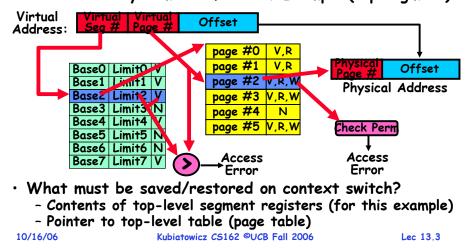
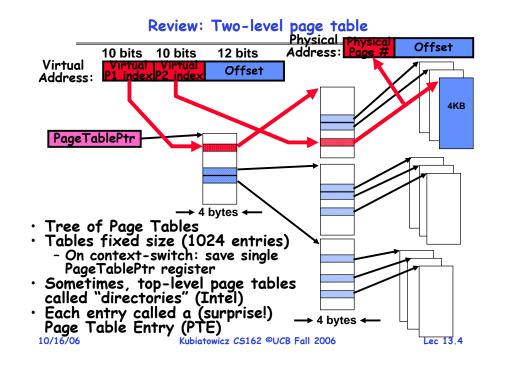
CS162 Operating Systems and Systems Programming Lecture 13

Address Translation (con't) Caches and TLBs


October 16, 2006 Prof. John Kubiatowicz http://inst.eecs.berkeley.edu/~cs162


Review: Exceptions: Traps and Interrupts

· A system call instruction causes a synchronous exception (or "trap") - In fact, often called a software "trap" instruction • Other sources of synchronous exceptions: - Divide by zero, Illegal instruction, Bus error (bad address, e.g. unaligned access) - Segmentation Fault (address out of range) - Page Fault (for illusion of infinite-sized memory) Interrupts are Asynchronous Exceptions - Examples: timer, disk ready, network, etc.... - Interrupts can be disabled, traps cannot! • On system call, exception, or interrupt: - Hardware enters kernel mode with interrupts disabled - Saves PC, then jumps to appropriate handler in kernel - For some processors (x86), processor also saves registers, changes stack, etc. • Actual handler typically saves registers, other CPU 10/1 state, and switches to kernel stack Lec 13.2

Review: Multi-level Translation

- What about a tree of tables?
 - Lowest level page table⇒memory still allocated with bitmap
 Higher levels often segmented
- Could have any number of levels. Example (top segment):

Goals for Today

- Finish discussion of Address Translation
- Caching and TLBs

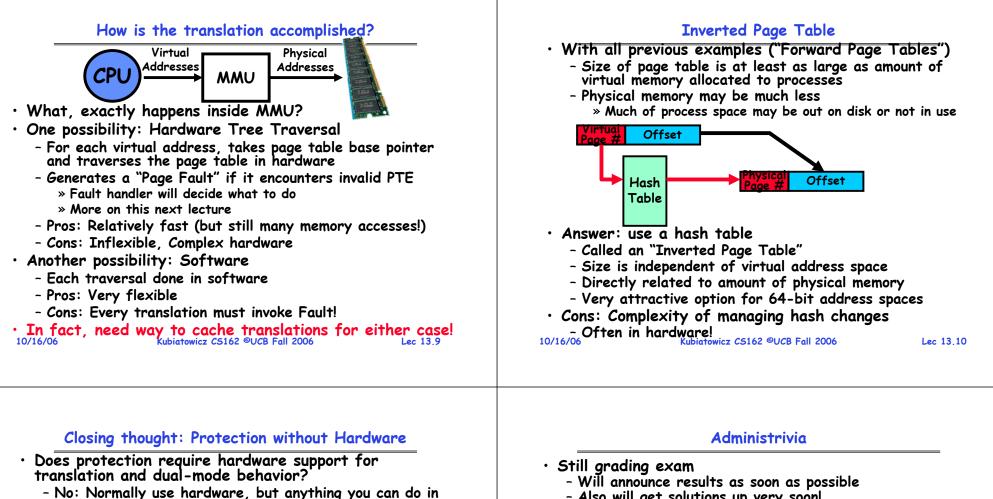
Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne

10/16/06	Kubiatowicz CS162 ©UCB Fall 2006	Lec 13.5	10/16/06	Kubiatowicz CS162 ©UCB Fall 2006	Lec 13.6

What is in a PTE?

