Cs162
Operating Systems and
Systems Programming
Lecture 27

Peer-to-peer Systems
and Other Topics

December 7th, 2005
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Goals for Today

* A couple of requested topics
- Windows vs. Linux
- Trusted Computing

* Peer-to-Peer Systems
- OceanStore

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.2

Requests for Final topics

+ Some topics people requested:
- More about device drivers
- Xbox/Playstation/gamecube/etc operating systems
- Windows vs Linux
- Trusted computing platforms
* About Device Drivers
- Well, very complex topic.
- Documentation associated with various operating systems
» Many similarities, many differences
- 6ood place to start:

» Chapter 6 of "The design and Implementation of the 4.4
BSD Operating System” (on reserve for this class)

+ Xbox vs Playstation etc
- Well, most of these are custom OSs.
» Original Xbox ran modified version of Window 2000

» New Xbox 360 rumored to run modified version of original
Xbox OS (i.e. a modified? version of Windows 2000)

- Most important property: Real Time scheduling
12707705 > APlity To megt scheduling slradlingsos Lec 27.3

Windows vs Linux

+ Windows came from personal computer domain
- Add-on to IBM PC providing a windowing user interface
» Became “good at” doing graphical interfaces
- Didn't have protection until Windows NT
» Multiple users supported (starting with Window NT), but
can't necessarily have multiple GUIs running at same time
- Product differentiation model:
» Purchase separate products to get email, web servers, file
servers, compilers, debuggers...
* Linux came from long line of UNIX Mainframe OSs
- Targeted at high-performance computation and I/0
» High performance servers
» GUI historically lacking compared to Windows
- Protection model from beginning
» Multiple users supported at core of OS
- Full function Mainframe OS: email, web servers, file
servers, ftp servers, compilers, debuggers, etc.

12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.4

Windows vs Linux

+ Internal Structure is different
- Windows XP evolved from NT which was a microkernel
» Core “executive” runs in protected mode
» Many services run in user mode (Although Windowing runs
inside kernel for performance)
» Object-oriented design: communication by passing objects
» Event registration model: many subsystems can ask for
callbacks when events happen
» Loadable modules for device drivers and system extension
- Linux Evolved from monolithic kernel
» Many portions of kernel operate in same address space
» Loadable modules for device drivers and system extension
» Fewer layers = higher performance
* Source Code development model
- Windows: closed code development
» Must sign non-disclosure to get access to source code
» “Cathedral” model of development: only Microsoft's
developers produce code for Windows
- Linux: open development model
» All distributions make source code available to analyze
» "Bazaar” model of development: many on the net contribute

12/07/05 Yo making Linyx; distributioncp ra 2005 Lec 27.5

Windows vs Linux

* Perceptions:

- Windows has more bugs/is more vulnerable to viruses?
» True? Hard to say for sure
» More Windows systems = more interesting for hackers

- Linux simpler to manage?
» True? Well, Windows has hidden info (e.g. registry)
» Linux has all configuration available in clear text

- Microsoft is untrustworthy? Many distrust “the man”
» Quick to adopt things like Digital Rights Management (DRM)
» Quick to embrace new models of income such as software

rental which counter traditional understanding of software

- Windows is slow?
» This definitely seemed to be true with earlier versions
» Less true now, but complexity may still get in way

* Why choose one over other?

- Which has greater diversity of graphical programs?
» Probably Windows

- Which cheaper? Well, versions of Linux are “free

- Which better for develoRing code and managing servers?
» Probably Linux, although this is changing

12707708 > OS5 APL (e.g. system calls).definitely,seem simpler ..

Trusted Computing

Problem: Can't trust that software is correct
- Viruses/Worms install themselves into kernel or system
without users knowledge
- Rootkit: software tools to conceal running processes, files
or system data, which helps an intruder maintain access
to a system without the user's knowledge
- How do you know that software won't leak private
information or further compromise user's access?
* A solution: What if there were a secure way to validate
all software running on system?
- Idea: Compute a cryptographic hash of BIOS, Kernel,
crucial programs, efc.
- Then, HE hashes don't match, know have problem
* Further extension:
- Secure attestation: ability to prove to a remote party
that local machine is running correct software
- Reason: allow remote user to avoid interacting with
compromised system
Challenge: How to do this in an unhackable way

