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Review: Exceptions: Traps and Interrupts
+ A system call insfruction causes a synchronous
exception (or “trap”)
- In fact, often called a software “trap” instruction
* Other sources of synchronous exceptions:

- Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

- Segmentation Fault (address out of range)
- Page Fault (for illusion of infinite-sized memory)
* Interrupts are Asynchronous Exceptions
- Examples: timer, disk ready, network, etc....
- Interrupts can be disabled, traps cannot!
+ On system call, exception, or interrupt:
- Hardware enters kernel mode with interrupts disabled
- Saves PC, then jumps to appropriate handler in kernel

- For some processors (x86), processor also saves
registers, changes stack, etc.

* Actual handler %pically saves registers, other CPU
o §5gTe. and switches to kennelSinck, Lec 13.2

Review: Multi-level Translation
* What about a Tree of Tables?
- Lowest level page table=>memory still allocated with bitmap
- Higher levels often segmented
* Could have any number of levels. Example (top segment):

Virtual
Address: Offset
page #0 | V,R '
Base0| Limi page #1 | V.R Offset
Basel [Liffitl |V ;
page #3 Physical Address
Base3 | Limit page #4| N
Base4 | Limit4
Base5 | Limit page #5 V.R.W
Base6 | Limit6 [N Access R
Base7 |Limit7 |V z:>_'Err'or Acces;

* What must be saved/restored on context switch?
- Contents of top-level segment registers (for this example)

- Pointer to top-level table (page table)
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* Tree of Page Tables
* Tables fixed size (1024 entries)

- Sometimes, top-level page tables

* Each entry called a (surprise!)

Review: Two-level page table
\ViNTelal

12 bits Address:

10 bits 10 bits

Virtual
Address:

PageTablePtr

— 4 bytes «—

- On context-switch: save single
PageTablePtr register

called “directories” (Intel)

— 4 bytes «—

Page Table Entry (PTE)
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Goals for Today

- Finish discussion of Address Translation
* Caching and TLBs

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
10/16/06
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Multi-level Translation Analysis

* Pros:
- Only need to allocate as many page table entries as we
need for application
» In other wards, sparse address spaces are easy
- Easy memory allocation
- Easy Sharing

» Share at segment or page level (need additional reference
counting)

+ Cons:
- One pointer per page (typically 4K - 16K pages today)
- Page tables need to be contiguous
» However, previous example keeps tables to exactly one
page in size
- Two (or more, if >2 levels) lookups per reference
» Seems very expensive!
* Really starts to be a problem for 64-bit address
space:

- How big is virtual memory space vs physical memory?
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What is in a PTE?

* What is in a Page Table Entry (or PTE)?

- Pointer to next-level page table or to actual page

- Permission bits: valid, read-only, read-write, write-only

+ Example: Intel x86 architecture PTE:

- Address same format previous slide (10, 10, 12-bit offset)
- Intermediate page tables called "Directories”

Page Frame Number Free o2
(Physical Page Number) | (08) |°|*[P A 8| §|” W|P
31-12 11-9 876543210
P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=1=4MB page (directory only).

Bottom 22 bits of virtual address serve as offset
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Examples of how to use a PTE

How do we use the PTE?
- Invalid PTE can imply different things:
» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory
- Validity checked first
» OS can use other (say) 31 bits for location info
Usage Example: Demand Paging
- Keep only active Jm es in memory
- Place others on disk and mark their PTEs invalid
Usage Example: Copy on Write
- UNIX fork gives copy of parent address space to child
» Address spaces disconnected after child created
- How to do this cheaply?
» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies
Usage ngample: Zero Fill On Demand
- New data pages must carry no information (say be zeroed)
- Mark PTEs as invalid: page fault on use gets zeroed page
- Often, OS creates zeroed pages in background
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How is the translation accomplished?

Virtual Physical §
Addresses Addresses

* What, exactly happens inside MMU?
* One possibility: Hardware Tree Traversal

- For each virtual address, takes page table base pointer
and traverses the page table in hardware

- Generates a "Page Fault” if it encounters invalid PTE
» Fault handler will decide what to do
» More on this next lecture

- Pros: Relatively fast (but still many memory accessesl!)

