Goals for Today

CS162 Operating Systems and Systems Programming Lecture 27

Peer-to-peer Systems and Other Topics

December 7th, 2005 Prof. John Kubiatowicz http://inst.eecs.berkeley.edu/~cs162

- A couple of requested topics
 - Windows vs. Linux
 - Trusted Computing
- · Peer-to-Peer Systems
 - OceanStore

Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne

12/07/05

Kubiatowicz CS162 ©UCB Fall 2005

Lec 27.2

Requests for Final topics

- · Some topics people requested:
 - More about device drivers
 - Xbox/Playstation/gamecube/etc operating systems
 - Windows vs Linux
 - Trusted computing platforms
- · About Device Drivers
 - Well, very complex topic.
 - Documentation associated with various operating systems » Many similarities, many differences
 - Good place to start:
 - » Chapter 6 of "The design and Implementation of the 4.4 BSD Operating System" (on reserve for this class)
- Xbox vs Playstation etc
 - Well, most of these are custom OSs.
 - » Original Xbox ran modified version of Window 2000
 - » New Xbox 360 rumored to run modified version of original Xbox OS (i.e. a modified² version of Windows 2000)
 - Most important property: Real Time scheduling

Windows vs Linux

• Windows came from personal computer domain - Add-on to IBM PC providing a windowing user interface » Became "good at" doing graphical interfaces - Didn't have protection until Windows NT » Multiple users supported (starting with Window NT), but can't necessarily have multiple GUIs running at same time - Product differentiation model: » Purchase separate products to get email, web servers, file servers, compilers, debuggers... • Linux came from long line of UNIX Mainframe OSs - Targeted at high-performance computation and I/O » High performance servers » GUI historically lacking compared to Windows - Protection model from beginning » Multiple users supported at core of OS - Full function Mainframe OS: email, web servers, file servers, ftp servers, compilers, debuggers, etc.

Windows vs Linux

• Internal Structure is different

- Windows XP evolved from NT which was a microkernel

- » Core "executive" runs in protected mode
- » Many services run in user mode (Although Windowing runs inside kernel for performance)
- » Object-oriented design: communication by passing objects
- » Event registration model: many subsystems can ask for callbacks when events happen
- » Loadable modules for device drivers and system extension

- Linux Evolved from monolithic kernel

- » Many portions of kernel operate in same address space
- » Loadable modules for device drivers and system extension
- » Fewer layers \Rightarrow higher performance

Source Code development model

- Windows: closed code development

- » Must sign non-disclosure to get access to source code
- » "Cathedral" model of development: only Microsoft's developers produce code for Windows
- Linux: open development model
 - » All distributions make source code available to analyze
 - » "Bazaar" model of development: many on the net contribute

12/07/05

to making Linux distribution UCB Fall 2005

Windows vs Linux

- · Perceptions:
 - Windows has more bugs/is more vulnerable to viruses?
 - » True? Hard to say for sure
 - » More Windows systems \Rightarrow more interesting for hackers
 - Linux simpler to manage?
 - » True? Well, Windows has hidden info (e.g. registry)
 - » Linux has all configuration available in clear text
 - Microsoft is untrustworthy? Many distrust "the man"
 - » Quick to adopt things like Digital Rights Management (DRM)
 - » Quick to embrace new models of income such as software
 - rental which counter traditional understanding of software - Windows is slow?
 - » This definitely seemed to be true with earlier versions
 - » Less true now, but complexity may still get in way
- Why choose one over other?
 - Which has greater diversity of graphical programs? » Probably Windows
 - Which cheaper? Well, versions of Linux are "free
 - Which better for developing code and managing servers? » Probably Linux, although this is changing