- What is in a Page Table Entry (or PTE)?
 - Pointer to next-level page table or to actual page
 - Permission bits: valid, read-only, read-write, write-only
- Example: Intel x86 architecture PTE:
 - Address same format previous slide (10, 10, 12-bit offset)
 - Intermediate page tables called "Directories"

- P: Present (same as "valid" bit in other architectures)
- W: Writeable
- U: User accessible
- PWT: Page write transparent: external cache write-through
- PCD: Page cache disabled (page cannot be cached)
 - A: Accessed: page has been accessed recently
 - D: Dirty (PTE only): page has been modified recently
 - L: L=1⇒4MB page (directory only). Bottom 22 bits of virtual address serve as offset Kubiatowicz CS162 ©UCB Fall 2006 Lec 13.7


- · Pros:
 - Only need to allocate as many page table entries as we need for application » In other wards, sparse address spaces are easy
 - Easy memory allocation
 - Easy Sharing
 - » Share at segment or page level (need additional reference counting)
- · Cons:
 - One pointer per page (typically 4K 16K pages today)
 - Page tables need to be contiguous
 - » However, previous example keeps tables to exactly one page in size
 - Two (or more, if >2 levels) lookups per reference » Seems very expensive!
- Really starts to be a problem for 64-bit address space:

- How big is	virtual memor	y space vs	physical	memory?
0/16/06	Kubiatowicz CS	162 ©UCB Fall 20	06	Lec 13.6

Examples of how to use a PTE

- How do we use the PTE?
 - Invalid PTE can imply different things:
 - » Region of address space is actually invalid or
 - » Page/directory is just somewhere else than memory
 - Validity checked first
 - » OS can use other (say) 31 bits for location info
- Usage Example: Demand Paging

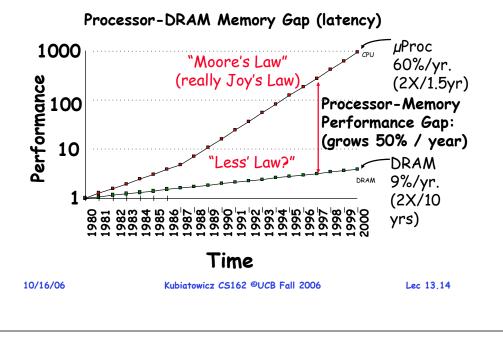
 - Keep only active pages in memory Place others on disk and mark their PTEs invalid
- Usage Example: Copy on Write
 - UNIX fork gives copy of parent address space to child » Address spaces disconnected after child created
 - How to do this cheaply?
 - » Make copy of parent's page tables (point at same memory)
 - » Mark entries in both sets of page tables as read-only
 - » Page fault on write creates two copies
- Usage Example: Zero Fill On Demand
 - New data pages must carry no information (say be zeroed)
 - Mark PTEs as invalid; page fault on use gets zeroed page - Often, OS creates zeroed pages in background

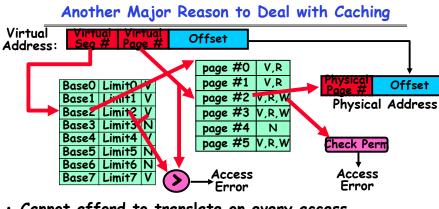
- hardware can also do in software (possibly expensive)
- Protection via Strong Typing
 - Restrict programming language so that you can't express program that would trash another program
 - Loader needs to make sure that program produced by valid compiler or all bets are off
 - Example languages: LISP, Ada, Modula-3 and Java
- Protection via software fault isolation:
 - Language independent approach: have compiler generate object code that provably can't step out of bounds
 - » Compiler puts in checks for every "dangerous" operation (loads, stores, etc). Again, need special loader.
 - » Alternative, compiler generates "proof" that code cannot do certain things (Proof Carrying Code)

- Or: use virtual machine to guarantee safe behavior (loads and stores recompiled on fly to check bounds) Kubiatowicz C5162 ©UCB Fall 2006 10/16/06 Lec 13,11

- Also will get solutions up very soon!
- Project 2 is started!
 - We moved the design document due date to Wednesday (10/18) at 11:59pm
 - Always keep up with the project schedule by looking on the "Lectures" page
- Make sure to come to sections!
 - There will be a lot of information about the projects that I cannot cover in class
 - Also supplemental information and detail that we don't have time for in class