- Cons: Inflexible, Complex hardware

* Another possibility: Software

- Each traversal done in software

- Pros: Very flexible

- Cons: Every translation must invoke Fault!

+ In fact, need way to cache translations for either casel!
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Inverted Page Table

+ With all previous examples ( Forward Page Tables")
- Size of page table is at least as large as amount of
virtual memory allocated to processes
- Physical memory may be much less
» Much of process space may be out on disk or not in use

Hash
Table

* Answer: use a hash table

- Called an "Inverted Page Table”

- Size is independent of virtual address space

- Directly related to amount of physical memory

- Very attractive option for 64-bit address spaces
+ Cons: Complexity of managing hash changes

- i |
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Closing thought: Protection without Hardware

* Does protection require hardware support for
translation and dual-mode behavior?
- No: Normally use hardware, but anyfhinq you can do in
hardware can also do in software (possibly expensive)
* Protection via Strong Typing
- Restrict pro ramming language so that you can't express
program that would trash another program
- Loader needs to make sure that program produced by
valid compiler or all bets are off
- Example languages: LISP, Ada, Modula-3 and Java
* Protection via software fault isolation:
- Language independent approach: have compiler generate
object code that provably can't step out of bounds
» Compiler puts in checks for every “dangerous” operation
(loads, stores, efc). Again, need special loader.
» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)
- Or: use virtual machine to guarantee safe behavior

(loads and stores recompiled on flg to check bounds
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Administrivia

- Still grading exam
- Will announce results as soon as possible
- Also will get solutions up very soon!
* Project 2 is started!
- We moved the design document due date to Wednesday
(10/18) at 11:59pm
- Always keep up with the project schedule by looking on
the “Lectures” page
* Make sure to come to sections!
- There will be a lot of information about the projects
that I cannot cover in class
- Also supplemental information and detail that we don't
have time for in class
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Caching Concept

* Cache: a repository for copies that can be accessed
more quickly than the original
- Make frequent case fast and infrequent case less dominant
* Caching underlies many of the techniques that are used
today o make computers fast
- Can cache: memory locations, address translations, pages,
file blocks, file names, network routes, etc..
* Only good if:
- Frequent case frequent enough and
- Infrequent case not too expensive
* Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)
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Why Bother with Caching?

Processor-DRAM Memory Gap (latency)

1000, T ~ WProc
Moore's Law 60%/yr.
9 (really Joy's Law) (2X/1.5yr)
g 100 .......................................................... P r'ocessor-Memory
E Performance Gap:
10| (grows 50% / year)
S "Less’ Law?" ~ DRAM
a. DRAM 9°/°/yr|.
1= (2X/10
O ame I ONnO=nmitioo!No/ane
DO NVDVDONDDVVONRANRNANNRNRN OO yrs)
QA2 T22Q222222TTTT222AR
Time
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Another Major Reason to Deal with Caching

Virtual
Address:
page #0 | VR y
BaseO [ LimitQ47" page z; VR |_» Offset
Basel | Linfit1 [V page R, .
=== BaseZ| Limi page #3 V.R,W Physical Address

Base3 | Limit page #4 | N
Base4 |Limit4
Baseb | Limit5 page #5 V.R.W ee IR
Base6 | Limit6 /N Access Access
B — b
ase7 | Limit7 |V — Error Error

+ Cannot afford to translate on every access
- At least three DRAM accesses per actual DRAM access
- Or: perhaps I/0 if page table partially on disk!
+ Even worse: What if we are using caching to make
memory access faster than DRAM access???
+ Solution? Cache translations!

- Translation Cache: TLB ("Translation Lookaside Buffer'"l)
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Why Does Caching Help? Locality!

