
CS162
Operating Systems and
Systems Programming

Lecture 7

Mutual Exclusion, Semaphores,
Monitors, and Condition Variables

September 20, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 7.29/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: A Concurrent Program Example

• Two threads, A and B, compete with each other
– One tries to increment a shared counter
– The other tries to decrement the counter

Thread A Thread B
i = 0; i = 0;
while (i < 10) while (i > -10)

i = i + 1; i = i – 1;
printf(“A wins!”); printf(“B wins!”);

• Assume that memory loads and stores are atomic, but
incrementing and decrementing are not atomic

• Who wins? Could be either
• Is it guaranteed that someone wins? Why or why not?
• What it both threads have their own CPU running at

same speed? Is it guaranteed that it goes on
forever?

Lec 7.39/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Hand Simulation Multiprocessor Example

• Inner loop looks like this:
Thread A Thread B

r1=0 load r1, M[i]
r1=0 load r1, M[i]

r1=1 add r1, r1, 1
r1=-1 sub r1, r1, 1

M[i]=1 store r1, M[i]
M[i]=-1 store r1, M[i]

• Hand Simulation:
– And we’re off. A gets off to an early start
– B says “hmph, better go fast” and tries really hard
– A goes ahead and writes “1”
– B goes and writes “-1”
– A says “HUH??? I could have sworn I put a 1 there”

• Could this happen on a uniprocessor?
– Yes! Unlikely, but if you depending on it not happening,
it will and your system will break…

Lec 7.49/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y

do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– if no note B, safe for A to buy,
– otherwise wait to find out what will happen

• At Y:
– if no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

Lec 7.59/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Hardware Support for Synchronization
• Higher-level Synchronization Abstractions

– Semaphores, monitors, and condition variables
• Programming paradigms for concurrent programs

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 7.69/20/06 Kubiatowicz CS162 ©UCB Fall 2006

High-Level Picture
• The abstraction of threads is good:

– Maintains sequential execution model
– Allows simple parallelism to overlap I/O and computation

• Unfortunately, still too complicated to access state
shared between threads
– Consider “too much milk” example
– Implementing a concurrent program with only loads and
stores would be tricky and error-prone

• Today, we’ll implement higher-level operations on top
of atomic operations provided by hardware
– Develop a “synchronization toolbox”
– Explore some common programming paradigms

Lec 7.79/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Where are we going with synchronization?

• We are going to implement various higher-level
synchronization primitives using atomic operations
– Everything is pretty painful if only atomic primitives are
load and store

– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Comp&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Hardware

Higher-
level
API

Programs

Lec 7.89/20/06 Kubiatowicz CS162 ©UCB Fall 2006

How to implement Locks?
• Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
• Atomic Load/Store: get solution like Milk #3

– Looked at this last lecture
– Pretty complex and error prone

• Hardware Lock instruction
– Is this a good idea?
– Complexity?

» Done in the Intel 432
» Each feature makes hardware more complex and slow

– What about putting a task to sleep?
» How do you handle the interface between the hardware

and scheduler?

Lec 7.99/20/06 Kubiatowicz CS162 ©UCB Fall 2006

• How can we build multi-instruction atomic operations?
– Recall: dispatcher gets control in two ways.

» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU

– On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)
» Preventing external events by disabling interrupts

• Consequently, naïve Implementation of locks:
LockAcquire { disable Ints; }
LockRelease { enable Ints; }

• Problems with this approach:
– Can’t let user do this! Consider following:

LockAcquire();
While(TRUE) {;}

– Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long

– What happens with I/O or other important events?
» “Reactor about to meltdown. Help?”

Naïve use of Interrupt Enable/Disable

Lec 7.109/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Better Implementation of Locks by Disabling Interrupts

• Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

Lec 7.119/20/06 Kubiatowicz CS162 ©UCB Fall 2006

New Lock Implementation: Discussion
• Why do we need to disable interrupts at all?

– Avoid interruption between checking and setting lock value
– Otherwise two threads could think that they both have lock

• Note: unlike previous solution, the critical section
(inside Acquire()) is very short
– User of lock can take as long as they like in their own
critical section: doesn’t impact global machine behavior

– Critical interrupts taken in time!