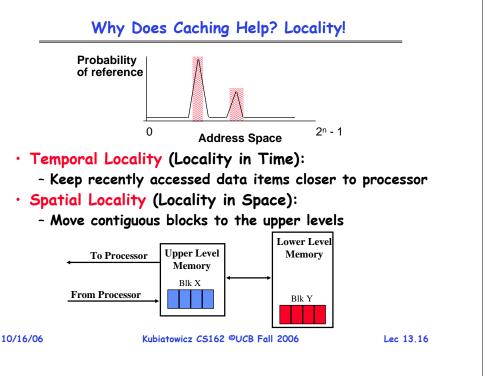
Caching Concept




- Cache: a repository for copies that can be accessed more quickly than the original
 - Make frequent case fast and infrequent case less dominant
- Caching underlies many of the techniques that are used today to make computers fast
 - Can cache: memory locations, address translations, pages, file blocks, file names, network routes, etc...
- Only good if:
 - Frequent case frequent enough and
 - Infrequent case not too expensive
- Important measure: Average Access time = (Hit Rate × Hit Time) + (Miss Rate × Miss Time)
- 10/16/06

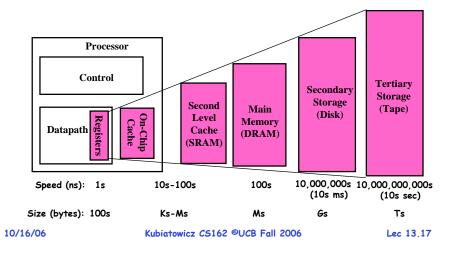
Kubiatowicz CS162 ©UCB Fall 2006

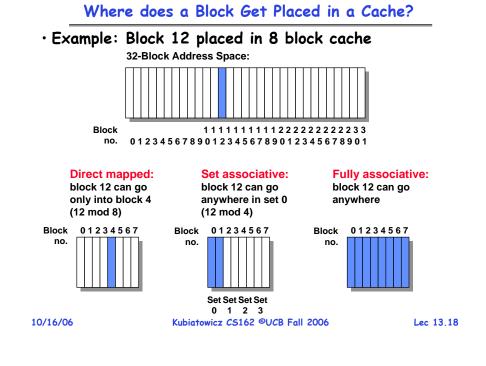
Lec 13,13



· Cannot afford to translate on every access

- At least three DRAM accesses per actual DRAM access


- Or: perhaps I/O if page table partially on disk!
- Even worse: What if we are using caching to make memory access faster than DRAM access???
- Solution? Cache translations!


```
- Translation Cache: TLB ("Translation Lookaside Buffer")
10/16/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 13.15
```


Memory Hierarchy of a Modern Computer System

- Take advantage of the principle of locality to:
 - Present as much memory as in the cheapest technology
 - Provide access at speed offered by the fastest technology

A Summary on Sources of Cache Misses

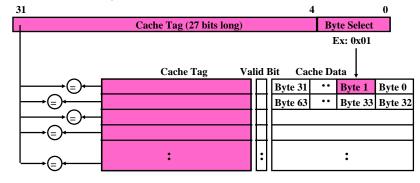
- · Compulsory (cold start or process migration, first reference): first access to a block
 - "Cold" fact of life: not a whole lot you can do about it
 - Note: If you are going to run "billions" of instruction, Compulsory Misses are insignificant
- Capacity:
 - Cache cannot contain all blocks access by the program
 - Solution: increase cache size
- Conflict (collision):
 - Multiple memory locations mapped to the same cache location
 - Solution 1: increase cache size
 - Solution 2: increase associativity
- Coherence (Invalidation): other process (e.g., I/O) updates memory 10/16/06 Kubiatowicz C5162 ©UCB Fall 2006 Lec 13,19

How is a Block found in a Cache?

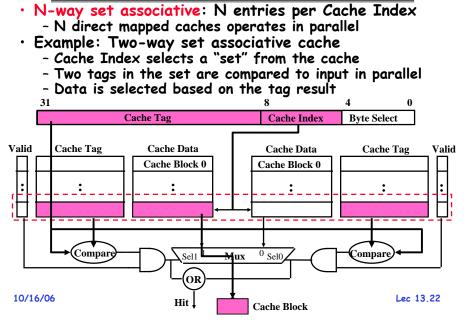
Data Select

- Index Used to Lookup Candidates in Cache
 - Index identifies the set
- Tag used to identify actual copy
 - If no candidates match, then declare cache miss
- Block is minimum quantum of caching
 - Data select field used to select data within block
 - Many caching applications don't have data select field