- Must have hardware components somewhere
12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.7

TCPA: Trusted Computing Platform Alliance

Idea: Add a Trusted Platform Module (TPM)
* Founded in 1999: Compaq, HP, IBM, Intel, Microsoft
Currently more than 200 members
Changes to platform
- Extra: Trusted Platform Module (TPM)
- Software changes: BIOS + OS .
* Main properties
- Secure bootstrap
- Platform attestation
- Protected storage
* Microsoft version:

. ATMEL TPM Chip
- Palladium (Used in IBM equipment)
- Note quite same: More extensive

hardware/software system
12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.8

Trusted Platform Module

Functional Non-volatile Volatile
Units Memory Memory

Random Num ndorsement Key -
R
|S'rorage Root Key| | RSA Key Slot-9

Hash (2048 Bits)
PCR-0
m Owner Auth |
Secret(160 Bits PCR-15
ey Pl
RSA Ke 2
TR
* Cryptographic operations

- Hashing: SHA-1, HMAC

- Random number generator

- Asymmetric key generation: RSA (512, 1024, 2048)

- Asymmetric encryption/ decryption: RSA

- Symmetric encryption/ decryption: DES, 3DES (AES)

+ Tamper resistant (hash and key) storage
12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.9

TCPA: PCR Reporting Value

| Platform Configuration Register |

extended value present value

measured values
(Hash) =
TPM

* Platform Configuration Registers (PCRO-16)
- Reset at boot time to well defined value
- Only ’rhigg that software can do is give new
measured value to TPM
» TPM takes new value, concatenates with old value,
then hashes result together for new PCR

* Measuring involves hashing components of software
+ Integrity reporting: report the value of the PCR
- Challenge-response protocol:

Challenger nonce Trusted Platform Agent
Sign,p(nonce, PCR, log), Cp R
12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.10

TCPA: Secure bootstrap

ROMs

T~
Root of trust in ~
integrity New OS
measurement Component
v |
1

Root of trust in
integrity reporting

12/07/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 27.11

/os —
N

Implications of TPM Philosophy?

+ Could have great benefits

- Prevent use of malicious software

- Parts of OceanStore would benefit (mention later)
* What does “trusted computing” really mean?

- You are forced to trust hardware to be correct!

- Could also mean that user is not trusted to install

their own software
* Many in the security community have talked about
potential abuses

- These are only theoretical, but very possible

- Software fixing

» What if comﬁanies prevent user from accessing their
websites with non-Microsoft browser?

» Possible to encrypt data and only decrypt if software
still matches = Could prevent display of .doc files
except on Microsoft versions of software

- Digital Rights Management (DRM):

» Prevent playing of music/video except on accepted
players

» Selling of CDs that only play 3 times?

12/07/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 27.12

Administrivia

- Final Exam

- 12:30 - 3:30, December 17'h

- 220 Hearst Gym

- Bring 2 sheets of notes, double-sided
* Project 4

- Due date moved to Friday, 12/9
* Midterm II

- Still Grading!

12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.13

Peer-to-Peer: Fully equivalent components

* Peer-to-Peer has many interacting components
- View system as a set of equivalent nodes
» “All nodes are created equal”
- Any structure on system must be self-organizing

» Not based on physical characteristics, location, or
ownership
12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.14

Is Peer-to-peer new?

+ Certainly doesn't seem like it

- What about Usenet? News groups first truly
decentralized system

- DNS? Handles huge number of clients
- Basic IP? Vastly decentralized, many equivalent routers
* One view: P2P is a reverting to the old internet
- Remember? (Perhaps you don't)
- Once upon a time, all members on the internet were
trusted.
» Every machine had an IP address.
» Every machine was a client and server.
» Many machines were routers and/or were equivalent
* But: peer-to-peer seems to mean something else
- More about the scale (total number) of directly
interacting components
- Also, has a "bad reputation” (stealing music)

12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.15

Research Community View of Peer-to-Peer

MY PROTECT IS
A WHOLE NEW
PRRADIGM

*+ Old View:
- A bunch of flakey high-school students stealing music
* New View:
- A philosophy of systems design at extreme scale
- Probabilistic design when it is appropriate
- New techniques aimed at unreliable components
- A rethinking (and recasting) of distributed algorithms