Probability
of reference

0 Address Space

 Temporal Locality (Locality in Time):

- Keep recently accessed data items closer to processor
* Spatial Locality (Locality in Space):

- Move contiguous blocks to the upper levels

Lower Level
ToProcessor | Upper Level Memory
Memory
Blk X
From Processor BIKY
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Memory Hierarchy of a Modern Computer System

* Take advantage of the principle of locality to:
- Present as much memory as in the cheapest technology

- Provide access at speed offered by the fastest technology

Processor

Control

Datapath
Speed (ns): 1s 10s-100s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)
Size (bytes): 100s Ks-Ms Ms Gs Ts
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Where does a Block Get Placed in a Cache?

+ Example: Block 12 placed in 8 block cache

32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Direct mapped: Set associative: Fully associative:
block 12 can go block 12 can go block 12 can go
only into block 4 anywhere in set 0 anywhere
(12 mod 8) (12 mod 4)
Block 01234567 Block 01234567 Block 01234567
no. no. no.

. T
Set Set Set Set
01 2 3
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A Summary on Sources of Cache Misses

* Compulsory (cold start or process migration, first
reference): first access to a block

- "Cold” fact of life: not a whole lot you can do about it

- Note: If you are going to run “billions” of instruction,
Compulsory Misses are insignificant

* Capacity:
- Cache cannot contain all blocks access by the program
- Solution: increase cache size
+ Conflict (collision):
- Multiple memory locations mapped
to the same cache location
- Solution 1: increase cache size
- Solution 2: increase associativity

+ Coherence (Invalidation): other process (e.g., I/0)

ggga'res memory
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How is a Block found in a Cache?

Set Select

Data Select
* Index Used to Lookup Candidates in Cache
- Index identifies the set
* Tag used to identify actual copy
- If no candidates match, then declare cache miss
* Block is minimum quantum of caching
- Data select field used to select data within block
- Many caching applications don't have data select field

10/16/06 Kubiatowicz €S5162 ©UCB Fall 2006 Lec 13.20




Review: Direct Mapped Cache

+ Direct Mapped 2N byte cache:
- The uppermost (32 - N) bits are always the Cache Ta%\
- The lowest M bits are the Byte Select (Block Size = 2
. Examcrle: 1 KB Direct Mapped Cache with 32 B Blocks
- Index chooses potential block
- Tag checked to verify block
- Byte select chooses byte within block

)

31 9 4 0
| Cache Tag | cachelndex | ByteSelect |
Ex: 0x50 Ex: Ox01 Ex: 0x00
Valid Bit CacheTag Cache Data
I PP L. |Bytedh].... 1 Byte.]. 1 Byig0. L0
|| 0x50 Byte 63| - - | Byte 33| Byte 32| 1¢—
[ Byte1023 -+  Byte992]3l
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Review: Set Associative Cache

* N-way set associative: N entries per Cache Index
- N direct mapped caches operates in parallel

- Example: Two-way set associative cache
- Cache Index selects a "set” from the cache
- Two tags in the set are compared to input in parallel
- Data is selected based on the tag result

31 8 4 0
[ Cache Tag | Cachelndex | Byteselect |
S|
Valid Cache Tag Cache Data Cache Data CacheTag Valid

Cache Block 0 Cache Block 0
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Review: Fully Associative Cache

* Fully Associative: Every block can hold any line

- Address does not include a cache index

- Compare Cache Tags of all Cache Entries in Parallel
+ Example: Block Size=32B blocks

- We need N 27-bit comparators

- Still have byte select to choose from within block

31 4 0
| Cache Tag (27 bitslong) | Byteselect |
Ex: 0x01
Cache Tag Valid Bit  Cache Data
——()—] Byte31] -- [Bytel | ByteO

©® Byte63| - - |Byte 33| Byte 32

)

)

Q)

)
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Review: Which block should be replaced on a miss?

+ Easy for Direct Mapped: Only one possibility
+ Set Associative or Fully Associative:

- Random

- LRU (Least Recently Used)

2-way 4-way 8-way
Size  LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 47% 5.3% 4.4% 5.0%
64KB 19% 20% 15% 17% 14% 15%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

10/16/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 13.24




Review: What happens on a write?