Review: Direct Mapped Cache


• Direct Mapped 2^N byte cache:

- The uppermost (32 N) bits are always the Cache Tag
- The lowest M bits are the Byte Select (Block Size = 2^{M})
- Example: 1 KB Direct Mapped Cache with 32 B Blocks
 - Index chooses potential block
 - Tag checked to verify block
 - Byte select chooses byte within block



Review: Fully Associative Cache

- Fully Associative: Every block can hold any line
 - Address does not include a cache index
 - Compare Cache Tags of all Cache Entries in Parallel
- Example: Block Size=32B blocks
 - We need N 27-bit comparators
 - Still have byte select to choose from within block

Review: Set Associative Cache

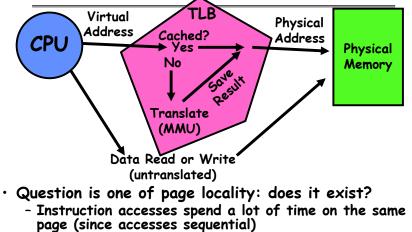
Review: Which block should be replaced on a miss?

- Easy for Direct Mapped: Only one possibility
- Set Associative or Fully Associative:
 - Random
 - LRU (Least Recently Used)

	2-	2-way		4-way		8-way LRU Random	
Size	LRU	Random	LRU	Random	LRU	Random	
16 KB	5.2%	5.7%	4.7%	5.3%	4.4%	5.0%	
64 KB	1.9%	2.0%	1.5%	1.7%	1.4%	1.5%	
256 KB	1.15%	1.17%	1.13%	1.13%	1.12%	1.12%	

Lec 13.23

Review: What happens on a write?


- Write through: The information is written to both the block in the cache and to the block in the lower-level memory
- Write back: The information is written only to the block in the cache.
 - Modified cache block is written to main memory only when it is replaced
 - Question is block clean or dirty?
- Pros and Cons of each?
 - WT:
 - » PRO: read misses cannot result in writes
 - » CON: Processor held up on writes unless writes buffered
 - WB:
 - » PRO: repeated writes not sent to DRAM processor not held up on writes
 - » CON: More complex Read miss may require writeback of dirty data

```
10/16/06
```

```
Kubiatowicz CS162 ©UCB Fall 2006
```

Lec 13.25

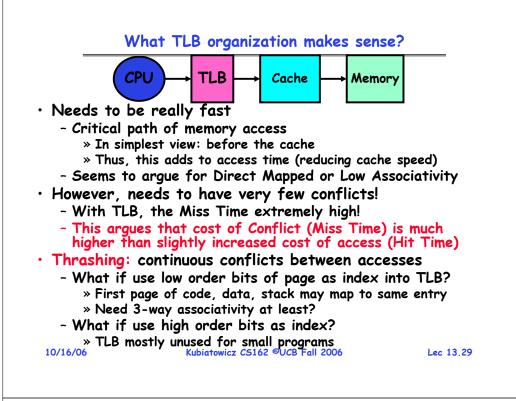
Caching Applied to Address Translation

- Stack accesses have definite locality of reference
- Data accesses have less page locality, but still some...
- Can we have a TLB hierarchy?
- Sure: multiple levels at different sizes/speeds

Lec 13.26

What Actually Happens on a TLB Miss?

• Hardware traversed page tables:


- On TLB miss, hardware in MMU looks at current page table to fill TLB (may walk multiple levels)
 - » If PTE valid, hardware fills TLB and processor never knows
 - » If PTE marked as invalid, causes Page Fault, after which kernel decides what to do afterwards
- Software traversed Page tables (like MIPS)
 - On TLB miss, processor receives TLB fault
 - Kernel traverses page table to find PTE
 - » If PTE valid, fills TLB and returns from fault
 - » If PTE marked as invalid, internally calls Page Fault handler
- Most chip sets provide hardware traversal
 - Modern operating systems tend to have more TLB faults since they use translation for many things
 - Examples:
 - » shared segments
 - » user-level portions of an operating system

What happens on a Context Switch?

- Need to do something, since TLBs map virtual addresses to physical addresses
 - Address Space just changed, so TLB entries no longer valid!
- Options?
 - Invalidate TLB: simple but might be expensive
 - » What if switching frequently between processes?
 - Include ProcessID in TLB
 - » This is an architectural solution: needs hardware
- What if translation tables change?
 - For example, to move page from memory to disk or vice versa...
 - Must invalidate TLB entry!
 - » Otherwise, might think that page is still in memory!

