CS162
Operating Systems and
Systems Programming
Lecture 22

Networking II

November 16, 2005
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Networking

* Network: physical connection that allows two
computers to communicate
- Packet: sequence of bits carried over the network
* Broadcast Network: Shared Communication Medium
- Transmitted packets sent to all receivers
- Arbitration: act of negotiating use of shared medium
» Ethernet: Carrier Sense, Multiple Access, Collision Detect
* Point-to-point network: a network in which every
physical wire is connected to only two computers
- Switch: a bridge that transforms a shared-bus
(broadcast) configuration into a point-to-point network.
+ Internet Protocol (IP): unreliable packet service
- Used to route messages across globe
- 32-bit destination addresses
* Routing: the process of forwarding packets hop-by-
hop Through routers to reach their destination
- Internet has networks of many different scales
» LANs, Autonomous Systems (AS), etc.
- Different algorithms run at different scales
» Border Gateway Protocol (BGP) at large scales

» Variants of Distance Vector (DV) ?ro ocols at short scales
11/14/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 22.2

Review: Hierarchical Networking (The Internet)

* How can we build a nefwork with millions of hos¥s?

- Hierarchy! Not every host connected to every other one
- Use a network of Routers to connect subnets together

Other
subnets

11/14/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 22.3

Review: Network Protocols

* Profocol: Agreement between fwo parties as fo how
information is to be transmitted
- Example: system calls are the protocol between the
operating system and application
- Nefworkinglexamples: many levels

» Physical level: mechanical and electrical network (e.g. how
are 0 and 1 represented)

» Link level: packet formats/error control (for instance, the
CSMA/CD protocol)

» Network level: network routing, addressing
» Transport Level: reliable message delivery

* Protocols on today's Internet:

www e-mail

‘/
RPC
../.
Transport UDP s
Network IP

...

¥
Physical/Link Ethernet ATM Packet radio

11/14/05 Kubiatowicz €5162 ©UCB Fall 2005 Lec 22.4

Goals for Today

* Networking

- Reliable Messaging
» TCP windowing and congestion avoidance
- Two-phase commit

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

11/14/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 22.5

Network Layering

\\1|VV,/

* Layering: building complex services from :
simpler ones .
- Each layer provides services needed for
higher layers by utilizing services provided
by lower layers
* Our goal in the following is to show how to construct a
secure, ordered, arbitrary-sized message service routed
to anywhere:

Physical Reality: Packets Abstraction: Messages

Limited Size Arbitrary Size
Unordered (sometimes) Ordered
Unreliable Reliable

Machine-to-machine
Only on local area net

Process-to-process
Routed anywhere

Asynchronous Synchronous
Insecure Secure
11/14/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 22.6

Basic Networking Limitations

+ The physical/link layer is pretty limited
- Packets of limited size
» Maximum Transfer Unit (MTU): often 200-1500 bytes
- Packets can get lost or garbled
- Hardware routing limited to physical link or switch
- Physical routers crash/links get damaged
» Famous Baltimore tunnel fire (July 2001): cut Internet half
+ Datagram: an independent, self-contained network
message whose arrival, arrival time, and content are
not guaranteed
* Need resilient routing algorithms to send messages on
wide area
- Multi-hop routing mechanisms
- Redundant links/Ability to route around failed links
* Handling Arbitrary Sized Messages:
- Must deal with limited physical packet size
- Split big message into smaller ones (called fragments)
» Musf be reassembled at destination
» Mcc?l happen on demand if packet routed through areas of
reduced MTU (e.g. TCP)
- Checksum compu‘rec? on each fragment or whole message
11/14/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 22.7

Performance Considerations

- Before continuing, need some performance metrics
- Overhead: CPU time to put packet on wire
- Throughput: Maximum number of bytes per second

» Depends on "wire speed”, but also limited by slowest router
(routing delay) or by congestion at routers

- Latency: time until first bit of packet arrives at receiver
» Raw transfer time + overhead at each routing hop

+ Contributions to Latency
- Wire latency: depends on speed of light on wire
» about 1.5 ns/foot
- Router latency: depends on internals of router
» Could be < 1 ms (for a good router)

» Question: can router handle full wire throughput?
11/14/05 Kubiatowicz €5162 ©UCB Fall 2005 Lec 22.8

Sample Computations

. E.gt: Ethernet within Soda
-Latency: speed of light in wire is 1.5ns/foot, which
implies latency in building < 1 ps (if no routers in path)
- Throughput: 10-1000Mb/s
- Throughput delay: packet doesn't arrive until all bits
» So: 4KB/100Mb/s = 0.3 milliseconds (same order as disk!)
. E.gt: ATM within Soda
- atencn (same as above, assuming no routing)
- Throughput: 155Mb/s
- Throqﬂtxuf delay: 4KB/155Mb/s = 200y
. E.q—.: ATM cross-country
-Latency (assuming no routing):
» 3000miles * 5000ft/mile = 15 milliseconds
- How many bits could be in transit at same time?
» 15ms * 1565Mb/s = 290KB
- In fact, Berkeley—>MIT Latency ~ 90ms
» Implies 1.7MB in flight if routers have wire-speed
_ throughput
* Requirements for good performance:
- Local area: minimize overhead/improve bandwidth
- Wide area: keep pipeline fulll

11/14/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 22.9

IP Packet Format

* Internet Protocol (IPa: Sends packets to arbitrary
destination in networ
- Deliver messages unreliably ("best effort”) from one
machine in Infernet to another
- Since intermediate links may have limited size, must be
able to fragmenf/reassemble packets on demand
- Includes 256 different “sub-protocols” built on 'ror of IP
» Examples: ICMP(1), TCP(6), UDP (17), IPSEC(50,51)
* IP Packet Format:

IP Header Size of datagram Flags &
Length (header+data) Fragmentation
0 15 16 J 31 o split large
IP Verd —5 7 TIHL] To5 | Total length(16-bits) g
. 16-bit identification |flags| 13-bit frag off
Time to — IP header
Live (hops)\b TTL Ly protocol [16-bit header checksum 20 bytes

~_~ 32-bit source IP _address
Type of _~ 32-bit destination IP address

transport~"q options (if any) S
protocol o>
Data
11/14/05 Lec 22.10

Process-to-process communication: UDP

* Process To process communicafion
- Basic routing Iqe‘rs packets from machine—machine
- What we really want is routing from process—process
» Example: ssh, email, ftp, web browsing
- Several IP protocols include notion of a “port”, which is a
16-bit identifiers used in addition to IP addresses
» A communication channel (connection) defined by 4 items:
source address, source port, dest address, dest port]
- UDP: The Unreliable Datagram Protocol
- UDP layered on top of basic IP (IP Protocol 17)
» Unreliable, unordered, user-to-user communication

IP Header
(20 bytes)

| _16-bit source port |16-bit destination port
-bit engt -Dbi checksum
< <

UDP Data

- Often used for high-bandwidfh video streams
» Many uses of UDP considered “anti-social” - none of the

“well-behaved” aspects of (say) TCP/IP
11/14/05 Kubiatowicz €S5162 ©UCB Fall 2005 Lec 22.11

Administrivia

* My office hours
- New office hour: Thursday 2:30-3:30
* Project 4 design document
- Due Monday November 28t
* MIDTERM II: Wednesday November 30t
- 5:30-8:30pm, 10 Evans
- All material from last midterm and up to Monday 11/28
- Includes virtual memory
* Final Exam
- December 17, 12:30 - 3:30, 220 Hearst Gym
* Final Topics: Any suggestions?

11/14/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 22.12

Sequence Numbers

* Ordered Messages
- Several network services are best constructed by
ordered messaging
» Ask remote machine to first do x, then do y, etc.
- Unfortunately, underlying network is packet based:
» Packets are routed one at a time through the network
» Can take different paths or be delayed individually
- IP can reorder packets! P,,P; might arrive as P,,P,
+ Solution requires queuing at destination
- Need to hold onto packets to undo misordering
- Total degree of reordering impacts queue size
* Ordered messages on top of unordered ones:
- Assign seguence numbers to packets
»0,1,2,3,4...
» If packets arrive out of order, reorder before delivering to
user application
» For instance, hold onto #3 until #2 arrives, etc.
- Sequence numbers are specific to particular connection
» Reordering among connections normally doesn't matter
- If restart connection, need to make sure use different

range of sequence numbers than apreviously...
11/14/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 22.13

Reliable Message Delivery: the Problem

+ All physical networks can garble and/or drop packets
- Physical media: packet not transmitted/received

» If transmit close to maximum rate, get more throughput -
even if some packets get lost

» If transmit at lowest voltage such that error correction just
starts correcting errors, get best power/bit

- Congestion: no place to put incoming packet
» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two host try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender send faster than receiver
can process?
+ Reliable Message Delivery on top of Unreliable Packets
- Need some way to make sure that packets actually make
it to receiver
» Every packet received at least once
» Every packet received only once
- Can combine with ordering: every packet received by
process at destination once and in order
11/14/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 22.14

Using Acknowledgements
A B

Packer g_ c..l(.g.r
> Timeout { .

