Cs162
Operating Systems and
Systems Programming
Lecture 25

Protection and Security
in Distributed Systems

November 28, 2005
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: RPC Information Flow

bundle
' args
P . ca . send
] F) Client » Client
W |(caller) e Stub |« :
<> return receive
unbundl Ie
. ret vals
Machine A
Machine B
bundle
ret vals
s return send
\‘ I'ﬁ Server »iServen
0
== |(callee Stub |« -
\@ ()l call receive
unbundle
args
11/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 25.2

Review: Distributed File Systems

i@l Nefwork] &= N
. ~ Data Ay V
Client Server .

* VFS: Virtual File System layer
- Provides mechanism which gives same system call interface
for different types of file systems
- Distributed File System:
- Transparent access to files stored on a remote disk
» NFS: Network File System
» AFS: Andrew File System
- Caching for performance
* Cache Consistency: Keeping contents of client caches
consistent with one another
- If multiple clients, some reading and some writing, how do
stale cached copies get updated?
- NFS: check periodically for changes
- AFS: clients register callbacks so can be notified by

server of changes
11/28/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 25.3

Goals for Today

- Security Mechanisms
- Authentication
- Authorization
- Enforcement
* Cryptographic Mechanisms

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

11/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 25.4

Protection vs Security

- Protection: one or more mechanisms for controlling the
access of programs, processes, or users to resources
- Page Table Mechanism
- File Access Mechanism
+ Security: use of protection mechanisms to prevent
misuse of resources
- Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data
- Requires consideration of the external environment
within which the system operates

» Most well-constructed system cannot protect information
if user accidentally reveals password

* What we hope to gain today and next time
- Conceptual understanding of how to make systems secure
- Some examples, to illustrate why providing security is
really hard in practice

11/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 25.5

Preventing Misuse

* Types of Misuse:
- Accidental:
» If T delete shell, can't log in to fix it!
» Could make it more difficult by asking: “"do you really want
to delete the shell?”

- Intentional:
» Some high school brat who can't get a date, so instead he
transfers $3 billion from B to A.
» Doesn't help to ask if they want to do it (of coursel)
* Three Pieces to Security
- Authentication: who the user actually is
- Authorization: who is allowed to do what
- Enforcement: make sure people do only what they are
supposed to do
* Loopholes in any carefully constructed system:
- Log in as superuser and you've circumvented
authentication
- Log in as self and can do anything with your resources;
for instance: run program that erases all of your files
- Can you trust software to correctly enforce

11/28/fAuthentication and Authorization??2222 Lec 25.6

Authentication: Identifying Users

* How to identify users to the system?
- Passwords
» Shared secret between two parties

» Since only user knows password, someone types correct
password = must be user typing it

» Very common technique
- Smart Cards

» Electronics embedded in card capable of
providing long passwords or satisfying
challenge — response queries

» May have display to allow reading of password

» Or can be J)Iugged in directly; several
credit cards now in this category

- Biometrics

» Use of one or more intrinsic physical or
behavioral traits to identify someone

» Examples: fingerprint reader,
palm reader, retinal scan

» Becoming quite a bit more common
11/28/05 Kubiatowicz CS162 ®UCB Fall 2005 Lec 25.7

Passwords: Secrecy
- Sysfem must Keep copy of secref o
check against passwords

- What if malicious user gains access to list
of passwords?
» Need to obscure information somehow

- Mechanism: utilize a transformation that is difficult to
reverse without the right key (e.g. encryption)

- Example: UNIX /etc/passwd file
- passwd—one way transform(hash)—encrypted passwd

- System stores only encrypted version, so OK even if
someone reads the file!

- When ¥ou type in your password, system compares
encrypted version

* Problem: Can you trust encryption algorithm?
- Example: one algorithm thought safe had back door
» Governments want back door so they can snoop
- Also, security through obscurity doesn't work
» 6GSM encryption alcfori'l'hm was secret; accidentally released;

11728005 Berkeley grad students cracked in a, few hours Lec 25.8

Administrivia

My office hours
- No office hours Thursday (Thanksgiving)
Project 4 design document
- Due Tomorrow (November 29th)
MIDTERM II: Monday December 5t
- 5:30-8:30pm, 10 Evans
- All material from last midterm and up to previous class
- Includes virtual memory
* Review Session:
- Thursday evening 6-8pm
- Location: 50 Birge
* Final Exam
- December 17, 12:30 - 3:30, 220 Hearst Gym
* Final Topics: Any suggestions?

11/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 25.9

Passwords: How easy to guess?

* Ways of Compromising Passwords
- Password Guessing:

» Often people use obvious information like birthday,
favorite color, girlfriend’'s name, etc..