© Write through: The information is written to both the
block in the cache and to the block in the lower-level
memory
+ Write back: The information is written only to the
block in the cache.
- Modified cache block is written to main memory only
when it is replaced
- Question is block clean or dirty?
* Pros and Cons of each?
- WT:
» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered
- WB:
» PRO: repeated writes not sent to DRAM
processor not held up on writes

» CON: More complex
Read miss may require writeback of dirty data
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Caching Applied to Address Translation
O

Virtual TLB Physical
Address Cached? Address .
—> Yes > —p | Physical
No 9 Memory
| 4
&

Translate
(MMV)

Data Read or Write
(untranslated)
* Question is one of page locality: does it exist?

- Instruction accesses spend a lot of time on the same
page (since accesses sequential)

- Stack accesses have definite locality of reference
- Data accesses have less page locality, but still some...
+ Can we have a TLB hierarchy?

- Sure: multiple levels at different sizes/speeds
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What Actually Happens on a TLB Miss?

* Hardware traversed page tables:

- On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)
» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which
kernel decides what to do afterwards

+ Software traversed Page tables (like MIPS)
- On TLB miss, processor receives TLB fault
- Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler
* Most chip sets provide hardware traversal

- Modern operating systems tend to have more TLB faults
since they use translation for many things
- Examples:
» shared segments
» user-level portions of an operating system

10/16/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 13.27

What happens on a Context Switch?

* Need to do something, since TLBs map virtual
addresses to physical addresses

- Address Space just changed, so TLB entries no
longer valid!

* Options?
- Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?
- Include ProcessID in TLB
» This is an architectural solution: needs hardware
* What if translation tables change?

- For example, to move page from memory to disk or
vice versa...

- Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!
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What TLB organization makes sense?

TLB —| Cache »| Memory

* Needs to be really fast
- Critical path of memory access
» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)
- Seems to argue for Direct Mapped or Low Associativity
+ However, needs to have very few conflicts!
- With TLB, the Miss Time extremely high!
- This arques that cost of Conflict (Miss Time) is much
higher than slightly increased cost of access (Hit Time)
* Thrashing: continuous conflicts between accesses
- What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?
- What if use high order bits as index?

» TLB mostly unused for small programs
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TLB organization: include protection

* How big does TLB actually have to be?
- Usually small: 128-512 entries
- Not very big, can support higher associativity
* TLB usually organized as fully-associative cache
- Lookup is by Virtual Address
- Returns Physical Address + other info
* What happens when fully-associative is too slow?
- Put a small (4-16 entry) direct-mapped cache in front
- Called a "TLB Slice”
* Example for MIPS R3000:

Virtual Address | Physical Address | Dirty | Ref | Valid | Access|ASID
OxFAO00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0
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Example: R3000 pipeline includes TLB “stages”

MIPS R3000 Pipeline
|Inst Fetch | Dcd/ Reg |ALU | EA | Memory | Write Reg |
|TLB | I-Cache | RF | Operation | | WB |
| EA.| TLB | D-Cache |

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Virtual Address Space

|ASID || | | | V. Page Number | Offset |
6

\_|_l 20 12

Oxx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached

101 Kernel physical space, uncached

11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush
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Reducing translation time further

* As described, TLB lookup is in serial with cache lookup:
Virtual Address

[V pageno. | offset |
|

TLB Lookup

AcCCess
V  Rights; PA

|P page no. | offset |

Physical Address

* Machines with TLBs go one step further: they overlap
TLB lookup with cache access.

- Works because offset available early
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Overlapping TLB & Cache Access
+ Here is how This might work with a 4K cache:
[ IGSS[?C ‘
ooxup index

32 TLB ‘—’ ’—' 4K Cache 1K
| ” |

10 2 [ ——4bytes—
[page # [ disp Jog

Hit/
Miss

FN FN Data Hit/
Miss

* What if cache size is increased to 8KB?

- Overlap not complete

- Need to do something else. See €S152/252
* Another option: Virtual Caches

- Tags in cache are virtual addresses

- Translation only happens on cache misses
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Summary #1/2

* The Principle of Locality:

- Program likely to access a relatively small portion of the
address space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space
* Three (+1) Major Categories of Cache Misses:

- Compulsory Misses: sad facts of life. Example: cold start
misses.

- