CS162 Operating Systems and Systems Programming Lecture 26

Protection and Security in Distributed Systems II

November 30, 2005 Prof. John Kubiatowicz http://inst.eecs.berkeley.edu/~cs162

Review: Authentication: Identifying Users

\cdot How to identify users to the system?

- Passwords

- » Shared secret between two parties
- \gg Since only user knows password, someone types correct password \Rightarrow must be user typing it
- » Very common technique

- Smart Cards

- » Electronics embedded in card capable of providing long passwords or satisfying challenge → response queries
- » May have display to allow reading of password
- » Or can be plugged in directly; several credit cards now in this category

- Biometrics

11/30/05

11/30/05

- » Use of one or more intrinsic physical or behavioral traits to identify someone
- » Examples: fingerprint reader, palm reader, retinal scan

Kubiatowicz CS162 ©UCB Fall 2005

Review: Use of Hash Functions

- Let $h_1 = H(M_1)$; hash function H is considered secure if:
 - It is infeasible to find M_2 with $h_1=H(M_2)$; i.e. can't easily find other message with same digest as given message.
 - It is infeasible to locate two messages, m_1 and m_2 , which "collide", i.e. for which $H(m_1) = H(m_2)$
- Can we use hashing to securely reduce load on server?
 - First, ask server for digest of desired file » Use secure channel with server
 - Then ask mirror server for file
 - » Can be insecure channel
 - » Check digest of result and catch faulty or malicious mirrors

Review: Private Key Cryptography

- Private Key (Symmetric) Encryption:
- Single key used for both encryption and decryption
- Plaintext: Unencrypted Version of message
- · Ciphertext: Encrypted Version of message

- Important properties
 - Can't derive plain text from ciphertext (decode) without access to key
 - Can't derive key from plain text and ciphertext
 - As long as password stays secret, get both secrecy and authentication
- Symmetric Key Algorithms: DES, Triple-DES, AES

Kubiatowicz CS162 ©UCB Fall 2005

Lec 26.4

- Pros: Very Fast

» can encrypt at network speed (even without hardware)

- Cons: Need to distribute secret key to both parties
- Public Key Encryption (also Asymmetric Key)
 - Pros: Can distribute keys in public
 - » Although need some sort of certificate authority: Often called a Public Key Infrastructure (PKI)
 - Cons: Very Slow
 - » 100—1000 times slower than private key encryption
- Session Key
 - Randomly generated private key used for single session
 - Often distributed via public key encryption
- Secure Hash
 - Fixed length summary (digest) of data; security properties make it effectively hard to spoof
- Message Authentication Code (MAC)
 - Technique for using secure hash and session key to verify individual packets (even at the IP level)
- Signature over Document
 - -Hash of document encrypted with private key

11/30/05

Kubiatowicz CS162 ©UCB Fall 2005

Lec 26.7

- - Port 443: secure http
 - Use of public-key encryption for key-distribution

- Server has a certificate signed by certificate authority
 - Contains server info (organization, IP address, etc)
 - Also contains server's public key and expiration date
- Establishment of Shared, 48-byte "master secret"
 - Client picks 28-byte random value n, to server
 - Server returns its own 28-byte random value n., plus its certificate cert.
 - Client verifies certificate by checking with public key of certificate authority compiled into browser » Also check expiration date
 - Client picks 46-byte "premaster" secret (pms), encrypts it with public key of server, and sends to server
 - Now, both server and client have n_c, n_s, and pms » Each can compute 48-byte master secret using one-way and collision-resistant function on three values

» Random "nonces" n and n make sure master secret fresh 11/30/05

Authorization: Who Can Do What?

- How do we decide who is authorized to do actions in the system? Access Control Matrix: contains
 - all permissions in the system
 - Resources across top
 - » Files, Devices, etc...
 - Domains in columns
 - » A domain might be a user or a group of permissions
 - » E.g. above: User D_3 can read F_2 or execute F_3
 - In practice, table would be huge and sparse!

