
CS162
Operating Systems and
Systems Programming

Lecture 27

Peer-to-peer Systems
and Other Topics

December 7th, 2005
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 27.212/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Goals for Today

• A couple of requested topics
– Windows vs. Linux
– Trusted Computing

• Peer-to-Peer Systems
– OceanStore

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Lec 27.312/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Requests for Final topics
• Some topics people requested:

– More about device drivers
– Xbox/Playstation/gamecube/etc operating systems
– Windows vs Linux
– Trusted computing platforms

• About Device Drivers
– Well, very complex topic.
– Documentation associated with various operating systems

» Many similarities, many differences
– Good place to start:

» Chapter 6 of “The design and Implementation of the 4.4
BSD Operating System” (on reserve for this class)

• Xbox vs Playstation etc
– Well, most of these are custom OSs.

» Original Xbox ran modified version of Window 2000
» New Xbox 360 rumored to run modified version of original

Xbox OS (i.e. a modified2 version of Windows 2000)
– Most important property: Real Time scheduling

» Ability to meet scheduling deadlines
Lec 27.412/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Windows vs Linux
• Windows came from personal computer domain

– Add-on to IBM PC providing a windowing user interface
» Became “good at” doing graphical interfaces

– Didn’t have protection until Windows NT
» Multiple users supported (starting with Window NT), but

can’t necessarily have multiple GUIs running at same time
– Product differentiation model:

» Purchase separate products to get email, web servers, file
servers, compilers, debuggers…

• Linux came from long line of UNIX Mainframe OSs
– Targeted at high-performance computation and I/O

» High performance servers
» GUI historically lacking compared to Windows

– Protection model from beginning
» Multiple users supported at core of OS

– Full function Mainframe OS: email, web servers, file
servers, ftp servers, compilers, debuggers, etc.

Lec 27.512/07/05 Kubiatowicz CS162 ©UCB Fall 2005

• Internal Structure is different
– Windows XP evolved from NT which was a microkernel

» Core “executive” runs in protected mode
» Many services run in user mode (Although Windowing runs

inside kernel for performance)
» Object-oriented design: communication by passing objects
» Event registration model: many subsystems can ask for

callbacks when events happen
» Loadable modules for device drivers and system extension

– Linux Evolved from monolithic kernel
» Many portions of kernel operate in same address space
» Loadable modules for device drivers and system extension
» Fewer layers ⇒ higher performance

• Source Code development model
– Windows: closed code development

» Must sign non-disclosure to get access to source code
» “Cathedral” model of development: only Microsoft’s

developers produce code for Windows
– Linux: open development model

» All distributions make source code available to analyze
» “Bazaar” model of development: many on the net contribute

to making Linux distribution

Windows vs Linux

Lec 27.612/07/05 Kubiatowicz CS162 ©UCB Fall 2005

• Perceptions:
– Windows has more bugs/is more vulnerable to viruses?

» True? Hard to say for sure
» More Windows systems ⇒ more interesting for hackers

– Linux simpler to manage?
» True? Well, Windows has hidden info (e.g. registry)
» Linux has all configuration available in clear text

– Microsoft is untrustworthy? Many distrust “the man”
» Quick to adopt things like Digital Rights Management (DRM)
» Quick to embrace new models of income such as software

rental which counter traditional understanding of software
– Windows is slow?

» This definitely seemed to be true with earlier versions
» Less true now, but complexity may still get in way

• Why choose one over other?
– Which has greater diversity of graphical programs?

» Probably Windows
– Which cheaper? Well, versions of Linux are “free
– Which better for developing code and managing servers?

» Probably Linux, although this is changing
» OS API (e.g. system calls) definitely seem simpler

Windows vs Linux

Lec 27.712/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Trusted Computing
• Problem: Can’t trust that software is correct

– Viruses/Worms install themselves into kernel or system
without users knowledge

– Rootkit: software tools to conceal running processes, files
or system data, which helps an intruder maintain access
to a system without the user's knowledge

– How do you know that software won’t leak private
information or further compromise user’s access?

• A solution: What if there were a secure way to validate
all software running on system?
– Idea: Compute a cryptographic hash of BIOS, Kernel,
crucial programs, etc.

– Then, if hashes don’t match, know have problem
• Further extension:

– Secure attestation: ability to prove to a remote party
that local machine is running correct software

– Reason: allow remote user to avoid interacting with
compromised system

• Challenge: How to do this in an unhackable way
– Must have hardware components somewhere

Lec 27.812/07/05 Kubiatowicz CS162 ©UCB Fall 2005

TCPA: Trusted Computing Platform Alliance

• Idea: Add a Trusted Platform Module (TPM)
• Founded in 1999: Compaq, HP, IBM, Intel, Microsoft
• Currently more than 200 members
• Changes to platform

– Extra: Trusted Platform Module (TPM)
– Software changes: BIOS + OS

• Main properties
– Secure bootstrap
– Platform attestation
– Protected storage

• Microsoft version:
– Palladium
– Note quite same: More extensive
hardware/software system

ATMEL TPM Chip
(Used in IBM equipment)

Lec 27.912/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Trusted Platform Module

• Cryptographic operations
– Hashing: SHA-1, HMAC
– Random number generator
– Asymmetric key generation: RSA (512, 1024, 2048)
– Asymmetric encryption/ decryption: RSA
– Symmetric encryption/ decryption: DES, 3DES (AES)

• Tamper resistant (hash and key) storage

Volatile
Memory

Non-volatile
Memory

Functional
Units

RSA Key Slot-0
…

RSA Key Slot-9

PCR-0
…
PCR-15

Auth Session
Handles

Key Handles

Owner Auth
Secret(160 Bits)

Storage Root Key
(2048 Bits)

Endorsement Key
(2048 Bits)

RSA Encrypt/
Decrypt

SHA-1
Hash

Random Num
Generator

HMAC

RSA Key
Generation

Lec 27.1012/07/05 Kubiatowicz CS162 ©UCB Fall 2005

TCPA: PCR Reporting Value

• Platform Configuration Registers (PCR0-16)
– Reset at boot time to well defined value
– Only thing that software can do is give new
measured value to TPM
» TPM takes new value, concatenates with old value,

then hashes result together for new PCR
• Measuring involves hashing components of software
• Integrity reporting: report the value of the PCR

– Challenge-response protocol:

Platform Configuration Register

Hash Concatenate

extended value present value
measured values

TPM

Challenger Trusted Platform Agentnonce

SignID(nonce, PCR, log), CID
TPM

Lec 27.1112/07/05 Kubiatowicz CS162 ©UCB Fall 2005

TCPA: Secure bootstrap

BIOS
boot
block

BIOS
OS

loader OS Application

Option
ROMs

TPM

Hardware

Network

Memory

New OS
Component

Root of trust in
integrity
measurement

Root of trust in
integrity reporting

measuring
reporting
storing values

logging methods

Lec 27.1212/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Implications of TPM Philosophy?
• Could have great benefits

– Prevent use of malicious software
– Parts of OceanStore would benefit (mention later)

• What does “trusted computing” really mean?
– You are forced to trust hardware to be correct!
– Could also mean that user is not trusted to install
their own software

• Many in the security community have talked about
potential abuses
– These are only theoretical, but very possible
– Software fixing

» What if companies prevent user from accessing their
websites with non-Microsoft browser?

» Possible to encrypt data and only decrypt if software
still matches ⇒ Could prevent display of .doc files
except on Microsoft versions of software

– Digital Rights Management (DRM):
» Prevent playing of music/video except on accepted

players
» Selling of CDs that only play 3 times?

Lec 27.1312/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Administrivia

• Final Exam
– 12:30 – 3:30, December 17th

– 220 Hearst Gym
– Bring 2 sheets of notes, double-sided

• Project 4
– Due date moved to Friday, 12/9

• Midterm II
– Still Grading!

Lec 27.1412/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Peer-to-Peer: Fully equivalent components

• Peer-to-Peer has many interacting components
– View system as a set of equivalent nodes

» “All nodes are created equal”
– Any structure on system must be self-organizing

» Not based on physical characteristics, location, or
ownership

Lec 27.1512/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Is Peer-to-peer new?
• Certainly doesn’t seem like it

– What about Usenet? News groups first truly
decentralized system

– DNS? Handles huge number of clients
– Basic IP? Vastly decentralized, many equivalent routers

• One view: P2P is a reverting to the old internet
– Remember? (Perhaps you don’t)
– Once upon a time, all members on the internet were
trusted.
» Every machine had an IP address.
» Every machine was a client and server.
» Many machines were routers and/or were equivalent

• But: peer-to-peer seems to mean something else
– More about the scale (total number) of directly
interacting components

– Also, has a “bad reputation” (stealing music)

Lec 27.1612/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Research Community View of Peer-to-Peer

• Old View:
– A bunch of flakey high-school students stealing music

• New View:
– A philosophy of systems design at extreme scale
– Probabilistic design when it is appropriate
– New techniques aimed at unreliable components
– A rethinking (and recasting) of distributed algorithms
– Use of Physical, Biological, and Game-Theoretic techniques
to achieve guarantees

Lec 27.1712/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Why the hype???
• File Sharing: Napster (+Gnutella, KaZaa, etc)

– Is this peer-to-peer? Hard to say.
– Suddenly people could contribute to active global network

» High coolness factor
– Served a high-demand niche: online jukebox

• Anonymity/Privacy/Anarchy: FreeNet, Publis, etc
– Libertarian dream of freedom from the man

» (ISPs? Other 3-letter agencies)
– Extremely valid concern of Censorship/Privacy
– In search of copyright violators, RIAA challenging rights to
privacy

• Computing: The Grid
– Scavenge numerous free cycles of the world to do work
– Seti@Home most visible version of this

• Management: Businesses
– Businesses have discovered extreme distributed computing
– Does P2P mean “self-configuring” from equivalent resources?
– Bound up in “Autonomic Computing Initiative”?

Lec 27.1812/07/05 Kubiatowicz CS162 ©UCB Fall 2005

OceanStore

Lec 27.1912/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Pac
Bell

Sprint

IBM
AT&T

Canadian
OceanStore

IBM

Utility-based Infrastructure

• Data service provided by storage federation
• Cross-administrative domain
• Contractual Quality of Service (“someone to sue”)

Lec 27.2012/07/05 Kubiatowicz CS162 ©UCB Fall 2005

OceanStore:
Everyone’s Data, One Big Utility

“The data is just out there”

• How many files in the OceanStore?
– Assume 1010 people in world
– Say 10,000 files/person (very conservative?)
– So 1014 files in OceanStore!

– If 1 gig files (ok, a stretch), get 1 mole of bytes!
(or a Yotta-Byte if you are a computer person)

Truly impressive number of elements…
… but small relative to physical constants

Aside: SIMS school: 1.5 Exabytes/year (1.5×1018)

Lec 27.2112/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Key Observation: Want Automatic Maintenance

• Can’t possibly manage billions of servers by hand!
• System should automatically:

– Adapt to failure
– Exclude malicious elements
– Repair itself
– Incorporate new elements

• System should be secure and private
– Encryption, authentication

• System should preserve data over the long term
(accessible for 1000 years):
– Geographic distribution of information
– New servers added from time to time
– Old servers removed from time to time
– Everything just works

Lec 27.2212/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Example: Secure Object Storage

Client
(w/ TCPA)

Client
(w/ TCPA)

Client
(w/ TCPA)

OceanStoreOceanStore

Client
Data

Manager

• Security: Access and Content controlled by client
– Privacy through data encryption
– Optional use of cryptographic hardware for revocation
– Authenticity through hashing and active integrity
checking

• Flexible self-management and optimization:
– Performance and durability
– Efficient sharing

Lec 27.2312/07/05 Kubiatowicz CS162 ©UCB Fall 2005

• Untrusted Infrastructure:
– The OceanStore is comprised of untrusted components
– Individual hardware has finite lifetimes
– All data encrypted within the infrastructure

• Mostly Well-Connected:
– Data producers and consumers are connected to a high-
bandwidth network most of the time

– Exploit multicast for quicker consistency when possible
• Promiscuous Caching:

– Data may be cached anywhere, anytime

• Responsible Party:
– Some organization (i.e. service provider) guarantees that
your data is consistent and durable

– Not trusted with content of data, merely its integrity

OceanStore Assumptions

Peer-to-peer

Quality-of-Service

Lec 27.2412/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Peer-to-Peer
for Data Location