12/07/05 » OS API (e.g. system calls) definitely seem simpler Lec 27.6

Trusted Computing

- Problem: Can't trust that software is correct
 - Viruses/Worms install themselves into kernel or system without users knowledge
 - Rootkit: software tools to conceal running processes, files or system data, which helps an intruder maintain access to a system without the user's knowledge
 - How do you know that software won't leak private information or further compromise user's access?
- A solution: What if there were a secure way to validate all software running on system?
 - Idea: Compute a cryptographic hash of BIOS, Kernel, crucial programs, etc.
 - Then, if hashes don't match, know have problem
- Further extension:
 - Secure attestation: ability to *prove* to a remote party that local machine is running correct software
 - Reason: allow remote user to avoid interacting with compromised system
- Challenge: How to do this in an unhackable way
 - Must have hardware components somewhere Kubiatowicz CS162 ©UCB Fall 2005


12/07/05

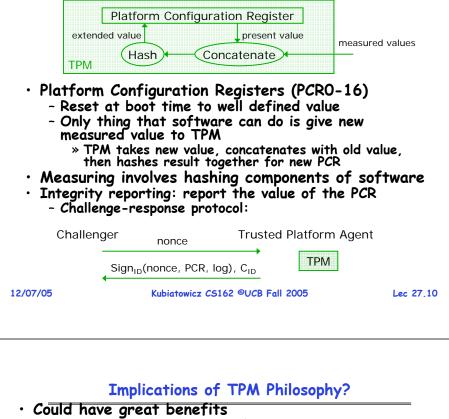
Lec 27.7

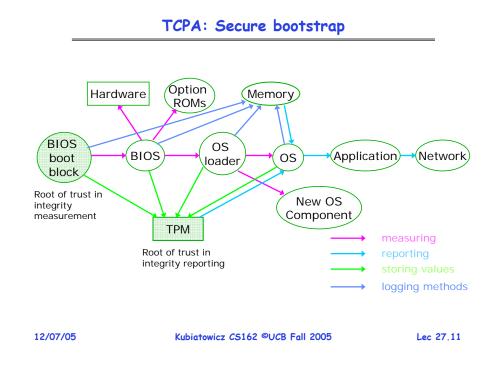
Lec 27.5

TCPA: Trusted Computing Platform Alliance

- Idea: Add a Trusted Platform Module (TPM)
- Founded in 1999: Compag, HP, IBM, Intel, Microsoft
- Currently more than 200 members
- Changes to platform
 - Extra: Trusted Platform Module (TPM)
 - Software changes: BIOS + OS
- Main properties
 - Secure bootstrap
 - Platform attestation
 - Protected storage
- Microsoft version:
 - Palladium
 - Note quite same: More extensive

(Used in IBM equipment)



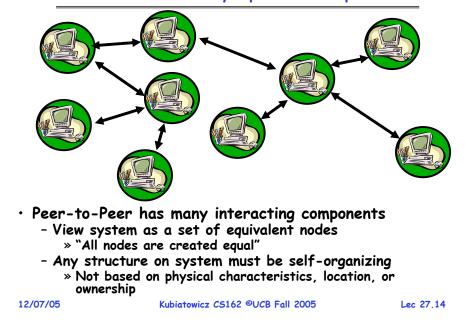

Functional Units	Non-volatile Memory	Volatile Memory
Random Num Generator	Endorsement Key (2048 Bits)	RSA Key Slot-0
SHA-1 Hash	Storage Root Key (2048 Bits)	RSA Key Slot-9
НМАС	Owner Auth Secret(160 Bits)	PCR-0 PCR-15
RSA Encrypt/ Decrypt		Key Handles
RSA Key Generation		Auth Session Handles

- Cryptographic operations ٠
 - Hashing: SHA-1, HMAC
 - Random number generator
 - Asymmetric key generation: RSA (512, 1024, 2048)
 - Asymmetric encryption/ decryption: RSA
 - Symmetric encryption/ decryption: DES, 3DES (AES)
- Tamper resistant (hash and key) storage 12/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Lec 27.9

- Prevent use of malicious software
- Parts of OceanStore would benefit (mention later)
- What does "trusted computing" really mean?
 - You are forced to trust hardware to be correct!
 - Could also mean that user is not trusted to install their own software
- Many in the security community have talked about potential abuses
 - These are only theoretical, but very possible
 - Software fixing
 - » What if companies prevent user from accessing their websites with non-Microsoft browser?
 - » Possible to encrypt data and only decrypt if software still matches \Rightarrow Could prevent display of .doc files except on Microsoft versions of software
 - Digital Rights Management (DRM):
 - » Prevent playing of music/video except on accepted players
 - » Selling of CDs that only play 3 times?