- Use of Physical, Biological, and Game-Theoretic techniques

to achieve guarantees
12/07/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 27.16

Why the hype???
* File Sharing: Napster (+&Gnufeila, KaZaa, efc)
- Is this peer-to-peer? Hard to say.
- Suddenly people could contribute to active global network
» High coolness factor
- Served a high-demand niche: online jukebox
* Anonymity/Privacy/Anarchy: FreeNet, Publis, etc
- Libertarian dream of freedom from the man
» (ISPs? Other 3-letter agencies)

- Extremely valid concern of Censorship/Privacy
- In search of copyright violators, RIAA challenging rights to OceanStore
privacy
+ Computing: The 6rid
- Scavenge numerous free cycles of the world to do work
- Seti@Home most visible version of this
* Management: Businesses
- Businesses have discovered extreme distributed computing
- Does P2P mean "self-configuring” from equivalent resources?
- Bound up in “"Autonomic Computing Initiative”?
12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.17 12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.18
OceanStore:

* Data service provided by storage federation
* Cross-administrative domain

* Contractual Quality of Service ("someone to sue”)
12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.19

Everyone's Data, One Big Utility
The data is just ouf there

* How many files in the OceanStore?
- Assume 1010 people in world
- Say 10,000 files/person (very conservative?)
- So 10! files in OceanStorel!

- If 1 gig files (ok, a stretch), get 1 mole of bytesl!
(or a Yotta-Byte if you are a computer person)

Truly impressive number of elements...
.. but small relative to physical constants

Aside: SIMS school: 1.5 Exabytes/year (1.5x10!8)

12/07/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 27.20

Key Observation: Want Automatic Maintenance

+ Can't possibly manage billions of servers by hand!
- System should automatically:
- Adapt to failure
- Exclude malicious elements
- Repair itself
- Incorporate new elements
- System should be secure and private
- Encryption, authentication
+ System should preserve data over the long term
(accessible for 1000 years):
- Geographic distribution of information
- New servers added from time to time
- Old servers removed from time to time
- Everything just works

12/07/05 Kubiatowicz €S5162 ©UCB Fall 2005 Lec 27.21

Example: Secure Object Storage

Client
(w/ TCPA)

(w/ TCPA)
. T 1
Client \}, [= /
Data [Client
Manager (w/ TCPA)

+ Security: Access and Content controlled by client
- Privacy through data encryption
- Optional use of cryptographic hardware for revocation
- Authenticity through hashing and active integrity
checking
+ Flexible self-management and optimization:
- Performance and durability

- icient shari
12/07/0;ff n ri‘(gbia*rowicz €S162 ©UCB Fall 2005 Lec 27.22

OceanStore Assumptions

ﬂ)n'rr‘us'red Infrastructure: Peer-to-peer
- The OceanStore is comprised of untrusted components
- Individual hardware has finite lifetimes
- All data encrypted within the infrastructure

* Mostly Well-Connected:

- Data producers and consumers are connected to a high-
bandwidth network most of the time

- Exploit multicast for quicker consistency when possible
* Promiscuous Caching:

K— Data may be cached anywhere, anytime

(uality-of - Service
- Responsible Party: Q Y

- Some organization (/.e. service provider) guarantees that
your data is consistent and durable

- Not trusted with content of data, merely its integrity

iabiarowier-05r68=000R=Fuli=2605 ee=g7s

Peer-to-Peer
for Data Location

12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.24

Peer-to-Peer in OceanStore: DOLR
(Decentralized Object Location and Routing)

@ O

12/07/05 Kubiatowicz €S5162 ©UCB Fall 2005 Lec 27.25

Stability under extreme circumstances

Route to Node on Planetlab
800

) lgg 700

&

% 80 600 %j

g 70 1500 2

= 60)

LE@ 50 L ’_ _______ —Ii_ Churn 400 b

HBJ 40+ 4 starts 41 300 "E

2 ag L i / 50% more =]

g 50 fJ T nodes join 1200 2
IO i Hod!:::fail Success Rate 1 100

o T ke

0 0
0 30 60 90 120 150 180 210 240

Time (minutes)

(May 2003: 1.5 TB over 4 hours)

DOLR Model generalizes to many simultaneous apps
12/07/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 27.26

Object Location with Tapestry DOLR

25

= n
o o
/

RDP (min, median, 90%)
=
o
/

7

0 20 40 60 80 100 120 140 160 180 200
Client to Obj RTT Ping time (1ms buckets)

12/07/05 Kubiatowicz €S5162 ©UCB Fall 2005 Lec 27.27

. Peek at OceanStore -
.~ Mechanisms =~ .