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Critical
Section

Lec 7.129/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Interrupt re-enable in going to sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue
– Release puts the thread on the ready queue, but the
thread still thinks it needs to go to sleep

– Misses wakeup and still holds lock (deadlock!)
• Want to put it after sleep(). But – how?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position
Enable Position
Enable Position

Lec 7.139/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

• First Design Document due Monday 9/25
– Subsequently need to schedule design review with TA
(through web form)

– Note that most of the design document grade comes
from first version (some from final version)

• Design doc contents:
– Architecture, correctness constraints, algorithms,
pseudocode, testing strategy, and test case types

• CVS group accounts should be setup today or
tomorrow
– Check out the CVS Quick Start Guide for instructions
on how to get your CVS repository working

– If you change your key – need to let us know!

Lec 7.149/20/06 Kubiatowicz CS162 ©UCB Fall 2006

How to Re-enable After Sleep()?
• In Nachos, since ints are disabled when you call sleep:

– Responsibility of the next thread to re-enable ints
– When the sleeping thread wakes up, returns to acquire
and re-enables interrupts

Thread A Thread B
.
.

disable ints
sleep

sleep return
enable ints

.

.

.
disable int

sleep
sleep return
enable ints

.

.

context
switch

context
switch

Lec 7.159/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Interrupt disable and enable across context switches

• An important point about structuring code:
– In Nachos code you will see lots of comments about
assumptions made concerning when interrupts disabled

– This is an example of where modifications to and
assumptions about program state can’t be localized
within a small body of code

– In these cases it is possible for your program to
eventually “acquire” bugs as people modify code

• Other cases where this will be a concern?
– What about exceptions that occur after lock is
acquired? Who releases the lock?

mylock.acquire();

a = b / 0;

mylock.release()

Lec 7.169/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Atomic Read-Modify-Write instructions

• Problems with previous solution:
– Can’t give lock implementation to users
– Doesn’t work well on multiprocessor

» Disabling interrupts on all processors requires messages
and would be very time consuming

• Alternative: atomic instruction sequences
– These instructions read a value from memory and write
a new value atomically

– Hardware is responsible for implementing this correctly
» on both uniprocessors (not too hard)
» and multiprocessors (requires help from cache coherence

protocol)
– Unlike disabling interrupts, can be used on both
uniprocessors and multiprocessors

Lec 7.179/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Examples of Read-Modify-Write
• test&set (&address) { /* most architectures */

result = M[address];
M[address] = 1;
return result;

}
• swap (&address, register) { /* x86 */

temp = M[address];
M[address] = register;
register = temp;

}
• compare&swap (&address, reg1, reg2) { /* 68000 */

if (reg1 == M[address]) {
M[address] = reg2;
return success;

} else {
return failure;

}
}

• load-linked&store conditional(&address) {
/* R4000, alpha */
loop:

ll r1, M[address];
movi r2, 1; /* Can do arbitrary comp */
sc r2, M[address];
beqz r2, loop;

}
Lec 7.189/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Implementing Locks with test&set

• Another flawed, but simple solution:
int value = 0; // Free

Acquire() {
while (test&set(value)); // while busy

}

Release() {
value = 0;

}

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so
lock is now busy. It returns 0 so while exits.

– If lock is busy, test&set reads 1 and sets value=1 (no
change). It returns 1, so while loop continues

– When we set value = 0, someone else can get lock
• Busy-Waiting: thread consumes cycles while waiting

Lec 7.199/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Problem: Busy-Waiting for Lock
• Positives for this solution

– Machine can receive interrupts
– User code can use this lock
– Works on a multiprocessor

• Negatives
– This is very inefficient because the busy-waiting
thread will consume cycles waiting

– Waiting thread may take cycles away from thread
holding lock (no one wins!)

– Priority Inversion: If busy-waiting thread has higher
priority than thread holding lock ⇒ no progress!

• Priority Inversion problem with original Martian rover
• For semaphores and monitors, waiting thread may

wait for an arbitrary length of time!
– Thus even if busy-waiting was OK for locks, definitely
not ok for other primitives

– Homework/exam solutions should not have busy-waiting!

Lec 7.209/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Better Locks using test&set
• Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
guard = 0;

int guard = 0;
int value = FREE;

Acquire() {
// Short busy-wait time
while (test&set(guard));
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

Lec 7.219/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Higher-level Primitives than Locks

• Goal of last couple of lectures:
– What is the right abstraction for synchronizing threads
that share memory?

– Want as high a level primitive as possible
• Good primitives and practices important!