Lec 27.2512/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Peer-to-Peer in OceanStore: DOLR
(Decentralized Object Location and Routing)

GUID1

DOLR

GUID1GUID2

Lec 27.2612/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Stability under extreme circumstances

(May 2003: 1.5 TB over 4 hours)
DOLR Model generalizes to many simultaneous apps

Lec 27.2712/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Object Location with Tapestry DOLR

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

Client to Obj RTT Ping time (1ms buckets)

R
D

P
(m

in
, m

ed
ia

n,
 9

0%
)

Lec 27.2812/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Peek at OceanStore
Mechanisms

Lec 27.2912/07/05 Kubiatowicz CS162 ©UCB Fall 2005

OceanStore Data Model

• Versioned Objects
– Every update generates a new version
– Can always go back in time (Time Travel)

• Each Version is Read-Only
– Can have permanent name
– Much easier to repair

• An Object is a signed mapping between permanent
name and latest version
– Write access control/integrity involves managing these
mappings

Comet Analogy updates

versions

Lec 27.3012/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Self-Verifying Objects

Data
Blocks

VGUIDi VGUIDi + 1

d2 d4d3 d8d7d6d5 d9d1

Data
B -
Tree

Indirect
Blocks

M

d'8 d'9

M
backpointe
r

copy on
write

copy on
write

AGUID = hash{name+keys}

Updates
Heartbeats +

Read-Only Data

Heartbeat: {AGUID,VGUID, Timestamp}signed

Lec 27.3112/07/05 Kubiatowicz CS162 ©UCB Fall 2005

OceanStore API: Universal Conflict Resolution

• Consistency is form of optimistic concurrency
– Updates contain predicate-action pairs
– Each predicate tried in turn:

» If none match, the update is aborted
» Otherwise, action of first true predicate is applied

• Role of Responsible Party (RP):
– Updates submitted to RP which chooses total order

• This is powerful enough to synthesize:
– ACID database semantics
– release consistency (build and use MCS-style locks)
– Extremely loose (weak) consistency

IMAP/SMTPNFS/AFS NTFS (soon?)HTTPNative Clients

1. Conflict Resolution
2. Versioning/Branching
3. Access control
4. Archival Storage

OceanStore
API

Lec 27.3212/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Two Types of OceanStore Data

• Active Data: “Floating Replicas”
– Per object virtual server
– Interaction with other replicas for consistency
– May appear and disappear like bubbles

• Archival Data: OceanStore’s Stable Store
– m-of-n coding: Like hologram

» Data coded into n fragments, any m of which are
sufficient to reconstruct (e.g m=16, n=64)

» Coding overhead is proportional to n÷m (e.g 4)
» Other parameter, rate, is 1/overhead

– Fragments are cryptographically self-verifying
• Most data in the OceanStore is archival!

Lec 27.3312/07/05 Kubiatowicz CS162 ©UCB Fall 2005

The Path of an
OceanStore UpdateSecond-Tier

Caches
Inner-Ring

Servers

Clients

Lec 27.3412/07/05 Kubiatowicz CS162 ©UCB Fall 2005

• Simple algorithms for placing replicas on nodes in the
interior
– Intuition: locality properties
of Tapestry help select positions
for replicas

– Tapestry helps associate
parents and children
to build multicast tree

• Preliminary results
encouraging

• Current Investigations:
– Game Theory
– Thermodynamics

Self-Organizing Soft-State Replication

Lec 27.3512/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Archival Dissemination
of Fragments

Archival
Servers

Archival
Servers

Lec 27.3612/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Aside: Why erasure coding?
High Durability/overhead ratio!

• Exploit law of large numbers for durability!
• 6 month repair, FBLPY:

– Replication: 0.03
– Fragmentation: 10-35

Fraction Blocks Lost
Per Year (FBLPY)

Lec 27.3712/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Extreme Durability?

• Exploiting Infrastructure for Repair
– DOLR permits efficient heartbeat mechanism to notice:

» Servers going away for a while
» Or, going away forever!