Kubiatowicz CS162 ©UCB Fall 2005


Administrivia

- Final Exam
 - 12:30 3:30, December 17th
 - 220 Hearst Gym
 - Bring 2 sheets of notes, double-sided
- \cdot Project 4
 - Due date moved to Friday, 12/9
- Midterm II

12/07/05

- Still Grading!

ents
í

Is Peer-to-peer new?

Kubiatowicz CS162 ©UCB Fall 2005

- Certainly doesn't seem like it
 - What about Usenet? News groups first truly decentralized system
 - DNS? Handles huge number of clients
 - Basic IP? Vastly decentralized, many equivalent routers
- One view: P2P is a reverting to the old internet
 - Remember? (Perhaps you don't)
 - Once upon a time, all members on the internet were trusted
 - » Every machine had an IP address.
 - » Every machine was a client and server.
 - » Many machines were routers and/or were equivalent
- But: peer-to-peer seems to mean something else
 - More about the scale (total number) of directly interacting components
 - Also, has a "bad reputation" (stealing music)

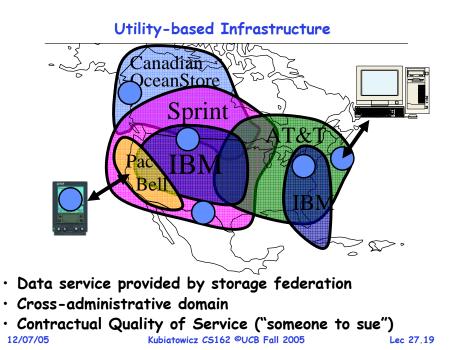
Lec 27,15

Lec 27,13

Research Community View of Peer-to-Peer

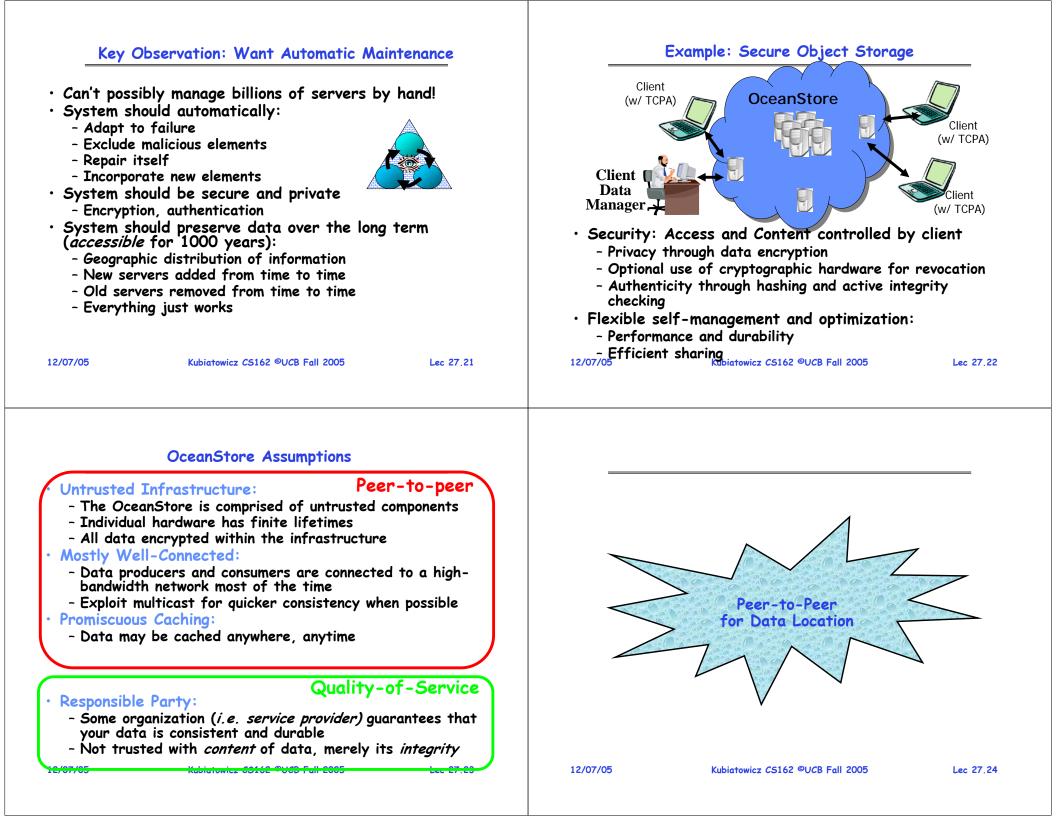
- · Old View:
 - A bunch of flakey high-school students stealing music
- New View:
 - A philosophy of systems design at extreme scale
 - Probabilistic design when it is appropriate
 - New techniques aimed at unreliable components
 - A rethinking (and recasting) of distributed algorithms
 - Use of Physical, Biological, and Game-Theoretic techniques to achieve guarantees Kubiatowicz CS162 ©UCB Fall 2005