– Since execution is not entirely sequential, really hard to
find bugs, since they happen rarely

– UNIX is pretty stable now, but up until about mid-80s
(10 years after started), systems running UNIX would
crash every week or so – concurrency bugs

• Synchronization is a way of coordinating multiple
concurrent activities that are using shared state
– This lecture and the next presents a couple of ways of
structuring the sharing

Lec 7.229/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Semaphores

• Semaphores are a kind of generalized lock
– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:
– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1
» Think of this as the wait() operation

– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any
» This of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V()
stands for “verhogen” (to increment) in Dutch

Lec 7.239/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Value=2Value=1Value=0

Semaphores Like Integers Except
• Semaphores are like integers, except

– No negative values
– Only operations allowed are P and V – can’t read or write
value, except to set it initially

– Operations must be atomic
» Two P’s together can’t decrement value below zero
» Similarly, thread going to sleep in P won’t miss wakeup

from V – even if they both happen at same time
• Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource control:

Value=1Value=0

Lec 7.249/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Two Uses of Semaphores
• Mutual Exclusion (initial value = 1)

– Also called “Binary Semaphore”.
– Can be used for mutual exclusion:

semaphore.P();
// Critical section goes here
semaphore.V();

• Scheduling Constraints (initial value = 0)
– Locks are fine for mutual exclusion, but what if you
want a thread to wait for something?

– Example: suppose you had to implement ThreadJoin
which must wait for thread to terminiate:

Initial value of semaphore = 0
ThreadJoin {

semaphore.P();
}

ThreadFinish {
semaphore.V();

}

Lec 7.259/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them
– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

• Example 2: Coke machine
– Producer can put limited number of cokes in machine
– Consumer can’t take cokes out if machine is empty

Producer ConsumerBuffer

Lec 7.269/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Correctness constraints for solution
• Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none
full (scheduling constraint)

– Producer must wait for consumer to empty buffers, if all
full (scheduling constraint)

– Only one thread can manipulate buffer queue at a time
(mutual exclusion)

• Remember why we need mutual exclusion
– Because computers are stupid
– Imagine if in real life: the delivery person is filling the
machine and somebody comes up and tries to stick their
money into the machine

• General rule of thumb:
Use a separate semaphore for each constraint
– Semaphore fullBuffers; // consumer’s constraint

– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

Lec 7.279/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Full Solution to Bounded Buffer
Semaphore fullBuffer = 0; // Initially, no coke

Semaphore emptyBuffers = numBuffers;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine

Producer(item) {
emptyBuffers.P(); // Wait until space
mutex.P(); // Wait until buffer free
Enqueue(item);
mutex.V();
fullBuffers.V(); // Tell consumers there is

// more coke
}

Consumer() {
fullBuffers.P(); // Check if there’s a coke
mutex.P(); // Wait until machine free
item = Dequeue();
mutex.V();
emptyBuffers.V(); // tell producer need more
return item;

}

Lec 7.289/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?
– No, except that it might affect scheduling efficiency

• What if we have 2 producers or 2 consumers?
– Do we need to change anything?

Lec 7.299/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Motivation for Monitors and Condition Variables

• Semaphores are a huge step up; just think of trying
to do the bounded buffer with only loads and stores
– Problem is that semaphores are dual purpose:

» They are used for both mutex and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer

gives deadlock is not immediately obvious. How do you
prove correctness to someone?

• Cleaner idea: Use locks for mutual exclusion and
condition variables for scheduling constraints

• Definition: Monitor: a lock and zero or more
condition variables for managing concurrent access to
shared data
– Some languages like Java provide this natively
– Most others use actual locks and condition variables

Lec 7.309/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of threads waiting for
something inside a critical section
– Key idea: make it possible to go to sleep inside critical
section by atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

Lec 7.319/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Simple Monitor Example
• Here is an (infinite) synchronized queue

Lock lock;
Condition dataready;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Get Lock
queue.enqueue(item); // Add item
dataready.signal(); // Signal any waiters
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Get Lock
while (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue(); // Get next item
lock.Release(); // Release Lock
return(item);

}
Lec 7.329/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary
• Important concept: Atomic Operations

– An operation that runs to completion or not at all
– These are the primitives on which to construct various
synchronization primitives

• Talked about hardware atomicity primitives:
– Disabling of Interrupts, test&set, swap, comp&swap,
load-linked/store conditional

• Showed several constructions of Locks
– Must be very careful not to waste/tie up machine
resources
» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware
mechanisms to protect modifications of that variable

• Talked about Semaphores, Monitors, and Condition
Variables
– Higher level constructs that are harder to “screw up”