Two approaches to implementation

- Access Control Lists: store permissions with each object » Still might be lots of users!
 - » UNIX limits each file to: r,w,x for owner, group, world
 - » More recent systems allow definition of groups of users and permission's for each group
- Capability List: each process tracks objects has permission to touch
 - » Popular in the past, idea out of favor today
 - » Consider page table: Each process has list of pages it has access to, not each page has list of processes Lec 26.9

```
11/30/05
```

```
Kubiatowicz CS162 ©UCB Fall 2005
```


Administrivia

- MIDTERM II: Monday December 5th! (next Monday) - 5:30-8:30pm, 10 Evans
 - All material from last midterm and up to previous class
 - Includes virtual memory
- · Review Session:
 - Thursday evening 6-8pm
 - Location: 50 Birge
- Final Exam
 - December 17th 12:30 3:30, 220 Hearst Gym
 - Cover all topics of course

```
11/30/05
```

Kubiatowicz CS162 ©UCB Fall 2005

Lec 26,10

How to perform Authorization for Distributed Systems?

Different Authorization Domains

- Issues: Are all user names in world unique?
 - No! They only have small number of characters » kubi@mit.edu → kubitron@lcs.mit.edu →
 - kubitron@cs.berkelev.edu
 - » However, someone thought their friend was kubi@mit.edu and I got very private email intended for someone else...
 - Need something better, more unique to identify person
- Suppose want to connect with any server at any time?
 - Need an account on every machine! (possibly with different user name for each account)
 - OR: Need to use something more universal as identity » Public Keys! (Called "Principles")

```
» People are their public keys
                 Kubiatowicz CS162 ©UCB Fall 2005
```

11/30/05

Lec 26,11

Distributed Access Control

11/30/05

Lec 26,12

Analysis of Previous Scheme

- Positive Points:
 - Identities checked via signatures and public keys
 - » Client can't generate request for data unless they have private key to go with their public identity
 - » Server won't use ACLs not properly signed by owner of file
 - No problems with multiple domains, since identities
- designed to be cross-domain (public keys domain neutral) • Revocation:
 - What if someone steals your private key?
 - » Need to walk through all ACL's with your key and change...! » This is very expensive
 - Better to have unique string identifying you that people place into ACLs
 - » Then, ask Certificate Authority to give you a certificate matching unique string to your current public key
 - » Client Request: (request + unique ID)^{Cprivate}; give server certificate if they ask for it.
 - » Key compromise⇒must distribute "certificate revocation", since can't wait for previous certificate to expire.
 - What if you remove someone from ACL of a given file? » If server caches old ACL, then person retains access!
 - » Here, cache inconsistency leads to security violations!

11/30/05

- Kubiatowicz CS162 ©UCB Fall 2005
- Lec 26.13

Analysis Continued

- Who signs the data?
 - Or: Flow does the client know they are getting valid data?
 - Signed by server?

» What if server compromised? Should client trust server?

- Signed by owner of file?
 - » Better, but now only owner can update file!
 - » Pretty inconvenient!
- Signed by group of servers that accepted latest update?
 » If must have signatures from all servers ⇒ Safe, but one
 - bad server can prevent update from happening » Instead: ask for a threshold number of signatures
 - » Byzantine agreement can help here
- How do you know that data is up-to-date?
 - Valid signature only means data is valid older version
 - Freshness attack:
 - » Malicious server returns old data instead of recent data
 - » Problem with both ACLs and data
 - » E.g.: you just got a raise, but enemy breaks into a server and prevents payroll from seeing latest version of update
 - Hard problem

11/30/05

- » Needs to be fixed by invalidating old copies or having a
 - trusted group of servers (Byzantine Agrement?)

How fine-grained should access control be?

- Example of the problem:
 - Suppose you buy a copy of a new game from "Joe's Game World" and then run it
 - It's running with your userid
 - » It removes all the files you own, including the project due the next day...
- How can you prevent this?
 - Have to run the program under some userid.
 - » Could create a second *games* userid for the user, which has no write privileges.
 - » Like the "nobody" userid in UNIX can't do much
 - But what if the game needs to write out a file recording scores?
 - » Would need to give write privileges to one particular file (or directory) to your *games* userid.
 - But what about non-game programs you want to use, such as Quicken?
 - » Now you need to create your own private *quicken* userid, if you want to make sure tha the copy of Quicken you bought can't corrupt non-quicken-related files

- But - how to get this right??? Pretty complex... 11/30/05 Kubiatowicz C5162 ©UCB Fall 2005 Lec 26.15

Authorization Continued

- Principle of least privilege: programs, users, and systems should get only enough privileges to perform their tasks
 - Very hard to do in practice

» How do you figure out what the minimum set of privileges is needed to run your programs?