- Dictionary Attack:

» Work way through dictionary and compare encrypted
version of dictionary words with entries in /etc/passwd

- Dumpster Diving:
» Find pieces of paper with passwords written on them
» (Also used to get social-security numbers, etc)
* Paradox:
- Short passwords are easy to crack
- Long ones, people write down!
+ Technology means we have to use longer passwords
- UNIX initially required lowercase, 5-letter passwords:
total of 26°=10million passwords
» In 1975, 10ms to check a password—1 day to crack
» In 2005, .O1us to check a password—0.1 seconds to crack
- Takes less time to check for all words in the dictionary!

11/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 25.10

Passwords: Making harder to crack

* How can we make passwords harder to crack?
- Can't make it impossible, but can help
* Technique 1: Extend everyone's password with a unique
number (stored in password file)

- Called "salt”. UNIX uses 12-bit “salt”, making dictionary
attacks 4096 times harder

- Without salt, would be possible to pre-compute all the
words in the dictionary hashed with the UNIX algorithm:
would make comparing with /etc/passwd easy!

- Also, way that salt is combined with password designed to
frustrate use of off-the-shelf DES hardware

* Technique 2: Require more complex passwords

- Make people use at least 8-character passwords with
upper-case, lower-case, and numbersd

» 708=6x10'4=6million seconds=69 days@0.01us/check
- Unfortunately, people still pick common patterns
» e.g. Capitalize first letter of common word, add one digit

11/28/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 25.11

Passwords: Making harder to crack (con't)

* Technique 37 Delay checking of passwords
- If attacker doesn't have access to /etc/passwd, delay
every remote login attempt by 1 second
- Makes it infeasible for rapid-fire dictionary attack
* Technique 4: Assign very long passwords
- Long passwords or pass-phrases can have more entropy
(randomness—harder to crack)
- Give everyone a smart card (or ATM card) to carry around
to remember password
» Requires physical theft to steal password
» Can require PIN from user before authenticates self
- Better: have smartcard generate pseudorandom number
» Client and server share initial seed
» Each login attempt advances to next random number
* Technique 5: “Zero-Knowledge Proof”
- Require a series of challenge-response questions
» Distribute secret algorithm to user
» Server presents a number, say "5”; user computes something
from the number and returns answer to server
» Server never asks same “question” twice

- Often performed by smardcard plugged into system
11/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 25.12

Authentication in Distributed Systems

* What if identity must be established across network?

- Need way to prevent exposure of information while still
proving identity tfo remote system

- Many of the original UNIX tools sent passwords over the
wire “in clear text”

» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread
* What do we need? Cannot rely on physical security!
- Encryption: Privacy, restrict receivers
- Authentication: Remote Authenticity, restrict senders
11/28/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 25.13

Private Key Cryptography

* Private Key (Symmetric) Encryption:
- Single key used for both encryption and decryption

* Plaintext: Unencrypted Version of message

+ Ciphertext: Encrypted Version of message

—» Encrypt Decrypt
‘ Insecure

a) 2
2- Transmission g'

SPY © T (ciphertext) 1 S CIA
% Key Key %

* Important properties

- Can't derive plain text from ciphertext (decode) without
access to key

- Can't derive key from plain text and ciphertext

- As long as password stays secret, get both secrecy and
authentication

- Symmetric Key Algorithms: DES, Triple-DES, AES

11/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 25.14

Key Distribution

* How do you get shared secret to both places?
- For instance: how do you send authenticated, secret mail
to someone who you have never met?
- Must negotiate key over private channel
» Exchange code book
» Key cards/memory stick/others
* Third Party: Authentication Server (like Kerberos)
- Notation:
» K, is key for talking between x and y
» (.3" means encrypt message (...) with the key K
» Clients: A and B, Authentication server S
- A asks server for key:
» A—S: [Hil I'd like a key for talking between A and B]
» Not encrypted. Others can find out if A and B are talking
- Server returns session key encrypted using B's key
» S—A: Message [Use K, (This is Al Use K,)b] Ksa
» This allows A to know, "S said use this key”
- Whenever A wants to talk with B
» A—B: Ticket [This is Al Use K,]t

» Now, B knows that K is sanctioned by S
11/28/05 Kubiafowiczua5162 ©UCB Fall 2005 Lec 25.15

Authentication Server Continued

+ Details
- Both A and B use passwords (shared with key server) to
decrypt return from key servers
- Add in timestamps to limit how long tickets will be used
to prevent attacker from replaying messages later

- Also have to include encrypted checksums (hashed
version of message) to prevent malicious user from
inserting things into messages/changing messages

