
CS162
Operating Systems and
Systems Programming

Lecture 26

Protection and Security
in Distributed Systems II

November 30, 2005
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 26.211/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Authentication: Identifying Users
• How to identify users to the system?

– Passwords
» Shared secret between two parties
» Since only user knows password, someone types correct

password ⇒ must be user typing it
» Very common technique

– Smart Cards
» Electronics embedded in card capable of

providing long passwords or satisfying
challenge → response queries

» May have display to allow reading of password
» Or can be plugged in directly; several

credit cards now in this category
– Biometrics

» Use of one or more intrinsic physical or
behavioral traits to identify someone

» Examples: fingerprint reader,
palm reader, retinal scan

» Becoming quite a bit more common

Lec 26.311/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Use of Hash Functions
• Let h1=H(M1); hash function H is considered secure if:

– It is infeasible to find M2 with h1=H(M2); i.e. can’t easily find other message with same digest as given message.
– It is infeasible to locate two messages, m1 and m2, which
“collide”, i.e. for which H(m1) = H(m2)

• Can we use hashing to securely reduce load on server?
– First, ask server for digest of desired file

» Use secure channel with server
– Then ask mirror server for file

» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

Client

Read File X

Here is hx = H(X)

Insecure
Data
Mirror

File X
Read X

File X File X

Server Lec 26.411/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Review: Private Key Cryptography
• Private Key (Symmetric) Encryption:

– Single key used for both encryption and decryption
• Plaintext: Unencrypted Version of message
• Ciphertext: Encrypted Version of message

• Important properties
– Can’t derive plain text from ciphertext (decode) without
access to key

– Can’t derive key from plain text and ciphertext
– As long as password stays secret, get both secrecy and
authentication

• Symmetric Key Algorithms: DES, Triple-DES, AES

Insecure
Transmission
(ciphertext)

Decrypt

Key

Encrypt

Key

Plaintext

PlaintextSPY CIA

Lec 26.511/30/05 Kubiatowicz CS162 ©UCB Fall 2005

• Idea: Kpublic can be made public, keep Kprivate private

• What about authentication?
– Use combination of private and public key
– Alice→Bob: [(I’m Alice)Aprivate Rest of message]Bpublic
– Provides restricted sender and receiver

• How does Alice know it was Bob who sent her Bpublic?
– Answer: Certificate Authority

» Examples: Verisign, Entrust, Etc.
– B goes to organization, presents identifying papers

» Organization signs B’s key: [Bpublic, H(Bpublic)CAprivate]
– Before we use Bpublic, ask B for certificate verifying key

» Check that signature over Bpublic produced by trusted
authority

Bprivate
Aprivate

Review: Public Key Encryption Details

Bpublic
Apublic

Insecure Channel

Insecure ChannelAlice Bob

Lec 26.611/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Goals for Today

• Use of Cryptographic Mechanisms
• Authorization Mechanisms
• Worms and Viruses

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Lec 26.711/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Cryptographic Summary
• Private Key Encryption (also Symmetric Key)

– Pros: Very Fast
» can encrypt at network speed (even without hardware)

– Cons: Need to distribute secret key to both parties
• Public Key Encryption (also Asymmetric Key)

– Pros: Can distribute keys in public
» Although need some sort of certificate authority: Often

called a Public Key Infrastructure (PKI)
– Cons: Very Slow

» 100—1000 times slower than private key encryption
• Session Key

– Randomly generated private key used for single session
– Often distributed via public key encryption

• Secure Hash
– Fixed length summary (digest) of data; security
properties make it effectively hard to spoof

• Message Authentication Code (MAC)
– Technique for using secure hash and session key to
verify individual packets (even at the IP level)

• Signature over Document
– Hash of document encrypted with private key

Lec 26.811/30/05 Kubiatowicz CS162 ©UCB Fall 2005

(pms)Ks

• SSL Web Protocol
– Port 443: secure http
– Use of public-key encryption
for key-distribution

• Server has a certificate signed by certificate authority
– Contains server info (organization, IP address, etc)
– Also contains server’s public key and expiration date

• Establishment of Shared, 48-byte “master secret”
– Client picks 28-byte random value nc to server
– Server returns its own 28-byte random value ns, plus its certificate certs
– Client verifies certificate by checking with public key of
certificate authority compiled into browser
» Also check expiration date

– Client picks 46-byte “premaster” secret (pms), encrypts
it with public key of server, and sends to server

– Now, both server and client have nc, ns, and pms
» Each can compute 48-byte master secret using one-way

and collision-resistant function on three values
» Random “nonces” nc and ns make sure master secret fresh

ns,certs

Security through SSL
nc

Lec 26.911/30/05 Kubiatowicz CS162 ©UCB Fall 2005

• How do we decide who is authorized
to do actions in the system?

• Access Control Matrix: contains
all permissions in the system
– Resources across top

» Files, Devices, etc…
– Domains in columns

» A domain might be a user or a
group of permissions

» E.g. above: User D3 can read F2 or execute F3
– In practice, table would be huge and sparse!

• Two approaches to implementation
– Access Control Lists: store permissions with each object

» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users

and permissions for each group
– Capability List: each process tracks objects has
permission to touch
» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has

access to, not each page has list of processes …

Authorization: Who Can Do What?

Lec 26.1011/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Administrivia

• MIDTERM II: Monday December 5th! (next Monday)
– 5:30-8:30pm, 10 Evans
– All material from last midterm and up to previous class
– Includes virtual memory

• Review Session:
– Thursday evening 6-8pm
– Location: 50 Birge

• Final Exam
– December 17th 12:30 – 3:30, 220 Hearst Gym
– Cover all topics of course

Lec 26.1111/30/05 Kubiatowicz CS162 ©UCB Fall 2005

How to perform Authorization for Distributed Systems?

• Issues: Are all user names in world unique?
– No! They only have small number of characters

» kubi@mit.edu → kubitron@lcs.mit.edu →
kubitron@cs.berkeley.edu

» However, someone thought their friend was kubi@mit.edu
and I got very private email intended for someone else…

– Need something better, more unique to identify person
• Suppose want to connect with any server at any time?

– Need an account on every machine! (possibly with
different user name for each account)

– OR: Need to use something more universal as identity
» Public Keys! (Called “Principles”)
» People are their public keys

Different
Authorization

Domains

Lec 26.1211/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Client 1
Domain 1

Distributed Access Control

• Distributed Access Control List (ACL)
– Contains list of attributes (Read, Write, Execute, etc)
with attached identities (Here, we show public keys)
» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

– ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

Server 1: Domain 2

File X
Owner Key:
0x22347EF…

File X
Owner Key:
0x22347EF…

Access Control List (ACL) for X:

R: Key: 0x546DFEFA34…
RW:Key: 0x467D34EF83…
RX: Group Key: 0xA2D3498672…

ACL verifier
Hash, Timestamp,
Signature (owner)

Server 2: Domain 3

Group ACL:
Key: 0xA786EF889A…
Key: 0x6647DBC9AC…

GACL verifier
Hash, Timestamp,
Signature (group)

(Re
ad

 X
)K

Ke
y:

0x
66

47
DB

C9
AC

…

Re
ad

Gr
ou

p

GA
CL

(da
ta)

Kse
rve

r

Lec 26.1311/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Analysis of Previous Scheme
• Positive Points:

– Identities checked via signatures and public keys
» Client can’t generate request for data unless they have

private key to go with their public identity
» Server won’t use ACLs not properly signed by owner of file

– No problems with multiple domains, since identities
designed to be cross-domain (public keys domain neutral)

• Revocation:
– What if someone steals your private key?

» Need to walk through all ACLs with your key and change…!
» This is very expensive

– Better to have unique string identifying you that people
place into ACLs
» Then, ask Certificate Authority to give you a certificate

matching unique string to your current public key
» Client Request: (request + unique ID)Cprivate; give server

certificate if they ask for it.
» Key compromise⇒must distribute “certificate revocation”,

since can’t wait for previous certificate to expire.
– What if you remove someone from ACL of a given file?

» If server caches old ACL, then person retains access!
» Here, cache inconsistency leads to security violations!

Lec 26.1411/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Analysis Continued
• Who signs the data?

– Or: How does the client know they are getting valid
data?

– Signed by server?
» What if server compromised? Should client trust server?

– Signed by owner of file?
» Better, but now only owner can update file!
» Pretty inconvenient!

– Signed by group of servers that accepted latest update?
» If must have signatures from all servers ⇒ Safe, but one

bad server can prevent update from happening
» Instead: ask for a threshold number of signatures
» Byzantine agreement can help here

• How do you know that data is up-to-date?
– Valid signature only means data is valid older version
– Freshness attack:

» Malicious server returns old data instead of recent data
» Problem with both ACLs and data
» E.g.: you just got a raise, but enemy breaks into a server

and prevents payroll from seeing latest version of update
– Hard problem

» Needs to be fixed by invalidating old copies or having a
trusted group of servers (Byzantine Agrement?)

Lec 26.1511/30/05 Kubiatowicz CS162 ©UCB Fall 2005

How fine-grained should access control be?
• Example of the problem:

– Suppose you buy a copy of a new game from “Joe’s Game
World” and then run it.

– It’s running with your userid
» It removes all the files you own, including the project due

the next day…
• How can you prevent this?

– Have to run the program under some userid.
» Could create a second games userid for the user, which

has no write privileges.
» Like the “nobody” userid in UNIX – can’t do much

– But what if the game needs to write out a file recording
scores?
» Would need to give write privileges to one particular file

(or directory) to your games userid.
– But what about non-game programs you want to use,
such as Quicken?
» Now you need to create your own private quicken userid, if

you want to make sure tha the copy of Quicken you bought
can’t corrupt non-quicken-related files

– But – how to get this right??? Pretty complex…
Lec 26.1611/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Authorization Continued
• Principle of least privilege: programs, users, and

systems should get only enough privileges to perform
their tasks
– Very hard to do in practice

» How do you figure out what the minimum set of privileges
is needed to run your programs?

– People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows

• One solution: Signed Software
– Only use software from sources that you trust, thereby
dealing with the problem by means of authentication

– Fine for big, established firms such as Microsoft, since
they can make their signing keys well known and people
trust them
» Actually, not always fine: recently, one of Microsoft’s

signing keys was compromised, leading to malicious
software that looked valid

– What about new startups?
» Who “validates” them?
» How easy is it to fool them?

Lec 26.1711/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Involuntary Installation
• What about software loaded without your consent?

– Macros attached to documents (such as Microsoft Word)
– Active X controls (programs on web sites with potential
access to whole machine)

– Spyware included with normal products
• Active X controls can have access to the local machine

– Install software/Launch programs
• Sony Spyware (October 2005)

– About 50 recent CDs from Sony automatically install
software when you played them on Windows machines
» Called XCP (Extended Copy Protection)
» Modify operating system to prevent more than 3 copies

and to prevent uploading to itunesTM

– Side Effects:
» Reporting of private information to Sony
» Hiding of generic file names of form $sys_xxx; easy for

other virus writers to exploit
» Hard to remove (crashes machine if not done carefully)

– Vendors of virus protection software decide its spyware
» Computer Associates, Symantec, even Microsft

Lec 26.1811/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Enforcement
• Enforcer checks passwords, ACLs, etc

– Makes sure the only authorized actions take place
– Bugs in enforcer⇒things for malicious users to exploit

• In UNIX, superuser can do anything
– Because of coarse-grained access control, lots of stuff
has to run as superuser in order to work

– If there is a bug in any one of these programs, you lose!
• Paradox

– Bullet-proof enforcer
» Only known way is to make enforcer as small as possible
» Easier to make correct, but simple-minded protection model

– Fancy protection
» Tries to adhere to principle of least privilege
» Really hard to get right

• Same argument for Java or C++: What do you make
private vs public?
– Hard to make sure that code is usable but only necessary
modules are public

– Pick something in middle? Get bugs and weak protection!

Lec 26.1911/30/05 Kubiatowicz CS162 ©UCB Fall 2005

State of the World
• State of the World in Security

– Authentication: Encryption
» But almost no one encrypts or has public key identity

– Authorization: Access Control
» But many systems only provide very coarse-grained access
» In UNIX, need to turn off protection to enable sharing

– Enforcement: Kernel mode
» Hard to write a million line program without bugs
» Any bug is a potential security loophole!

• Some types of security problems
– Abuse of privilege

» If the superuser is evil, we’re all in trouble/can’t do anything
» What if Kevin Mullaly (in charge of instructional resources)

went crazy and deleted everybody’s files (and backups)???
– Imposter: Pretend to be someone else

» Example: in unix, can set up an .rhosts file to allow logins
from one machine to another without retyping password

» Allows “rsh” command to do an operation on a remote node
» Result: send rsh request, pretending to be from trusted

user→install .rhosts file granting
Lec 26.2011/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Other Security Problems
• Virus:

– A piece of code that attaches itself to a program or file
so it can spread from one computer to another, leaving
infections as it travels

– Most attached to executable files, so don’t get
activated until the file is actually executed

– Once caught, can hide in boot tracks, other files, OS,
• Worm:

– Similar to a virus, but capable of traveling on its own
– Takes advantage of file or information transport
features

– Because it can replicate itself, your computer might send
out hundreds or thousands of copies of itself

• Trojan Horse:
– Named after huge wooden horse in Greek mythology
given as gift to enemy; contained army inside

– At first glance appears to be useful software but does
damage once installed or run on your computer

Lec 26.2111/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Security Problems: Buffer-overflow Condition
#define BUFFER SIZE 256
int process(int argc,

char *argv[])
{
char buffer[BUFFER SIZE];
if (argc < 2)

return -1;
else {

strcpy(buffer,argv[1]);
return 0;

}
} Before attack After attack

• Technique exploited by many network attacks
– Anytime input comes from network request and is not
checked for size

– Allows execution of code with same privileges as running
program – but happens without any action from user!

• How to prevent?
– Don’t code this way! (ok, wishful thinking)
– New mode bits in Intel, Amd, and Sun processors

» Put in page table; says “don’t execute code in this page”
Lec 26.2211/30/05 Kubiatowicz CS162 ©UCB Fall 2005

The Morris Internet Worm

• Internet worm (Self-reproducing)
– Author Robert Morris, a first-year Cornell grad student
– Launched close of Workday on November 2, 1988
– Within a few hours of release, it consumed resources to
the point of bringing down infected machines

• Techniques
– Exploited UNIX networking features (remote access)
– Bugs in finger (buffer overflow) and sendmail programs
(debug mode allowed remote login)

– Dictionary lookup-based password cracking
– Grappling hook program uploaded main worm program

Lec 26.2311/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Some other Attacks
• Trojan Horse Example: Fake Login

– Construct a program that looks like normal login program
– Gives “login:” and “password:” prompts

» You type information, it sends password to someone, then
either logs you in or says “Permission Denied” and exits

– In Windows, the “ctrl-alt-delete” sequence is supposed to
be really hard to change, so you “know” that you are
getting official login program

• Is SONY XCP a Trojan horse?
• Salami attack: Slicing things a little at a time

– Steal or corrupt something a little bit at a time
– E.g.: What happens to partial pennies from bank interest?

» Bank keeps them! Hacker re-programmed system so that
partial pennies would go into his account.

» Doesn’t seem like much, but if you are large bank can be
millions of dollars

• Eavesdropping attack
– Tap into network and see everything typed
– Catch passwords, etc
– Lesson: never use unencrypted communication!

Lec 26.2411/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Network Security Through Firewall
• How do I minimize the damage when security fails?

– For instance: I make a mistake in the specification
– Or: A bug lets something run that shouldn’t?

• Firewall: Examines every packet to/from public internet
– Can disable all traffic to/from certain ports
– Can route certain traffic to DMZ (De-Militarized Zone)

» Semi-secure area separate from critical systems
– Can do network address translation

» Inside network, computers have private IP addresses
» Connection from inside→outside is translated
» E.g. [10.0.0.2,port 2390] → [169.229.60.38,port 80]

[12.4.35.2,port 5592] → [169.229.60.38,port 80]

Lec 26.2511/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Ken Thompson’s self-replicating program
• Bury Trojan horse in binaries, so no evidence in source

– Replicates itself to every UNIX system in the world and
even to new UNIX’s on new platforms. No visible sign.

– Gave Ken Thompson ability to log into any UNIX system
• Two steps: Make it possible (easy); Hide it (tricky)
• Step 1: Modify login.c

A: if (name = “ken”)
don’t check password
log in as root

– Easy to do but pretty blatant! Anyone looking will see.
• Step 2: Modify C compiler

– Instead of putting code in login.c, put in compiler:
B: if see trigger1

insert A into input stream

– Whenever compiler sees trigger1 (say /*gobbledygook*/),
puts A into input stream of compiler

– Now, don’t need A in login.c, just need trigger1

Lec 26.2611/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Self Replicating Program Continued
• Step 3: Modify compiler source code:

C: if see trigger2
insert B+C into input stream

– Now compile this new C compiler to produce binary
• Step 4: Self-replicating code!

– Simply remove statement C in compiler source code and
place “trigger2” into source instead
» As long as existing C compiler is used to recompile the C

compiler, the code will stay into the C compiler and will
compile back door into login.c

» But no one can see this from source code!
• When porting to new machine/architecture, use

existing C compiler to generate cross-compiler
– Code will migrate to new architecture!

• Lesson: never underestimate the cleverness of
computer hackers for hiding things!

Lec 26.2711/30/05 Kubiatowicz CS162 ©UCB Fall 2005

Conclusion
• Distributed identity

– Use cryptography (Public Key, Signed by PKI)
• Use of Public Key Encryption to get Session Key

– Can send encrypted random values to server, now share
secret with server

– Used in SSL, for instance
• Authorization

– Abstract table of users (or domains) vs permissions
– Implemented either as access-control list or capability list

• Distributed ACL
– Can include public keys or unique identifying strings
– Sign all requests; server checks signature against ACL

• Issues with distributed storage example
– Revocation: How to remove permissions from someone?
– Integrity: How to know whether data is valid
– Freshness: How to know whether data is recent

• Buffer-Overrun Attack: exploit bug to execute code

