CS162
Operating Systems and
Systems Programming
Lecture 24

Distributed File Systems

November 23, 2005
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Network Communication

* TCP: Reliable byte stream between two processes on

different machines over Internet (read, write, flush)

* Socket: an abstraction of a network I/O queue

- Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine ﬁ:alled “"UNIX socket”) or remote
machine (called "network socket™)

Client

* Two-phase commit: distributed decision making

- First, make sure everyone guarantees that they will
commit if asked (prepare)

- Next, ask everyone to commit
11/23/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 24.2

Review: Distributed Applications

oY

* Message Abstraction: send/receive messages
- Already atomic: no receiver gets portion of a message
and two receivers cannot get same message
+ Interface:
- Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue
— Send (message, mbox)
» Send message to remote mailbox identified by mbox
- Receive (buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

11/23/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 24.3

Review: Byzantine General's Problem

’ Lieutenant

y W
>

Retreat!
Attack!

Retrect

General %

Malicious!‘ l

* Byazantine General's Problem (n players):

- One General

- n-1 Lieutenants

- Some number of these (f<n/3) can be insane or malicious
+ The commanding general must send an order to his n-1

lieutenants suc at:
- IC1: All loyal lieutenants obey the same order
- IC2: If the commanding general is loyal, then all loyal

lieutenants obex the order he sends
11/23/05 ubiatowicz CS162 ©UCB Fall 2005 Lec 24.4

fany

Lieutenant
|

Lieutenant

Review: Byzantine General's Problem (con't)

* Impossibility Results:
- Cannot solve Byzantine General's Problem with n=3
because one malicious player can mess up things

- With f faults, need n > 3f to solve problem
* Various algorithms exist to solve problem
- Original algorithm has #messages exponential in n

- Newer algorithms have message complexity O(n?)
» One from MIT, for instance (Castro and Liskov, 1999)

* Use of BFT (Byzantine Fault Tolerance) algorithm
- Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

O%% |_Distributed

R +— L
eques ‘ Decision

11/23/05 Ku

hll 2005 Lec 24.5

Review: Remote Procedure Call

- Raw messaging is a bitf Too low-level for programming
- Must wrap up information into message at source
- Must decide what to do with message at destination
- May need to sit and wait for multiple messages to arrive
+ Better option: Remote Procedure Call (RPC)
- Calls a procedure on a remote machine

- Client calls:
remoteFileSystem—Read (“rutabaga”) ;

- Translated automatically into call on server:
fileSys—Read (“rutabaga”) ;

* Implementation:

- Request-response message passing (under covers!)
- "Stub” provides glue on client/server
» Client stub is responsible for “"marshalling” arguments and
“unmarshalling” the return values

» Server-side stub is responsible for “unmarshalling”

arguments and “marshalling” the return values.

* Marshalling involves (depending on system)
- Converting values to a canonical form, serializing

11/23/05

objects, copying arguments passed b
J PY ubia‘ro%icz cs162 J

'UCB Fall 200

reference, etc.
Lec 2

Goals for Today

* Finish RPC
- Examples of Distributed File Systems
+ Cache Coherence Protocols

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Lec 24.7

11/23/05 Kubiatowicz €S162 ©UCB Fall 2005

RPC Information Flow

bundle
' args q
. ca : sen
\\,\E Client Client Packet
\@5’,_ (caller)|« Stub |« - H{andler
<= return receive
unBunaIIe mbo.
. ret vals
Machine A %
.. s o
s s
Machine B S
bundle 3
ret vals) Box1
T return
] H Server »iServen send »| Packet
I
=32 |(callee)l+ Stub |« - {andler
\@ ()| call receive
unbundle
args
Kubiatowicz €S162 ©UCB Fall 2005 Lec 24.8

11/23/05

RPC Details

+ Equivalence with regular procedure call
- Parameters < Request Message
- Result & Reply message
- Name of Procedure: Passed in request message
- Return Address: mbox2 (client return mail box)
+ Stub generator: Compiler that generates stubs
- Input: interface definitions in an “interface definition
language (IDL)"
» Contains, among other things, types of arguments/return
- Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for
result, unpack result and return to caller
» Code for server to unpack message, call procedure, pack
results, send them ofF
* Cross-platform issues:
- What if client/server machines are different
architectures or in different languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded
(avoids unnecessary conversions).

11/23/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 24.9

RPC Details (continued)
How does client know which mbox To send To?