Lec 13.27

10/16/06

TLB organization: include protection

- How big does TLB actually have to be?
 - -Usually small: 128-512 entries
 - -Not very big, can support higher associativity
- TLB usually organized as fully-associative cache
 - Lookup is by Virtual Address
 - Returns Physical Address + other info
- What happens when fully-associative is too slow?
 - Put a small (4-16 entry) direct-mapped cache in front
 - Called a "TLB Slice"
- Example for MIPS R3000:

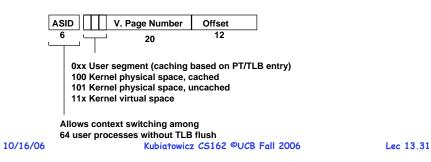
Virtual Address	Physical Address	Dirty	Ref	Valid	Access	ASIC
0xFA00	0x0003	Y	Ν	Y	R/W	34
0x0040	0x0010	Ν	Υ	Y	R	0
0x0041	0x0011	Ν	Υ	Y	R	0

```
10/16/06
```

Kubiatowicz CS162 ©UCB Fall 2006

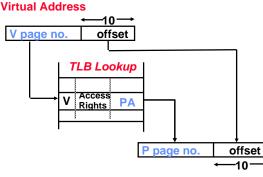
Lec 13.30

Example: R3000 pipeline includes TLB "stages"


MIPS R3000 Pipeline

Inst Fetch		Dcd/	Reg	ALU	/ E.A	Memory	Write Reg
TLB I-Cac		he	RF	Oper	ation		WB
				E.A.	TLB	D-Cache	

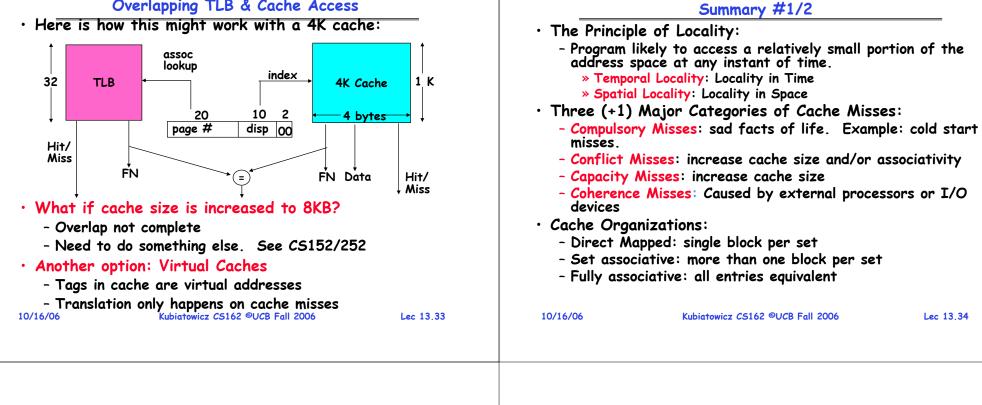
TLB


64 entry, on-chip, fully associative, software TLB fault handler

Virtual Address Space

Reducing translation time further

• As described, TLB lookup is in serial with cache lookup:


Physical Address

- Machines with TLBs go one step further: they overlap TLB lookup with cache access.
 - Works because offset available early

```
10/16/06
```

Kubiatowicz CS162 ©UCB Fall 2006

Overlapping TLB & Cache Access

Lec 13.34

Summary #2/2: Translation Caching (TLB)

	—	
• PTE: Page Table - Includes physic - Control info (vo		, etc)
 A cache of trans Buffer" (TLB) 	slations called a "Translation	n Lookaside
- Relatively smal	l number of entries (< 512)	
- Fully Associativ	ve (Since conflict misses expen	sive)
- TLB entries co	ntain PTE and optional process	ID
・On TLB miss, po	ge table must be traversed	
- If located PTE	is invalid, cause Page Fault	
\cdot On context swite	ch/change in page table	
- TLB entries mu	ist be invalidated somehow	
\cdot TLB is logically i	in front of cache	
- Thus, needs to	be overlapped with cache acco	ess to be
10/16/06 really fast	Kubiatowicz CS162 ©UCB Fall 2006	Lec 13.35