* How to ensure transmission of packets?
- Detect garbling at receiver via checksum, discard if bad
- Receiver acknowledges (by sending “ack") when packet
received properly at destination
- Timeout at sender: if no ack, retransmit
+ Some questions:
- If the sender doesn't get an ack, does that mean the
receiver didn't get the original message?
» No
- What it ack gets dropped? Or if message gets delayed?

» Sender doesn't Eet ack, retransmits. Receiver gets message

twice, acks eac
11/14/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 22.15

How to deal with message duplication
+ Solufion: puf sequence number in message fo idenTify
re-transmitted packets
- Receiver checks for duplicate #'s: Discard if detected
* Requirements:
- Sender keeps copy of unack'ed messages
» Easy: only need to buffer messages
- Receiver tracks possible duplicate messages
» Hard: when ok to forget about received message?

+ Alternating-bit protocol:
- Send one message at a time; don't send A IPZIB
next message until ack received %
- Sender keeps last message; receiver X #
tracks sequence # of last message received A

- Pros: simple, small overhead %

- Con: Poor performance #1
- Wire car? hold multiple messages; want to .ﬁﬁV
fill up at (wire latency x throughput) \kLEL,
+ Con: doesn't work if network can delay M/
or duplicate messages arbitrarily
11/14/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 22.16

Better messaging: Window-based acknowledgements

+ Window based protocol (TCP):

- Send up to N packets without ack
» Allows pipelining of packets N=5
» Window size (N) < queue at destination

- Each packet has sequence number
» Receiver acknowledges each packet
» Ack says “receivedall packets up

to sequence number X"/send more
* Acks serve dual]Bur'pose:

- Reliability: Confirming packet received
- Flow Control: Receiver ready for packet
» Remaining space in queue at receiver
can be returned with ACK
* What if packet gets garbled/dropped?

- Sender will timeout waiting for ack packet

» Resend missing packets=> Receiver gets packets out of order!
- Should receiver discard packets that arrive out of order?
» Simple, but poor performance
- Alternative: Keep copy until sender fills in missing pieces?
» Reduces # of retransmits, but more complex

* What if ack gets garbled/dropped?

- Timeout and resend just the un-acknowledged packets

11/14/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 22

Transmission Control Protocol (TCP)

Stream in

[zyxwwuty Router Router)

Stream out:
| Igfedcb¢>
+ Transmission Control Protocol (TCP)
- TCP (IP Protocol 6) layered on top of IP

- Reliable byte stream between two processes on different

machines over Internet (read, write, flush)
« TCP Details

- Fragments byte stream into packets, hands packets to IP
» IP may also fragment by itself

- Uses window-based acknowledgement protocol (o minimize
state at sender and receiver)

» "Window" reflects storage at receiver - sender shouldn’t
overrun receiver's buffer space

» Also, window should reflect speed/capacity of network -
sender shouldn't overload network

- Automatically retransmits lost packets

- Adjusts rate of transmission to avoid congestion
vi1a00 > A “good citizen”

Kubiatowicz €S162 ©UCB Fall 2005

Lec 22.18

TCP Windows and Sequence Numbers

——>Sequence Numbers ———

Not yet
sent }Sender

Sent Sent
acked not acked

Received Received Not yet
Given to app| Buffered | received = [Receiver

+ Sender has three regions:
- Sequence regions
» sent and ack'ed
» Sent and not ack'ed
» not yet sent
- Window (colored region) adjusted by sender
* Receiver has three regions:
- Sequence regions
» received and ack'ed (given to application)
» received and buffered

» not yet received (or discarded be
11/14/05 Kubiatowicz €S5162 ©UCB Fall

cause out of order)
2005 Leé 22.19

Congestion Avoidance

+ Congestion

- How long should timeout be for re-sending messages?
» Too long—wastes time if message lost
» Too short—retransmit even though ack will arrive shortly
- Stability problem: more congestion = ack is delayed =
unnecessary timeout = more traffic = more congestion

» Closely related to window size at sender: too big means
putting too much data into network

* How does the sender’'s window size get chosen?
- Must be less than receiver's advertised buffer size

- Try to match the rate of sending packets with the rate
that the slowest link can accommodate
- Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver

» Basic technique: slowly increase size of window until
acknowledgements start being delayed/lost

- Specifically TCP solution: “slow start”
- Start sending slowly
- If no timeout, slowly increase window size (throughput)

11/14709 imeout = congestion, so cyt window size in half . -

Sequence-Number Initialization

* How do you choose an initial sequence number?
- When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!