12/07/05 Kubiatowicz €5162 ©UCB Fall 2005 Lec 27.28

OceanStore Data Model

* Versioned Objects

- Every update generates a new version

- Can always go back in time (Time Travel)
+ Each Version is Read-Only

- Can have permanent name

- Much easier to repair

* An Object is a signed mapping between permanent
name and latest version

- Write access control/integrity involves managing these

Self-Verifying Objects

AGUID = hash{name+keys}

veup, VGUID,.;
{ Data | backpointe |
<eeeerB—— M T T M II\I I
Tree / ! :
i col :
| indivedt pprpn | | pppyy |

! Blocks * R ']

mappings versions i
° o o / wHeartbeat: {AGUID,VGUID, Timestamp}ggneq
0, o0 o ~ ° o o /
Comet Analogy ° °. ° updates Heartbeats+ o, o o ~
0%, %o Read-Only Data® © _© Updates
° \ o %o
o ° o o ‘\
12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.29 12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.30
OceanStore API: Universal Conflict Resolution Two Types of OceanStore Data
Native Clients|| NFS/AFS||HTTP || IMAP/SMTP || NTFS (soon?) “Floating Replicas”
- Per object virtual server
1. Conflict Resolution - : : ; :
GoanStora 2 Versioning/Branching Interaction with o:l'her‘ r'eplllcas for consistency
AP 3.~ Access control - May appear and disappear like bubbles
4. Archival Storage OceanStore's Stable Store
- Consistency is form of optimistic concurrency - m-of-n coding: Like hologram
- Updates contain predicate-action pairs » Data coded into n fragments, any m of which are
- Eac]P:\fpr'edlca're ’:‘mei\d in Jur‘n: borted sufficient to reconstruct (e.g m=16, n=64)
» If none match, the update is aborte . . .
» Otherwise, action of |:1"ir's1' true predicate is applied » Coding overhead is proporhonal to nem (e.g 4)
- Role of Responsible pm«% (RP): » Other parameter, rate, is 1/overhead
- Updates submitted to RP which chooses total order - Fragments are cryptographically self-verifying
+ This is powerful enough to synthesize: + Most data in the OceanStore is archivall
- release consistency (build and use MCS-style locks)
- Extremely loose (weak) consistency
12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.31 12/07/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 27.32

The Path of an
OceanStore Update

Inner-Ring
Servers
“

Self-Organizing Soft-State Replication

- Simple algorithms for placing replicas on nodes in the
interior

- Intuition: locality properties
of Tapestry help select positions
for replicas

- Tapestry helps associate
parents and children
to build multicast tree

* Preliminary results
encouraging

* Current Investigations:
- Game Theory
- Thermodynamics

12/07/05 Kubiatowicz €S5162 ©UCB Fall 2005 Lec 27.34

Archival Dissemination
of Fragments

Servers

.": o 0. -'.
Archival s=**

:Arcr-lival
Lens®®""Servers

*

Aside: Why erasure coding?
High Durability/overhead ratio!

g le-20 L Le20

% le-30 e

3

fg tet0 . Le-40

5) Fraction Blocks L ost

Eor Per Year (FBLPY) {*°
mber of fragments = 4

Lol 34 number of fragments= 8 ———— - le-60
{ auember of fragments = L6 -~

number of fragments = 32 —-—-——
number fota%men[s =64 ————

. |
6 L2 Lg 24
Repair Time (months)

- Exploit law of large numbers for durability!
+ 6 month repair, FBLPY:

- Replication: 0.03

- Fragmentation: 10-35

12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.36

Extreme Durability?