– Continuous sweep through data also possible
– Erasure Code provides Flexibility in Timing

• Data transferred from physical medium to physical
medium
– No “tapes decaying in basement”
– Information becomes fully Virtualized

• Thermodynamic Analogy: Use of Energy (supplied by
servers) to Suppress Entropy

Lec 27.3812/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Differing Degrees of Responsibility

• Inner-ring provides quality of service
– Handles of live data and write access control
– Focus utility resources on this vital service
– Compromised servers must be detected quickly

• Caching service can be provided by anyone
– Data encrypted and self-verifying
– Pay for service “Caching Kiosks”?

• Archival Storage and Repair
– Read-only data: easier to authenticate and repair
– Tradeoff redundancy for responsiveness

• Could be provided by different companies!

Lec 27.3912/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Closing View on
Peer-to-Peer

Lec 27.4012/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Peer-to-peer Goal: Stable, large-scale systems

• State of the art:
– Chips: 108 transistors, 8 layers of metal
– Internet: 109 hosts, terabytes of bisection bandwidth
– Societies: 108 to 109 people, 6-degrees of separation

• Complexity is a liability!
– More components ⇒ Higher failure rate
– Chip verification > 50% of design team
– Large societies unstable (especially when centralized)
– Small, simple, perfect components combine to generate

complex emergent behavior!
• Can complexity be a useful thing?

– Redundancy and interaction can yield stable behavior
– Better figure out new ways to design things…

Lec 27.4112/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Exploiting Numbers: Thermodynamic Analogy

• Large Systems have a variety of latent order
– Connections between elements
– Mathematical structure (erasure coding, etc)
– Distributions peaked about some desired behavior

• Permits “Stability through Statistics”
– Exploit the behavior of aggregates (redundancy)

• Subject to Entropy
– Servers fail, attacks happen, system changes

• Requires continuous repair
– Apply energy (i.e. through servers) to reduce entropy

Lec 27.4212/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Exploiting Numbers: The Biological Inspiration

• Biological Systems are built from (extremely) faulty
components, yet:
– They operate with a variety of component failures
⇒ Redundancy of function and representation

– They have stable behavior ⇒ Negative feedback
– They are self-tuning ⇒ Optimization of common case

• Introspective (Autonomic)
Computing:
– Components for performing
– Components for monitoring and
model building

– Components for continuous
adaptation

Adapt

Dance

Monitor

Lec 27.4312/07/05 Kubiatowicz CS162 ©UCB Fall 2005

What does this really mean?
• Redundancy, Redundancy, Redundancy:

– Many components that are roughly equivalent
– System stabilized by consulting multiple elements
– Voting/signature checking to exclude bad elements
– Averaged behavior/Median behavior/First Arriving

• Passive Stabilization
– Elements interact to self-correct each other
– Constant resource shuffling

• Active Stabilization
– Reevaluate and Restore good properties on wider scale
– System-wide property validation
– Negative feedback/chaotic attractor

• Observation and Monitoring
– Aggregate external information to find hidden order
– Use to tune functional behavior and recognize

dysfunctional behavior.

Lec 27.4412/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Problems?
• Most people don’t know how to think about this

– Requires new way of thinking
– Some domains closer to thermodynamic realm than

others:
peer-to-peer networks fit well

• Stability?
– Positive feedback/oscillation easy to get accidentally

• Cost?
– Power, bandwidth, storage, ….

• Correctness?
– System behavior achieved as aggregate behavior
– Need to design around fixed point or chaotic attractor

behavior (How does one think about this)?
– Strong properties harder to guarantee

• Bad case could be quite bad!
– Poorly designed ⇒Fragile to directed attacks
– Redundancy below threshold ⇒ failure rate increases

drastically

Lec 27.4512/07/05 Kubiatowicz CS162 ©UCB Fall 2005

Conclusions
• Windows vs Linux:

– Graphics vs Server?
– Cathedral vs Bazaar
– Controlled vs Free

• Trusted Computing
– Hardware to allow software attestation, secure
storage

• Peer to Peer
– A philosophy of systems design at extreme scale
– Probabilistic design when it is appropriate
– New techniques aimed at unreliable components
– A rethinking (and recasting) of distributed algorithms
– Use of Physical, Biological, and Game-Theoretic
techniques to achieve guarantees

• Let’s give a hand to the TAs!
– Clap, clap, clap, clap

• Good Bye!
– You guys have been great!