- People often run at higher privilege then necessary » Such as the "administrator" privilege under windows
- One solution: Signed Software
 - Only use software from sources that you trust, thereby dealing with the problem by means of authentication
 - Fine for big, established firms such as Microsoft, since they can make their signing keys well known and people trust them
 - » Actually, not always fine: recently, one of Microsoft's signing keys was compromised, leading to malicious software that looked valid
 - What about new startups?
 - » Who "validates" them?
 - » How easy is it to fool them?

Involuntary Installation

	Involuntary Installation			Enjo
 What abou Macros o Active X access t Spyware Active X o Install s Sony Spyw About 50 software × Calleo × Modifiand to Side Eff × Reportion × Hiding other × Hard Vendors × Composition 	It software loaded without your of attached to documents (such as Mic controls (programs on web sites with o whole machine) included with normal products controls can have access to the lo oftware/Launch programs vare (October 2005) O recent CDs from Sony automatical when you played them on Windows I XCP (Extended Copy Protection) by operating system to prevent more that o prevent uploading to itunes TM tects: ting of private information to Sony of generic file names of form \$sys_xx virus writers to exploit to remove (crashes machine if not done of virus protection software decide uter Associates, Symantec, even Micros	consent? rosoft Word) th potential ocal machine lly install machines an 3 copies xx; easy for e carefully) its spyware	 Enforcer ch Makes sur Bugs in er In UNIX, s Because of has to rur If there if Paradox Bullet-provementation Nonly kr	ecks passwords the only author forcer⇒things f uperuser can d f coarse-grained as superuser in s a bug in any o of enforcer town way is to ma to make correct, tection o adhere to princi- hard to get right uent for Java o ublic? the sure that correct re public thing in middle?
11/30/05	Kubiatowicz CS162 ©UCB Fall 2005	Lec 26.17	11/30/05	- Kubiatowicz CS

Fnforcement

- s. ACLs. etc
 - orized actions take place
 - for malicious users to exploit
- lo anything
 - d access control, lots of stuff n order to work
 - one of these programs, you lose!
 - ke enforcer as small as possible
 - but simple-minded protection model
 - ple of least privilege
- or C++: What do you make
 - code is usable but only necessary
 - Get bugs and weak protection! 5162 ©UCB Fall 2005 Lec 26.18

State of the World

State of the World in Security

- Authentication: Encryption

- » But almost no one encrypts or has public key identity
- Authorization: Access Control
 - » But many systems only provide very coarse-grained access
 - » In UNIX, need to turn off protection to enable sharing

- Enforcement: Kernel mode

- » Hard to write a million line program without bugs
- » Any bug is a potential security loophole!

• Some types of security problems

- Abuse of privilege

- » If the superuser is evil, we're all in trouble/can't do anything
- » What if Kevin Mullaly (in charge of instructional resources) went crazy and deleted everybody's files (and backups)???
- Imposter: Pretend to be someone else
 - » Example: in unix, can set up an .rhosts file to allow logins from one machine to another without retyping password
 - » Allows "rsh" command to do an operation on a remote node
 - » Result: send rsh request, pretending to be from trusted user-install .rhosts file granting

Other Security Problems

- Virus:
 - A piece of code that attaches itself to a program or file so it can spread from one computer to another leaving infections as it travels
 - Most attached to executable files, so don't get activated until the file is actually executed
 - Once caught, can hide in boot tracks, other files, OS,
- Worm:
 - Similar to a virus, but capable of traveling on its own
 - Takes advantage of file or information transport features
 - Because it can replicate itself, your computer might send out hundreds or thousands of copies of itself
- Trojan Horse:
 - Named after huge wooden horse in Greek mythology given as gift to enemy; contained army inside
 - At first alance appears to be useful software but does damage once installed or run on your computer

Security Problems: Buffer-overflow Condition

- Technique exploited by many network attacks
 - Anytime input comes from network request and is not checked for size
 - Allows execution of code with same privileges as running program - but happens without any action from user!
- How to prevent?
 - Don't code this way! (ok, wishful thinking)
 - New mode bits in Intel, Amd, and Sun processors
- » Put in page table; says "don't execute code in this page" 11/30/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 26.21