+ Exploiting Infrastructure for Repair
- DOLR permits efficient heartbeat mechanism to notice:
» Servers going away for a while
» Or, going away forever!
- Continuous sweep through data also possible
- Erasure Code provides Flexibility in Timing

* Data transferred from physical medium to physical
medium

- No “tapes decaying in basement”
- Information becomes fully Virtualized

+ Thermodynamic Analo%y: Use of Energy (supplied by
servers) to Suppress Entropy

12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.37

Differing Degrees of Responsibility

* Inner-ring provides quality of service
- Handles of live data and write access control
- Focus utility resources on this vital service
- Compromised servers must be detected quickly
+ Caching service can be provided by anyone
- Data encrypted and self-verifying
- Pay for service “"Caching Kiosks"?
* Archival Storage and Repair
- Read-only data: easier to authenticate and repair
- Tradeoff redundancy for responsiveness
* Could be provided by different companies!

12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.38

Closing View on
Peer-to-Peer

12/07/05 Kubiatowicz CS162 ©UCB Fall 2005 Lec 27.39

Peer-to-peer Goal: Stable, large-scale systems

- State of the art:

- Chips: 108 transistors, 8 layers of metal

- Internet: 10° hosts, terabytes of bisection bandwidth

- Societies: 108 to 10° people, 6-degrees of separation
+ Complexity is a liability!

- More components = Higher failure rate

- Chip verification > 50% of design team

- Large societies unstable (especially when centralized)

- Small, simple, perfect components combine to generate
complex emergent behavior!

* Can complexity be a useful thing?
- Redundancy and interaction can yield stable behavior

12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.40

Exploiting Numbers: Thermodynamic Analogy

* Large Systems have a variety of /latent order !
- Connections between elements ‘%’" >
- Mathematical structure (erasure coding, etc)
- Distributions peaked about some desired behavior
* Permits “Stability through Statistics”
- Exploit the behavior of aggregates (redundancy)
*+ Subject to Entropy
- Servers fail, attacks happen, system changes
* Requires continuous repair
- Apply energy (i.e. through servers) to reduce entropy

12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.41

Exploiting Numbers: The Biological Inspiration

+ Biological Systems are built from (extremely) faulty
components, yet:

- They operate with a variety of component failures
= Redundancy of function and representation

- They have stable behavior = Negative feedback
- They are self-tuning = Optimization of common case
+ Introspective (Autonomic)
Computing:
- Components for performing

- Components for monitoring and
model building

- Components for continuous
adaptation

12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.42

What does this really mean?

*+ Redundancy, Redundancy, Redundancy:

- Many components that are roughly equivalent

- System stabilized by consulting multiple elements

- Voting/signature checking to exclude bad elements

- Averaged behavior/Median behavior/First Arriving
* Passive Stabilization

- Elements interact to self-correct each other

- Constant resource shuffling
* Active Stabilization

- Reevaluate and Restore good properties on wider scale

- System-wide property validation

- Negative feedback/chaotic attractor

Observation and Monitoring

- Aggregate external information to find hidden order

- Use to tune functional behavior and recognize
dysfunctional behavior.

12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.43

Problems?

Most people don't know how to think about this
- Requires new way of thinking

- Some domains closer to thermodynamic realm than
others:
peer-to-peer networks fit well

+ Stability?

- Positive feedback/oscillation easy to get accidentally
* Cost?

- Power, bandwidth, storage, ...
* Correctness?

- System behavior achieved as aggregate behavior

- Need to design around fixed point or chaotic attractor
behavior (How does one think about this)?

- Strong properties harder to guarantee
Bad case could be quite bad!
- Poorly designed =Fragile to directed attacks

- Redundancy below threshold = failure rate increases
drastically
12/07/05 Kubiatowicz 5162 ©UCB Fall 2005 Lec 27.44

Conclusions

* Windows vs Linux:
- 6raphics vs Server?
- Cathedral vs Bazaar
- Controlled vs Free
* Trusted Computing
- Hardware to allow software attestation, secure
storage
* Peer to Peer
- A philosophy of systems design at extreme scale
- Probabilistic design when it is appropriate
- New techniques aimed at unreliable components
- A rethinking (and recasting) of distributed algorithms
- Use of Physical, Biological, and Game-Theoretic
techniques to achieve guarantees
* Let's give a hand to the TAs!
- Clap, clap, clap, clap
* Good Byel
- You guys have been great!

12/07/05 Kubiatowicz €S162 ©UCB Fall 2005 Lec 27.45