- Need to translate name of remote service into network
endpoint SI‘Eemofe machine, port, possibly other info)
- Binding: the process of converting a user-visible name
into_a network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime
Dynamic Bmdmg
- Most RPC systems use dynamic binding via name service
» Name service provides dynmaic translation of service—mbox
- Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one
What if there are multiple servers?
- Could give flexibility at binding time
» Choose unloaded server for each new client
- Could provide same mbox (router level redirect)
» Choose unloaded server for each new request
» Only works if no state carried from one call to next
What if multiple clients?
- Pass pointer to client-specific return mbox in request

11/23/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 24.10

Problems with RPC

* Non-Atomic failures
- Different failure modes in distributed system than on a
single machine
- Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same
machine to fail
» Some machine is compromised by malicious party
- Before RPC: whole system would crash/die
- After RPC: One machine crashes/compromised while
others keep working
- Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?
- Answer? Distributed transactions/Byzantine Commit
* Performance
- Cost of Procedure call « same-machine RPC « network RPC
- Means programmers must be aware that RPC is not free
» Caching can help, but may make failure handling complex

11/23/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 24.11

Administrivia

My office hours
- No office hours Thursday (Thanksgiving)
Project 4 design document
- Due Tuesday November 29th
MIDTERM II: Monday December 5t
- 5:30-8:30pm, 10 Evans
- All material from last midterm and up to previous class
- Includes virtual memory
Final Exam
- December 17, 12:30 - 3:30, 220 Hearst Gym
Final Topics: Any suggestions?

11/23/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 24.12

Cross-Domain Communication/Location Transparency

* How do address spaces communicate with one another?
- Shared Memory with Semaphores, monitors, etc...
- File System
- Pipes (1-way communication)
- "Remote” procedure call (2-way communication)

« RPC's can be used to communicate between address
spaces on different machines on the same machine

- Services can be run wherever it's most appropriate
- Access to local and remote services looks the same
+ Examples of modern RPC systems:
- CORBA (Common Object Request Broker Architecture)
- DCOM (Distributed COM)
- RMI (Java Remote Method Invocation)

11/23/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 24.13

Microkernel operating systems

- Example: split kernel into application-level servers.
- File system looks remote, even though on same machine

App [| App | [App App| | Sy | |windows
file system windowing RPc address
M Networking h sgaces
Threads Fhreads
Microkernel Structure

Monolithic Structure

* Why split the OS into separate domains?
- Fault isolation: bugs are more isolated (build a firewall)
- Enforces modularity: allows incremental upgrades of pieces
of software (client or server)
- Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can
be on a separate machine from X server: Neither has to run
on the machine with the frame buffer.

11/23/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 24.14

~ Distributed File Systems
\‘//; [__Network |

) Data

Client

- Distributed File System:
- Transparent access to files stored on a remote disk

Server

* Naming choices (always an issue):
- Hostname:localname: Name files explicitly
» No location or migration transparency
- Mounting of remote file systems
» System manager mounts remote file system
by giving name and local mount point
» Transparent to user: all reads and writes
look like local reads and writes to user

e.g. /users/sue/foo—/sue/foo on server
- A single, global name space: every file
in the world has unique name

» Location Transparency: servers mount
can change and files can move coeus:/sue

11/23/05 without mvowlrl‘&b%?oewqcz €S162 ©UCB Fall 2005

mount
kubi:/jane

() users l /

Virtual File System (VFS)

Bo-system interlace ‘

VFS interface

[

|

l ramate file system
1

local fila system local fila system
U fype 2
ek

e

* VFS: Virtual abstraction similar to local file system
- Instead of “inodes” has “vnodes”
- Compatible with a variety of local and remote file systems
» provides object-oriented way of implementing file systems
* VFS allows the same system call interface (the APT) to
be used for different types of file systems
- The API is to the VFS interface, rather than any specific

'rg/pe of file system
11/23/0 Kubiatowicz CS162 ©UCB Fall 2005 Lec 24.16

pe 1

Simple Distributed File System

cache

- Remote Disk: Reads and writes forwarded to server
- Use RPC to translate file system calls
- No local caching/can be caching at server-side
* Advantage: Server provides completely consistent view
of file system to multiple clients
* Problems? Performance!
- Going over network is slower than going to local memory
- Lots of network traffic/not well pipelined

- Server can be a bottleneck
11/23/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 24.17

Use of caching to reduce network load

_ o
read(f1)-V1 ‘/\

read(f1)-»V1 \&/7 J/l\lgj (RPC) \
read(f1)-V1 . Refurn (Data)
read(f1)-V1 Client

Client

write(f1)->0K .
r'ead(g‘l))—NZ
* Idea: Use caching to reduce network load

- In practice: use buffer cache at source and destination
* Advantage: if open/read/write/close can be done

locally, gon'f need to do any network traffic..fast!

* Problems:

- Failure:

» Client caches have data not committed at server
- Cache consistency!