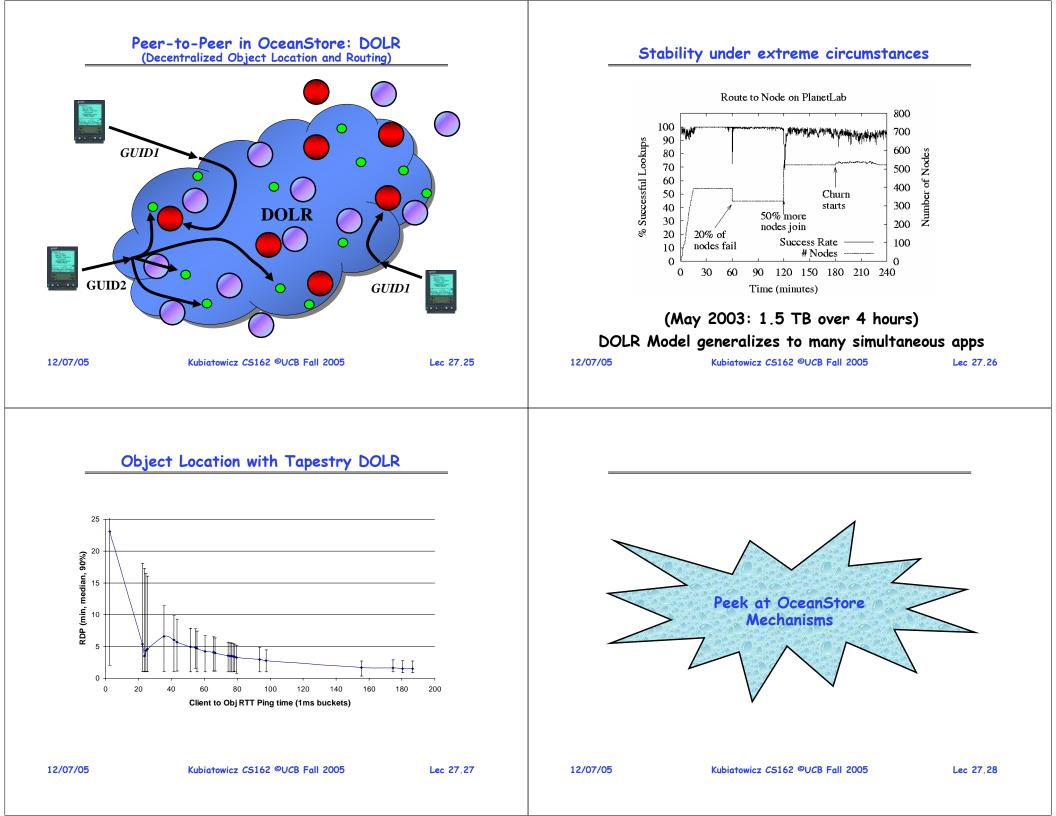
Why the hype???


