down, use another
– Better durability: store data in multiple locations
– More security: each piece easier to make secure

• Reality has been disappointing
– Worse availability: depend on every machine being up

» Lamport: “a distributed system is one where I can’t do work
because some machine I’ve never heard of isn’t working!”

– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

• Coordination is more difficult
– Must coordinate multiple copies of shared state information
(using only a network)

– What would be easy in a centralized system becomes a lot
more difficult.

Lec 20.1811/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Distributed Systems: Goals/Requirements
• Transparency: the ability of the system to mask its

complexity behind a simple interface
• Possible transparencies:

– Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
– Replication: Can’t tell how many copies of resource exist
– Concurrency: Can’t tell how many users there are
– Parallelism: System may speed up large jobs by spliting
them into smaller pieces

– Fault Tolerance: System may hide varoius things that go
wrong in the system

• Transparency and collaboration require some way for
different processors to communicate with one another

Lec 20.1911/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Networking Definitions

• Network: physical connection that allows two computers
to communicate

• Packet: unit of transfer, sequence of bits carried over
the network
– Network carries packets from on CPU to another
– Destination gets interrupt when packet arrives

• Protocol: agreement between two parties as to how
information is to be transmitted

Lec 20.2011/09/05 Kubiatowicz CS162 ©UCB Fall 2005

• Broadcast Network: Shared Communication Medium

– Shared Medium can be a set of wires
» Inside a computer, this is called a bus
» All devices simultaneously connected to devices

– Originally, Ethernet was a broadcast network
» All computers on local subnet connected to one another

– More examples (wireless: medium is air): cellular phones,
GSM GPRS, EDGE, CDMA 1xRTT, and 1evDO

Broadcast Networks

MemoryProcessor
I/O

Device
I/O

Device
I/O

Device

Internet

Lec 20.2111/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Broadcast Networks Details

• Delivery: When you broadcast a packet, how does a
receiver know who it is for? (packet goes to everyone!)
– Put header on front of packet: [Destination | Packet]
– Everyone gets packet, discards if not the target
– In Ethernet, this check is done in hardware

» No OS interrupt if not for particular destination
– This is layering: we’re going to build complex network
protocols by layering on top of the packet

Header
(Dest:2)

Body
(Data)

Message
ID:1

(ignore)

ID:2
(receive)

ID:4
(ignore)

ID:3
(sender)

Lec 20.2211/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Broadcast Network Arbitration
• Arbitration: Act of negotiating use of shared medium

– What if two senders try to broadcast at same time?
– Concurrent activity but can’t use shared memory to
coordinate!

• Aloha network (70’s): packet radio within Hawaii
– Blind broadcast, with checksum at end of
packet. If received correctly (not garbled),
send back an acknowledgement. If not
received correctly, discard.
» Need checksum anyway – in case airplane

flies overhead
– Sender waits for a while, and if doesn’t
get an acknowledgement, re-transmits.

– If two senders try to send at same time, both get
garbled, both simply re-send later.

– Problem: Stability: what if load increases?
» More collisions ⇒ less gets through ⇒more resent ⇒ more

load… ⇒ More collisions…
» Unfortunately: some sender may have started in clear, get

scrambled without finishing

Lec 20.2311/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Carrier Sense, Multiple Access/Collision Detection
• Ethernet (early 80’s): first practical local area network

– It is the most common LAN for UNIX, PC, and Mac
– Use wire instead of radio, but still broadcast medium

• Key advance was in arbitration called CSMA/CD:
Carrier sense, multiple access/collision detection
– Carrier Sense: don’t send unless idle

» Don’t mess up communications already in process
– Collision Detect: sender checks if packet trampled.

» If so, abort, wait, and retry.
– Backoff Scheme: Choose wait time before trying again

• How long to wait after trying to send and failing?
– What if everyone waits the same length of time? Then,
they all collide again at some time!