1172305 > Client caches not. consistent with, sgsyer/each other 110

Failures

* What if server crashes? Can client wait until server
comes back up and continue as before?
- Any data in server memory but not on disk can be lost
- Shared state across RPC: What if server crashes after
seek? Then, when client does “read”, it will fail
- Message retries: suppose server crashes after it does
UNIX "rm foo“, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with
two-phase commit protocol, but NF5 takes a more ad hoc
approach)
+ Stateless protocol: A protocol in which all information
required to process a request is passed with request
- Server keeps no state about client, except as hints to
help improve performance (e.g. a cache)
- Thus, if server crashes and restarted, requests can
continue where left off (in many cases)
* What if client crashes?
- Might lose modified data in client cache
11/23/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 24.19

Schematic View of NFS Architecture

client server

system-calls interface

VFS interface —* VFS interface

v v |
other types of UNIX file NFS NFS UNIX file
file systems system client server system

[
K ‘ RPC/XDR ‘ ‘ RPC/XDR ‘ R

[dq B | | [dq

11/23/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 24.20

Network File System (NFS)

+ Three Layers for NFS system
- UNIX file-system interface: open, read, write, close
calls + file descriptors
- VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
- NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
* NFS Protocol: RPC for file operations on server
- Reading/searching a directory
- manipulating links and directories
- accessing file attributes/reading and writing files
* Write-through caching: Modified data committed to
server's disk before results are returned to the client
- lose some of the advantages of caching
- time to perform write() can be long
- Need some mechanism for readers to eventually notice
changes! (more on this later)

11/23/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 24.21

NFS Continued

+ NF5 servers are sfateless; each request provides all
ar'gélmen*rs require for execution
- E.g. reads include information for entire operation, such
as ReadAt (inumber,position), not Read (openfile)
- No need to perform network open() or close() on file -
each operation stands on its own
+ Idempotent: Performing requests multiple times has
same effect as performing it exactly once
- Example: Server crashes between disk I/O and message
send, client resend read, server does operation again
- Example: Read and write file blocks: just re-read or re-
write file block - no side effects
- Example: What about “"remove”? NFS does operation
twice and second time returns an advisory error
* Failure Model: Transparent to client system
- Is this a good idea? What if you are in the middle of
reading a file and server crashes?
- Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don't know

112305 They are talkjng over network) Lec 24.22

NFS Cache consistency

* NFS protocol: weak consistency
- Client polls server periodically to check for changes

» Polls server if data hasn't been checked in last 3-30
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified,
but other clients use old version of file until timeout.

cache
&
Client (#)
\'4 P
> Server|cache
cache

Clent

- What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)

» Completely arbitrary!
11/23/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 24.23

Sequential Ordering Constraints

* What sort of cache coherence might we expect?
- i.e. what if one CPU changes file, and before it's done,
another CPU reads file?

+ Example: Start with file contents = "A”

Client 1: | Read:igets A || WriteB | [Read: parts of B or (]

Client 2: |Read: gets A or B|| Write C |

Client 3: [Read: parts of B or
Time

* What would we actually want?
- Assume we want distributed system to behave exactly the
same as if all processes are running on single system

» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

- For NFS:
» if read starts more than 30 seconds after write, get new

copy: otherwise, could get partial update
11/23/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 24.24

NFS Pros and Cons

* NFS Pros:

- Simple, Highly portable
* NFS Cons:

- Sometimes inconsistent!

- Doesn't scale to large # clients
» Must keep checking to see if caches out of date

11/23/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 24.25

Andrew File System

* Andrew File System (AFS, late 80's) —» DCE DFS

(commercial product)

* Callbacks: Server records who has copy of file

- On changes, server immediately tells all with old copy
- No polling bandwidth (continuous checking) needed

+ Write through on close

- Changes not propagated to server until close()

- Session semantics: updates visible to other clients only
after the file is closed

» As a result, do not get partial writes: all or nothing!

» Although, for processes on local machine, updates visible
immediately to other programs who have file open

* In AFS, everyone who has file open sees old version

- Don't get newer versions until reopen file

11/23/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 24.26

Andrew File System (con't)

* Data cached on local disk of client as well as memory
- On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server
- On write followed by close:

» Send copy to server; tells all clients with copies to fetch
new version from server on next open (using callbacks)

* What if server crashes? Lose all callback statel

- Reconstruct callback information from client: go ask
everyone “who has which files cached?”

+ AFS Pro: Relative to NFS, less server load:
- Disk as cache = more files can be cached locally
- Callbacks = server not involved if file is read-only

* For both AFS and NFS: central server is bottleneck!
- Performance: all writes—server, cache misses—server
- Availability: Server is single point of failure
- Cost: server machine’s high cost relative to workstation

11/23/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 24.27

Conclusion

+ Remote Procedure Call (RPC): Call procedure on remote

machine
- Provides same interface as procedure
- Automatic packing and unpacking of arguments without
user programming (in stub)

* VFS: Virtual File System layer

- Provides mechanism which gives same system call interface
for different types of file systems

+ Distributed File System:

- Transparent access to files stored on a remote disk
» NFS: Network File System
» AFS: Andrew File System

- Caching for performance

* Cache Consistency: Keeging contents of client caches

consistent with one another
- If multiple clients, some r'eadir:iq and some writing, how do
stale cached copies get updated?
- NFS: check periodically for changes
- AFS: clients register callbacks so can be notified by

server of changes
11/23/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 24.28

