Cs162
Operating Systems and
Systems Programming
Lecture 23

Network Communication Abstractions /
Remote Procedure Call

November 21, 2005
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Reliable Networking

* Layering: building complex services from simpler ones

* Datagram: an independent, self-contained network
message whose arrival, arrival time, and content are
not guaranteed

* Performance metrics

- Overhead: CPU time to put packet on wire

- Throughput: Maximum number of bytes per second

- Latency: time until first bit of packet arrives at receiver
* Arbitrary Sized messages:

- Fragment into multiple packets; reassemble at destination
* Ordered messages:

- Use sequence numbers and reorder at destination
* Reliable messages:

- Use Acknowledgements

- Want a window larger than 1 in order to increase
throughput

11/21/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 23.2

Review: Using Acknowledgements
A B

Packe, e Packey
> Timeout { e

* How to ensure transmission of packets?

- Detect garbling at receiver via checksum, discard if bad

- Receiver acknowledges (by sending “ack") when packet
received properly at destination

- Timeout at sender: if no ack, retransmit

+ Some questions:

- If the sender doesn't get an ack, does that mean the
receiver didn't get the original message?

» No
- What it ack gets dropped? Or if message gets delayed?

» Sender doesn't Ret ack, retransmits. Receiver gets message

twice, acks eac
11/21/05 Kubiatowicz C5162 ©UCB Fall 2005 Lec 23.3

Review: TCP Windows and Sequence Numbers

+ TCP provides a stream abstraction:
- Reliable byte stream between two processes on different
machines over Internet (read, write, flush)
- Input is an unbounded stream of bytes
- Output is identical stream of bytes (same order)

xwvut Router Router) | Igfedcbt>
+ Sender has three regions:
Sent Sent Not yet
acked not acked sent } Sender

- Window (colored region) adjusted by sender
* Receiver has three regions:

Received Received Not yet
Receiver

Given to app| Buffered received

- Maximum size of window advertised to sender at setup
11/21/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 23.4

Goals for Today

* Finish discussion of TCP
* Messages
- Send/receive
- One vs. two-way communication
- Distributed Decision Making
- Two-phase commit/Byzantine Commit
 Remote Procedure Call

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

11/21/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 23.5

Window-Based Acknowledgements (TCP)

100 140 190 230 260 300 340 380 400
n v wn v vl v n v »n O |ln O
N 8 N 8 NS INS|I NS | NS | N8 NS
— O - ® .. ® .. ® .. ® .. ® .. o® - |0 —
oo jub a‘._. ..3 a’a ..g W - W I.\.’g
88 08 SQ oo So 38 38 (e

Kubiatowicz C5162 ©UCB Fall 2005

Selective Acknowledgement

— = T _
>'g Qo
als ~H s £lo
2ls| 8% 53| B
a4 b ox g -]
gl® ~<g j‘.:.n 8|z
ol |58 =8| [k
1 5 &Y =S =1
10— g
o1 I (1)

TCP Header TCP Header

* Vanilla TCP Acknowledgement
- Every message encodes Sequence number and Ack
- Can include data for forward stream and/or ack for
reverse stream
- Selective Acknowledgement
- Acknowledgement information includes not just one
number, but rather ranges of received packets
- Must be specially negotiated at beginning of TCP setup

» Not widely in use (although in Windows since Windows 98)
11/21/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 23.7

Congestion Avoidance

- Congestion
- How long should timeout be for re-sending messages?
» Too long—wastes time if message lost
» Too short—retransmit even though ack will arrive shortly
- Stability problem: more congestion = ack is delayed =
unnecessary timeout = more traffic = more congestion
» Closely related to window size at sender: too big means
putting too much data into network
* How does the sender’'s window size get chosen?
- Must be less than receiver's advertised buffer size
- Try to match the rate of sending packets with the rate
that the slowest link can accommodate
- Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until
acknowledgements start being delayed/lost
- Specifically TCP solution: “slow start”
- Start sending slowly
- If no timeout, slowly increase window size (throughput)

- Timeout = congesﬂon, so cut window size in half
11/21/05 ubiatowicz €S$162 ©UCB Fall 2005 Lec 23.8

Sequence-Number Initialization

* How do you choose an initial sequence number?
- When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!