» Receiver might end up discarding valid packets, or duplicate
ack from original transmission might hide lost packet

- Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection
- Some ways of choosing an initial sequence number:
- Time to live: each TCP packet has a deadline.
» If not delivered in X seconds, then is dropped

» Thus, can re-use sequence numbers if wait for all packets
in flight to be delivered or to expire

- Epoch #: uniquely identifies which set of sequence
numbers are currently being used
» Epoch # stored on disk, Put in every message

» epoch # incremented on crash and/or when run out of
sequence #

- Pseudo-random increment to previous sequence number

» Used by a number of implementations now
11/14/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 22.21

General's Paradox

* General's paradox:
- Constraints of problem:
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured
- Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win
- Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early
+ Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?
- Remarkably, “no”, even if all messages get through

11 am o>

ut what It you
%(:m"T get this ack?

11/7400 way to be sure last message gets throughl

Two-Phase Commit

- Since we can'T solve The General's Paradox (i.e.
simultaneous action), let's solve a related problem
- Distributed transaction: Two machines agree to do
something, or not do it, atomically
+ Two-Phase Commit protocol does this
- Use a persistent, stable log on each machine to keep track
of whether commit has happened
» If a machine crashes, when it wakes up it first checks its
log to recover state of world at time of crash
- Prepare Phase:
» The global coordinator requests that all participants will
Br‘omlse to commit or rollback the transaction
» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “abort” in its
log and tells everyone to abort; each records “abort” in log
- Commit Phase:
» After all participants respond that they are prepared, then
the coordinator writes “commit” to its ?;g
» Then asks all nodes to commit: they respond with ack
» After receive acks, coordinator writes “"got commit” to log
- Log can be used to complete this process such that all
machines either commit or don't commit
11/14/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 22.23

Two phase commit example

. Simﬁle Example: A=ATM machine, B=The Bank
- Phase 1:
» A writes “Begin transaction” to log
A—B: OK to transfer funds to me?
» Not enough funds:
B—A: transaction aborted; A writes "Abort” to log
» Enoagh funds:
B: Write new account balance to logg
B—A: OK, I can commit
- Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “"commit” to Iog
» Send message to B that commit occurred; wait for ack
» Write "Got Commit” to log _
* What if B crashes at begmnmﬁ?
- Wakes up, does nothing:” A will timeout, abort and retry
* What if A crashes at begmmng of phase 2?
- Wakes up, sees transacfion in progress; sends “abort” to

* What if B crashes at beginning of phase 2?
- B comes back up, look at log: when A sends it "Commit”

message, it will say, oh, ok, commit
11/14/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 22.24

Distributed Decision Making Discussion

* Two-Phase Commit: Blocking
- A Site can get stuck in a situation where it cannot
continue unfil some other site (usually the coordinator)
recovers.
- Example of how this could happen:

» Participant site B writes a "prepared to commit” record to
its log, sends a "yes” vote to the coordintor (site A) and
crashes

» Site A crashes

» Site B wakes up, check its log, and realizes that it has
voted “yes” on the update. I'? sends a message to site A
asking what happened. At this point, B cannot change its
mind ‘and decide to abort, because update may have
committed

» B is blocked until A comes back

- Blocking is problematic because a blocked site must hold
resources (locks on updated items, fpcxgespinned in
memory, etc) until it learns fate of update

- Alternative: There are alternatives such as "Three
Phase Commit” which don't have this blocking problem

11/14/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 22.25

Conclusion

* Layering: building compliex services from simpler ones
+ Datagram: an independent, self-contained network
message whose arrival, arrival time, and content are
not guaranteed
* Performance metrics
- Overhead: CPU time to put packet on wire
- Throughput: Maximum number of bytes per second
- Latency: time until first bit of packet arrives at receiver
* Arbitrary Sized messages:
- Fragment into multiple packets; reassemble at destination
* Ordered messages:
- Use sequence numbers and reorder at destination
* Reliable messages:
- Use Acknowledgements
- Want a window larger than 1 in order to increase
throughput
* TCP: Reliable byte stream between two processes on
different machines over Internet (read, write, flush)

* Two-phase commit: distributed decision making
11/14/05 Kubiatowicz €S162 ©UCB Fall 2005

Lec 22.26