- Want to minimize # times A types in password

» A—S (Give me temporary secret)
» 5—A (Use Ki,p,5q for next 8 hours)+se

» Can now use K, ... in place of K_, in 5prm‘o'rcol

11/28/05 KuBiowicz ¢5162 ©UCB Fdif* 200! Lec 25.16

Public Key Encryption

+ Can we per‘for‘m Key distribufion without an
authentication server?
- Yes. Use a Public-Key Cryptosystem.
* Public Key Details
- Don't have one key, have two: K, i, Kirivate
» Two keys are mathematically related to one another
» Really hard to derive K. from K.+, and vice versa
- Forward encryption:
» Encrypt: (cleartext)krblic= ciphertext,
» Decrypt: (ciphertext,)private = cleartext
- Reverse encryption:
» Encrypt: (cleartext)<erivate = ciphertext,
» Decrypt: (ciphertext,)rblic = cleartext
- Note that ciphertext; # ciphertext,
» Can't derive one from the other!
* Public Key Examples:
- RSA: Rivest, Shamir, and Adleman
» K ublic of form (kpublic' N)' Kpr'ivafe of form (kpr'ivafe' N)
» Nz pq. Can break code if know p and q

- ECC: Elliptic C C
11/28/05E E”lpflC tilgbvis'rowiszy ?;%QQ%QXGII 2005 Lec 25.17

Public Key Encryption Details

* Idéar K can be made public, Keep Kt private

Insecure Channel

public === Bprivaf
private publig

Alice Insecure Channel Bob
+ Gives message privacy (restricted receiver):

- Public keys (secure destination points) can be acquired
by anyone/used by anyone

- Only person with private key can decrypt message
* What about authentication?
- Use combination of private and public key
- Alice—Bob: [(I'm Alice)#rrivate Rest of message]Brublic
- Provides restricted sender and receiver

« But: how does Alice know that it was Bob who sent

her B,.? And vice versa..
11/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 25.18

Secure Hash Function

Hash DFCD3454BBEA788A
Fox > Fun?:iion | 7512696C24D97009
CA992D17

The red fox Hash 52ED879E70F71D92
runs across [y Functi)| 6EB6957008E03CE4
the ice dnetion CA6945D3

* Hash Function: Short summary of data (message)
- For instance, h;=H(M,) is the hash of message M,
» h; fixed length, despite size of message M;.
» Often, h, is called the “digest” of M.
* Hash function H is considered secure if
- It is infeasible to find M, with h;=H(M,): ie. can't
easily find other message with same digest as given
message.

- It is infeasible to locate two messages, m; and m,,
which “collide”, i.e. for which H(m,) = H(m,)

- A small change in a message changes many bits of
digest/can't tell anything about message given its hash

11/28/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 25.19

Use of Hash Functions

+ Several Standard Hash Functions:
- MD5: 128-bit output
- SHA-1: 160-bit output
+ Can we use hashing to securely reduce load on server?
- Yes. Use a series of insecure mirror servers (caches)
- First, ask server for digest of desired file
» Use secure channel with server
- Then ask mirror server for file
» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

File X
nsecure
Read X Data
@ Mirror
‘, Read File X

= — \ Here is h, = H(X)
ul

11/28/05 Client «kubidowicz cS162 ©UCB Fall 2005

—_—

Server Lec 25.20

Signatures/Certificate Authorities

+ Can use X_ . for person X o define their idenfity
- Presumab y they are the only ones who know X
- Often, we think of X ;. as a “principle” (user

*+ Suppose we want X to sigh message M? _
- Use cJar'ivm'e key to encrypt the digest, i.e. H(M)*private
- Send both M and its signature:

rivate *

» Signed message = [M, H(M)*private]
- Now, "anyone can verify that M was signed by X
» Simply decrypt the digest with X
» Verify that result matches H(M)
* Now: How do we know that the version of X, that
we have is really from X??2?
- Answer: Certificate Authority
» Examples: Verisign, Entrust, Etc.
- X goes to organization, Er‘esenfs identifyin papers
» Organization signs X's key: [X, H(Xpub,igc private]
» Called a “Certificate”
- Before we use X ... ask X for certificate verifying key
» Check that sigﬂa’rure over X, produced by trusted
authority o)
* How do we get keys of certificate authority?

- Compiled into your browser, for instance!
11/28/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 25.21

Conclusion

User Identification
- Passwords/Smart Cards/Biometrics
Passwords
- Encrypt them to help hid them
- Force them to be longer/not amenable to dictionary attack
- Use zero-knowledge request-response techniques
Distributed identity
- Use cryptography
Symmetrical (or Private Key) Encryption
- Single Key used to encode and decode
- Introduces key-distribution problem
Public-Key Encryption
- Two keys: a public key and a private key
» Not derivable from one another
Secure Hash Function
- Used to summarize data

11/78/4ard to find angther, block.of data with same hash,. .5 .,