» Receiver might end up discarding valid packets, or duplicate
ack from original transmission might hide lost packet

- Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection
- Some ways of choosing an initial sequence number:
- Time to live: each packet has a deadline.
» If not delivered in X seconds, then is dropped

» Thus, can re-use sequence numbers if wait for all packets
in flight to be delivered or to expire

- Epoch #: uniquely identifies which set of sequence
numbers are currently being used
» Epoch # stored on disk, Put in every message

» epoch # incremented on crash and/or when run out of
sequence #

- Pseudo-random increment to previous sequence number

» Used by several implementations at this time
11/21/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 23.9

Administrivia

+ Cal Bears Rock!
- 27 to 3 over Stanford

- Quite a dgame: down at Stanford but more Cal fans than
Stanford Fans

- Also: Stanford fans don't seem to understand “the wave”
* My office hours
- No office hours Thursday (Thanksgiving)
* Project 4 design document
- Due Monday November 28t
* MIDTERM II: Wednesday November 30*h or Monday
December 5th?
- 5:30-8:30pm, 10 Evans
- All material from last midterm and up to previous class
- Includes virtual memory
+ Final Exam
- December 17th, 12:30 - 3:30, 220 Hearst Gym
+ Final Topics: Any suggestions?
11/21/05 Kubiatowicz €5162 ©UCB Fall 2005 Lec 23.10

Use of TCP: Sockets

* Socket: an abstraction of a network I/O queue
- Embodies one side of a communication channel
» Same interface regardless of location of other end

» Could be local machine s::alled “"UNIX socket”) or remote
machine (called "network socket”)

- First introduced in 4.2 BSD UNIX: big innovation at time
» Now most operating systems provide some notion of socket
+ Using Sockets for Client-Server (C/C++ interface):
- On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» call listen(): tells server socket to accept incoming requests

» Perform multiple accept() calls on socket to accept incoming
connection request

» Each successful accept() returns a new socket for a new
connection; can pass this off to handler thread
- On client:
» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

11/21/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 23.11

Socket Example (Java)

server:
//Makes socket, binds addr/port, calls listen()
ServerSocket sock = new ServerSocket (6013);
while (true)
Socket client = sock.accept():;
PrintWriter pout = new
PrintWriter (client.getOutputStream(), true);

pout.println(“Here is data sent to client!”);

cliént.close();

client:
// Makes socket, binds addr/port, calls connect()
Socket sock = new Socket(“169.229.60.38”7,6018) ;
BufferedReader bin =
new BufferedReader (
new InputStreamReader (sock.getInputStream)) ;
String line;
while ((line = bin.readLine()) !=null)
System.out.println(line);
sock.close() ;
11/21/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 23.12

Distributed Applications

* How do you actually program a distributed application?
- Need to synchronize multiple threads, running on
different machines
» No shared memory, so cannot use test&set

)

- One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and
two receivers cannot get same message
+ Interface:
- Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue
— Send (message, mbox)
» Send message to remote mailbox identified by mbox
- Receive (buffer,mbox)
» Wait until mbox has message, copy into buffer, and return

» If threads sleeping on this mbox, wake up one of them
11/21/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 23.13

Using Messages: Send/Receive behavior

- When should send (message,mbox) return?

- When receiver gets message? (i.e. ack received)

- When message is safely buffered on destination?

- Right away, if message is buffered on source node?
* Actually two questions here:

- When can the sender be sure that receive actually
received the message?

- When can sender reuse the memory containing message?
* Mailbox provides 1-way communication from T1-5T2
- T1-buffer—T2

- Very similar to producer/consumer
» Send = V, Receive = P
» However, can't tell if sender/receiver is local or not!

11/21/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 23.14

Messaging for Producer-Consumer Style

+ Using send/receive for producer-consumer style:
Producer:
int msgl[1000];
prepare message; Message
send (msgl,mbox) ;

Consumer:
int buffer[1000];

while (1) { -
receive (buffer,mbox) ; Receive
process message; Message
}

* No need for producer/consumer to keep track of space
in mailbox: handled by send/receive

- One of the roles of the window in TCP: window is size of
buffer on far end

- Restricts sender to forward only what will fit in buffer

11/21/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 23.15

Messaging for Request/Response communication

* What about two-way communication?
- Request/Response
» read a file stored on a remote machine
» Request a web page from a remote web server
- Also called: client-server
» Client = requester, Server = responder
» Server provides “service” (file storage) to the client

+ Example: File service
Client: (requesting the file) ReqyeSt
char response[1000]; File
send (“read rutabaga”, server mbox) ;
receive (response, client mbox) ; Get
Response
Consumer: (responding with the file)
char command[1000], answer[1000];

receive (command, server mbox) ; Receive
decode command; Request

read file into answer;

send (answer, client mbox) ; Send
11/21/05 Kubiatowicz 5162 ®UCB Fall 2005 Response J23-16

General's Paradox

* General's paradox:
- Constraints of problem:
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured
- Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win
- Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early
+ Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?
- Remarkably, “no”, even if all messages get through

11 am o>

ut what It you
%":,,\’-1 get this ack?