- File Sharing: Napster (+Gnutella, KaZaa, etc)
 - Is this peer-to-peer? Hard to say.
 - Suddenly people could contribute to active global network » High coolness factor
 - Served a high-demand niche: online jukebox
- Anonymity/Privacy/Anarchy: FreeNet, Publis, etc
 - Libertarian dream of freedom from the man » (ISPs? Other 3-letter agencies)
 - Extremely valid concern of Censorship/Privacy
 - In search of copyright violators, RIAA challenging rights to privacy
- Computing: The Grid
 - Scavenge numerous free cycles of the world to do work
 - Seti@Home most visible version of this
- Management: Businesses
 - Businesses have discovered extreme distributed computing
 - Does P2P mean "self-configuring" from equivalent resources?
 - Bound up in "Autonomic Computing Initiative"?

```
12/07/05
```

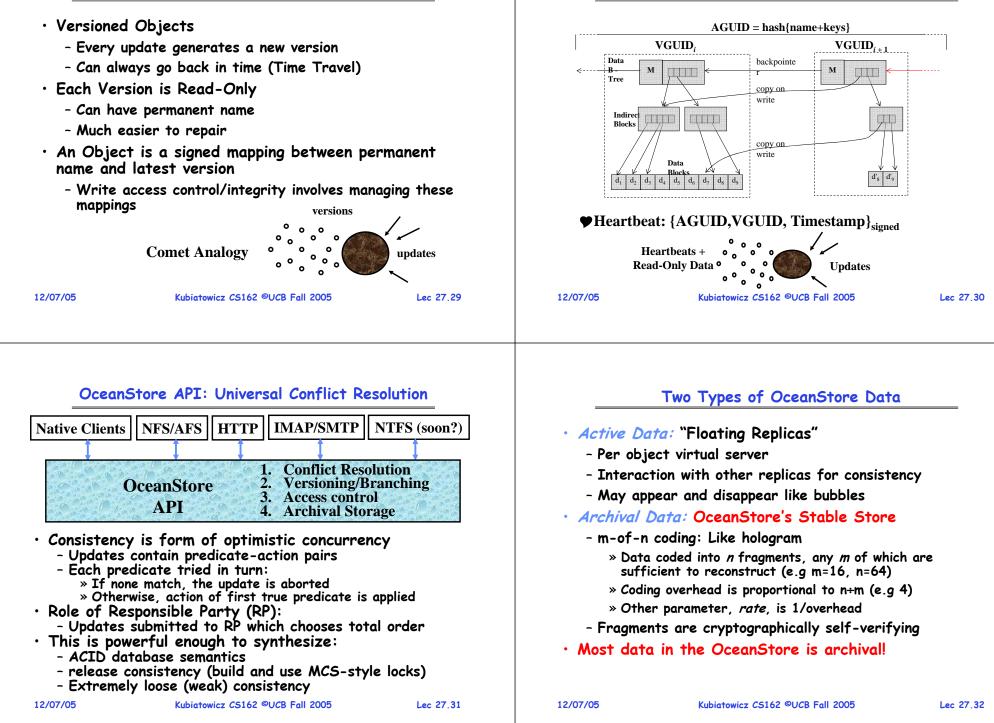
```
Kubiatowicz CS162 ©UCB Fall 2005
```

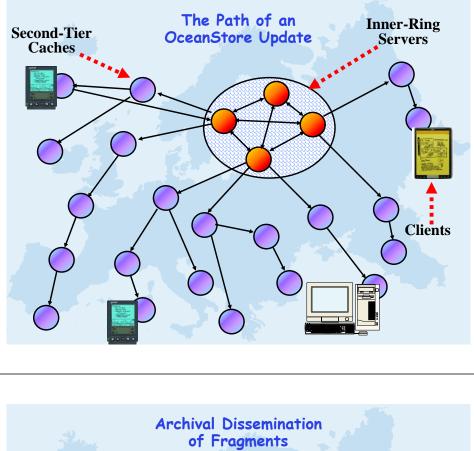





OceanStore: Everyone's Data, One Big Utility "The data is just out there"