– Must find way to break up shared behavior with nothing
more than shared communication channel

• Adaptive randomized waiting strategy:
– Adaptive and Random: First time, pick random wait time
with some initial mean. If collide again, pick random value
from bigger mean wait time. Etc.

– Randomness is important to decouple colliding senders
– Scheme figures out how many people are trying to send!

Lec 20.2411/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Point-to-point networks

• Why have a shared bus at all? Why not simplify and
only have point-to-point links + routers/switches?
– Didn’t used to be cost-effective
– Now, easy to make high-speed switches and routers that
can forward packets from a sender to a receiver.

• Point-to-point network: a network in which every
physical wire is connected to only two computers

• Switch: a bridge that transforms a shared-bus
configuration into a point-to-point network.

• Router: a device that acts as a junction between two
networks to transfer data packets among them.

Router

Internet

Switch

Lec 20.2511/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Point-to-Point Networks Discussion
• Advantages:

– Higher link performance
» Can drive point-to-point link faster than broadcast link

since less capacitance/less echoes (from impedance
mismatches)

– Greater aggregate bandwidth than broadcast link
» Can have multiple senders at once

– Can add capacity incrementally
» Add more links/switches to get more capacity

– Better fault tolerance (as in the Internet)
– Lower Latency

» No arbitration to send, although need buffer in the switch
• Disadvantages:

– More expensive than having everyone share broadcast link
– However, technology costs now much cheaper

• Examples
– ATM (asynchronous transfer mode)

» The first commercial point-to-point LAN
» Inspiration taken from telephone network

– Switched Ethernet
» Same packet format and signaling as broadcast Ethernet,

but only two machines on each ethernet.
Lec 20.2611/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Point-to-Point Network design

• Switches look like computers: inputs, memory, outputs
– In fact probably contains a processor

• Function of switch is to forward packet to output that
gets it closer to destination

• Can build big crossbar by combining smaller switches

Queue

Queue

Queue

Queue

Queue

Queue

Queue

Queue

Crossbar

Control
(processor)

Inputs Outputs

Switch
1

Switch
2

Switch
3

Lec 20.2711/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Flow control options

• What if everyone sends to the same output?
– Congestion—packets don’t flow at full rate

• In general, what if buffers fill up?
– Need flow control policy

• Option 1: no flow control. Packets get dropped if
they arrive and there’s no space
– If someone sends a lot, they are given buffers and
packets from other senders are dropped

– Internet actually works this way
• Option 2: Flow control between switches

– When buffer fills, stop inflow of packets
– Problem: what if path from source to destination is
completely unused, but goes through some switch that
has buffers filled up with unrelated traffic?

A,B
B,C,D
A

C
D

Lec 20.2811/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Flow Control (con’t)
• Option 3: Per-flow flow control.

– Allocate a separate set of buffers to each end-to-
end stream and use separate “don’t send me more”
control on each end-to-end stream

• Problem: fairness
– Throughput of each stream is entirely dependent on
topology, and relationship to bottleneck

• Automobile Analogy
– At traffic jam, one strategy is merge closest to the
bottleneck
» Why people get off at one exit, drive 50 feet, merge

back into flow
» Ends up slowing everybody else a huge emount

– Also why have control lights at on-ramps
» Try to keep from injecting more cars than capacity of

road (and thus avoid congestion)

aaaa
bbbb cccc

ababab
dddd

acbcac dadcdbdc

Lec 20.2911/09/05 Kubiatowicz CS162 ©UCB Fall 2005

Conclusion
• Buffer Cache: Memory used to cache kernel

resources, including disk blocks and name translations
– Read Ahead Prefetching: fetch sequential blocks early
– Delayed Writes: Writes to files not immediately sent
out to disk

• Important system properties
– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

• RAID: Redundant Arrays of Inexpensive Disks
– RAID1: mirroring, RAID5: Parity block

• VFS: Virtual File System layer
– NFS: An example use of the VFS layer

• Network: physical connection that allows two
computers to communicate
– Packet: unit of transfer, sequence of bits carried over
the network