11/2100 way to be sure last message gets throughl .

Two-Phase Commit

- Since we can'T solve The General's Paradox (i.e.
simultaneous action), let's solve a related problem
- Distributed transaction: Two machines agree to do
something, or not do it, atomically
+ Two-Phase Commit protocol does this
- Use a persistent, stable log on each machine to keep track
of whether commit has happened
» If a machine crashes, when it wakes up it first checks its
log to recover state of world at time of crash
- Prepare Phase:
» The global coordinator requests that all participants will
Bromlse to commit or rollback the transaction
» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “aAbort” in its
log and tells everyone to abort; each records “abort” in log
- Commit Phase:
» After all participants respond that they are prepared, then
the coordinator writes “Commit” to its log
» Then asks all nodes to commit: they respond with ack
» After receive acks, coordinator writes “Got Commit” to log
- Log can be used to complete this process such that all
machines either commit or don't commit
11/21/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 23.18

Two phase commit example

. Simﬁle Example: A=ATM machine, B=The Bank
- Phase 1: Prepare Phase
» A writes “Begin transaction” to log
A—B: OK to transfer funds to me?
» Not enough funds:
B—A: transaction aborted; A writes “Abort” to log
» Enoa?h funds:
B: Write new account balance & promise to commit to log
B—A: OK, I can commit
- Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “Commit” to log
» Send message to B that commit occurred; wait for ack
» Write “Got Commit” to lo
* What if B crashes at begmnmﬁ?
- Wakes up, does nothing:” A will timeout, abort and retry
* What if A crashes at beginning of phase 2?
- Wakes up, sees that there is a transaction in progress;
sends “Abort” to B o
* What if B crashes at beginning of phase 2?
- B comes back up, looks at log.” when A sends it “Commit”

message, it will say, “oh, ok, commit”
11/21/05 Kubidtowicz €$162 SUCB Fall 2005 Lec 23.19

Distributed Decision Making Discussion
+ Why is disfribufed decision making desirable?

- Fault Tolerance!
- A group of machines can come to a decision even if one or
more of them fail during the process
» Simple failure mode called “failstop” (different modes later)
- After decision made, result recorded in mulﬁEIe places
* Undesirable feature of Two-Phase Commit: Blocking
- One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its log,
sends a “yes” vote to the coordinator (site A) and crashes
» Site A crashes
» Site B wakes up, check its log, and realizes that it has
voted “yes” on the update. If sends a message to site A
asking what happened. At this point, B cannot decide to
aborf, because update may have committed
» B is blocked until A comes back
- A blocked site holds resources (locks on updated items,
pages pinned in memory, etc) until learns fate of update
+ Alternative: There are alternatives such as "Three
Phase Commit” which don't have this blocking problem
* What happens if one or more of the nodes is malicious?
- Malicious: attempting to comé:)romise the decision makin
11/21/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 23.20

Byzantine General's Problem

Lieutenant

>

Retreat!
Attack!
R re‘““ <

th- 4 Lieutenant
Ref !
General - % |
Malicious! ”l Lieutenant
* Byazantine General's Problem (n players):
- One General

- n-1 Lieutenants
- Some number of these (f) can be insane or malicious
+ The commanding general must send an order to his n-1
lieutenants suc at:
- IC1: All loyal lieutenants obey the same order
- IC2: If the commanding general is loyal, then all loyal

lieutenants obe¥ the order he sends
11/21/05 ubiatowicz €CS162 ©UCB Fall 2005 Lec 23.21

Byzantine General's Problem (con't)

+ Impossibility Results:
- Cannot solve Byzantine General's Problem with n=3
because one malicious player can mess up things

- With f faults, need n > 3f to solve problem
* Various algorithms exist to solve problem
- Original algorithm has #messages exponential in n

- Newer algorithms have message complexity O(n?)
» One from MIT, for instance (Castro and Liskov, 1999)

* Use of BFT (Byzantine Fault Tolerance) algorithm
- Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

O%% | Distributed

R +— L
eques ' Decision

11/21/05 Ku

hll 2005 Lec 23.22

Remote Procedure Call

+ Raw messaging is a bit Too low-level for programming
- Must wrap up information into message at source
- Must decide what to do with message at destination
- May need to sit and wait for multiple messages to arrive
+ Better option: Remote Procedure Call (RPC)
- Calls a procedure on a remote machine
- Client calls:
remoteFileSystem—Read (“rutabaga”) ;
- Translated automatically into call on server:
fileSys—Read (“rutabaga”) ;
* Implementation:
- Request-response message passing (under covers!)
- "Stub” provides glue on client/server
» Client stub is responsible for “"marshalling” arguments and
“unmarshalling” the return values
» Server-side stub is responsible for “unmarshalling”
arguments and “marshalling” the return values.
* Marshalling involves (depending on system)
- Converting values to a canonical form, serializing

objects, copying arguments @passed by reference, etc.
11/21/05 ubiatowicz €S162 ©UCB Fall 200! Lec 23.23