The Morris Internet Worm

- Internet worm (Self-reproducing)
 - Author Robert Morris, a first-year Cornell grad student
 - Launched close of Workday on November 2, 1988
 - Within a few hours of release, it consumed resources to the point of bringing down infected machines
- Techniques
 - Exploited UNIX networking features (remote access)
 - Buas in *finger* (buffer overflow) and *sendmail* programs (debug mode allowed remote login)
 - Dictionary lookup-based password cracking

- Grappling hook program uploaded main worm program 11/30/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 26.22

Some other Attacks

- Trojan Horse Example: Fake Login
 - Construct a program that looks like normal login program
 - Gives "login:" and "password:" prompts
 - » You type information, it sends password to someone, then either logs you in or says "Permission Denied" and exits
 - In Windows, the "ctrl-alt-delete" sequence is supposed to be really hard to change, so you "know" that you are getting official login program
- Is SONY XCP a Trojan horse?
- · Salami attack: Slicing things a little at a time
 - Steal or corrupt something a little bit at a time
 - E.g.: What happens to partial pennies from bank interest? » Bank keeps them! Hacker re-programmed system so that partial pennies would go into his account.
 - » Doesn't seem like much, but if you are large bank can be millions of dollars
- Eavesdropping attack
 - Tap into network and see everything typed
 - Catch passwords, etc
- Lesson: never use unencrypted communication!

Lec 26,23

Network Security Through Firewall

- How do I minimize the damage when security fails?
 - For instance: I make a mistake in the specification
 - Or: A bug lets something run that shouldn't?
- Firewall: Examines every packet to/from public internet
 - Can disable all traffic to/from certain ports
 - Can route certain traffic to DMZ (De-Militarized Zone) » Semi-secure area separate from critical systems
 - Can do network address translation
 - » Inside network, computers have private IP addresses
 - » Connection from inside—outside is translated
 - » E.g. $[10.0.0.2, \text{port } 2390] \rightarrow [169.229.60.38, \text{port } 80]$ $[12.4.35.2, \text{port } 5592] \rightarrow [169.229.60.38, \text{port } 80]$

11/30/05

Lec 26,24

Ken Thompson's self-replicating program

 Bury Trojan horse in binaries, so no evidence in source Replicates itself to every UNIX system in the world and even to new UNIX's on new platforms. No visible sign. Gave Ken Thompson ability to log into any UNIX system Two steps: Make it possible (easy); Hide it (tricky) Step 1: Modify login.c A: if (name = "ken") don't check password log in as root Easy to do but pretty blatant! Anyone looking will see. Step 2: Modify C compiler Instead of putting code in login.c, put in compiler: B: if see trigger1 insert A into input stream Whenever compiler sees trigger1 (say /*gobbledygook*/), puts A into input stream of compiler 	 Step 3: Modify compiler source code: C: if see trigger2 insert B+C into input stream Now compile this new C compiler to produce binary Step 4: Self-replicating code! Simply remove statement C in compiler source code and place "trigger2" into source instead » As long as existing C compiler is used to recompile the C compiler, the code will stay into the C compiler and will compile back door into login.c » But no one can see this from source code! When porting to new machine/architecture, use existing C compiler to generate cross-compiler Code will migrate to new architecture! Lesson: never underestimate the cleverness of computer hackers for hiding things!
- Now, don't need a in login.c, just need triggeri	

Self Replicating Program Continued

11/30/05	Kubiatowicz CS162 ©UCB Fall 2005	Lec 26.25	11/30/05	Kubiatowicz CS162 ©UCB Fall 2005	Lec 26.26
	Conclusion				
 Distributed Use cryp Use of Pub 	l identity tography (Public Key, Signed by PKI lic Key Encryption to get Session	;) ;)			

- of Public Key Encryption to get Session Key
 - Can send encrypted random values to server, now share secret with server
 - Used in SSL, for instance
- Authorization

- Abstract table of users (or domains) vs permissions
- Implemented either as access-control list or capability list
- Distributed ACL
 - Can include public keys or unique identifying strings
 - Sign all requests; server checks signature against ACL
- Issues with distributed storage example
 - Revocation: How to remove permissions from someone?
 - Integrity: How to know whether data is valid
 - Freshness: How to know whether data is recent
- Buffer-Overrun Attack: exploit bug to execute code Lec 26. Lec 26,27