- How many files in the OceanStore?
 - Assume 10^{10} people in world
 - Say 10,000 files/person (very conservative?)
 - So 10¹⁴ files in OceanStore!
 - If 1 gig files (ok, a stretch), get 1 mole of bytes! (or a Yotta-Byte if you are a computer person)

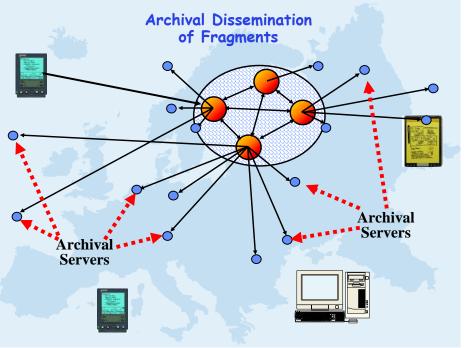

Truly impressive number of elements... ... but small relative to physical constants Aside: SIMS school: 1.5 Exabytes/year (1.5×10¹⁸)



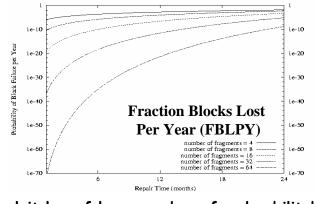
OceanStore Data Model

Self-Verifying Objects

Self-Organizing Soft-State Replication


- Simple algorithms for placing replicas on nodes in the interior
 - Intuition: locality properties of Tapestry help select positions for replicas
 - Tapestry helps associate parents and children to build multicast tree
- Preliminary results encouraging
- Current Investigations:
 - Game Theory
 - Thermodynamics

```
12/07/05
```

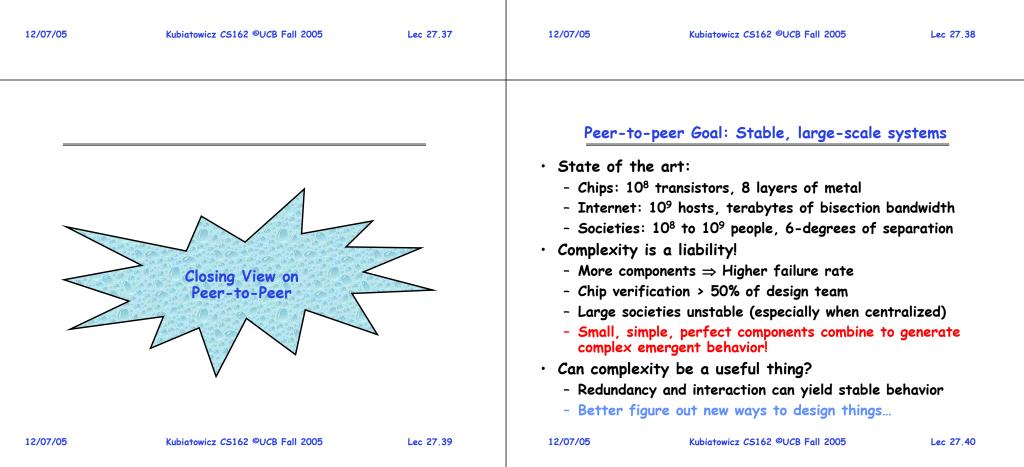

Kubiatowicz CS162 ©UCB Fall 2005

0

Lec 27.34

Aside: Why erasure coding? <u>High Durability/overhead ratio!</u>

- Exploit law of large numbers for durability!
- 6 month repair, FBLPY:
 - Replication: 0.03
 - Fragmentation: 10-35