RPC Information Flow

bundle
' args
P . ca . send
\‘ E Client Client Packet
|
—=/ |(caller)} Stub |« - H{andlenr
\@ () return u receive ‘an
unBunaIIe mbo.
. ret vals
Machine A (%
.. s o
Machine B b3
bundle 3
ret vals | Box1
P return end
] H Server sIServerl— 4" »| Packet
]
— |(callee)}« Stub |« - andlen
\@ ()| call receive :
unbundle
args
11/21/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 23.24

RPC Details

+ Equivalence with regular procedure call
- Parameters < Request Message
- Result & Reply message
- Name of Procedure: Passed in request message
- Return Address: mbox2 (client return mail box)
+ Stub generator: Compiler that generates stubs
- Input: interface definitions in an “interface definition
language (IDL)"
» Contains, among other things, types of arguments/return
- Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for
result, unpack result and return to caller
» Code for server to unpack message, call procedure, pack
results, send them ofF
* Cross-platform issues:
- What if client/server machines are different
architectures or in different languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded
(avoids unnecessary conversions).

11/21/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 23.25

RPC Details (continued)
+ How does client know which mbox fo send fo?

- Need to translate name of remote service into network
endpoint SI‘Eemofe machine, port, possibly other info)
- Binding: the process of converting a user-visible name
into_a network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime
* Dynamic Bmdmg
- Most RPC systems use dynamic binding via name service
» Name service provides dynmaic translation of service—mbox
- Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one
* What if there are multiple servers?
- Could give flexibility at binding time
» Choose unloaded server for each new client
- Could provide same mbox (router level redirect)
» Choose unloaded server for each new request
» Only works if no state carried from one call to next
* What if multiple clients?
- Pass pointer to client-specific return mbox in request
11/21/05 Kubiatowicz €CS162 ©UCB Fall 2005 Lec 23.26

Problems with RPC

* Non-Atomic failures
- Different failure modes in distributed system than on a
single machine
- Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same
machine to fail
» Some machine is compromised by malicious party
- Before RPC: whole system would crash/die
- After RPC: One machine crashes/compromised while
others keep working
- Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?
- Answer? Distributed transactions/Byzantine Commit
* Performance
- Cost of Procedure call « same-machine RPC « network RPC
- Means programmers must be aware that RPC is not free
» Caching can help, but may make failure handling complex

11/21/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 23.27

Cross-Domain Communication/Location Transparency

* How do address spaces communicate with one another?
- Shared Memory with Semaphores, monitors, etc..
- File System
- Pipes (1-way communication)
- "Remote” procedure call (2-way communication)

« RPC's can be used to communicate between address
spaces on different machines on the same machine

- Services can be run wherever it's most appropriate
- Access to local and remote services looks the same
+ Examples of modern RPC systems:
- CORBA (Common Object Request Broker Architecture)
- DCOM (Distributed COM)
- RMI (Java Remote Method Invocation)

11/21/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 23.28

Microkernel operating systems

+ Example: split kernel into application-level servers.
- File system looks remote, even though on same machine

App| | App | [App App ’;"y';- windows
file system windowing RPc address
M Networking h sgaces
Threads fhreads

Monolithic Structure Microkernel Structure

* Why split the OS into separate domains?
- Fault isolation: bugs are more isolated (build a firewall)
- Enforces modularity: allows incremental upgrades of pieces
of software (client or server)
- Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can
be on a separate machine from X server: Neither has to run
on the machine with the frame buffer.

11/21/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 23.29

Conclusion

* TCP: Reliable byte stream between two processes on

different machines over Internet (read, write, flush)
- Uses window-based acknowledgement protocol
- Congestion-avoidance dynamically adapts sender window to
account for congestion in network

+ Two-phase commit: distributed decision making

- First, make sure everyone guarantees that they will
commit if asked (prepare)
- Next, ask everyone to commi

L
* Byzantine General's Problem: distributed decision making

with malicious failures
- One general, n-1 lieutenants: some number of them may
be malicious (often “f” of them)
- All non-malicious lieutenants must come to same decision
- If general not malicious, lieutenants must follow general
- Only solvable if n > 3f+1

+ Remote Procedure Call (RPC): Call procedure on remote

machine
- Provides same interface as procedure
- Automatic packing and unpacking of arguments without

11/21/85€r programming, (in stub) o o 200