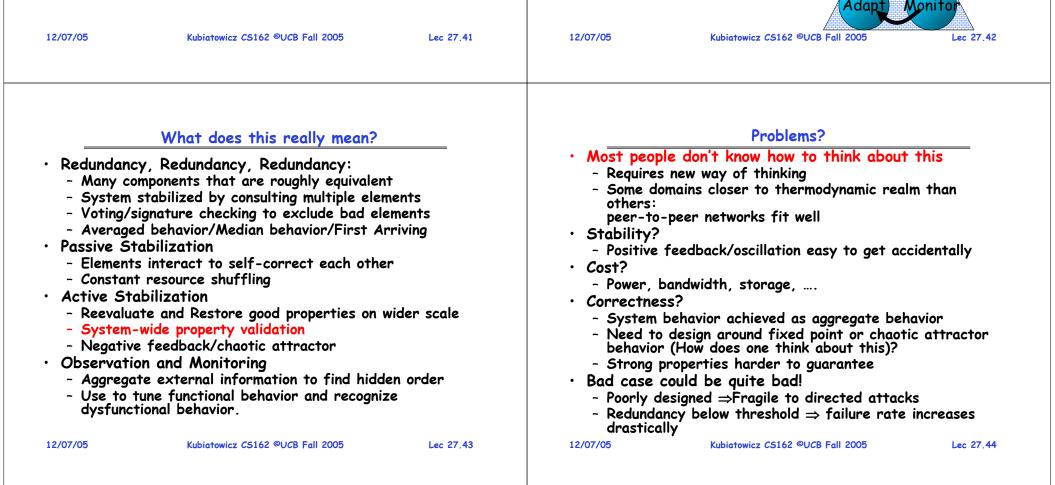

Extreme Durability?

- Exploiting Infrastructure for Repair
 - DOLR permits efficient heartbeat mechanism to notice:
 - » Servers going away for a while
 - » Or, going away forever!
 - Continuous sweep through data also possible
 - Erasure Code provides Flexibility in Timing
- Data transferred from physical medium to physical medium
 - No "tapes decaying in basement"
 - Information becomes fully Virtualized
- Thermodynamic Analogy: Use of Energy (supplied by servers) to Suppress Entropy

Differing Degrees of Responsibility

- Inner-ring provides quality of service
 - Handles of live data and write access control
 - Focus utility resources on this vital service
 - Compromised servers must be detected quickly
- Caching service can be provided by anyone
 - Data encrypted and self-verifying
 - Pay for service "Caching Kiosks"?
- Archival Storage and Repair
 - Read-only data: easier to authenticate and repair
 - Tradeoff redundancy for responsiveness
- · Could be provided by different companies!

Exploiting Numbers: Thermodynamic Analogy


- Large Systems have a variety of *latent order*
 - Connections between elements
 - Mathematical structure (erasure coding, etc)
 - Distributions peaked about some desired behavior
- Permits "Stability through Statistics"
 - Exploit the behavior of aggregates (redundancy)
- Subject to Entropy
 - Servers fail, attacks happen, system changes
- Requires continuous repair
 - Apply energy (i.e. through servers) to reduce entropy

Exploiting Numbers: The Biological Inspiration

- Biological Systems are built from (extremely) faulty components, yet:
 - They operate with a variety of component failures
 ⇒ Redundancy of function and representation
 - They have stable behavior \Rightarrow Negative feedback
 - They are self-tuning \Rightarrow Optimization of common case

)anc

- Introspective (Autonomic) Computing:
 - Components for performing
 - Components for monitoring and model building
 - Components for continuous adaptation

Conclusions

- Windows vs Linux:
 - Graphics vs Server?
 - Cathedral vs Bazaar
 - Controlled vs Free
- Trusted Computing
 - Hardware to allow software attestation, secure storage
- Peer to Peer
 - A philosophy of systems design at extreme scale
 - Probabilistic design when it is appropriate
 - New techniques aimed at unreliable components
 - A rethinking (and recasting) of distributed algorithms
 - Use of Physical, Biological, and Game-Theoretic techniques to achieve guarantees
- Let's give a hand to the TAs!
 - Clap, clap, clap, clap
- · Good Bye!
 - You guys have been great!

- 1	2/(77/	05
	_ / \	.,,	00

Kubiatowicz CS162 ©UCB Fall 2005

Lec 27.45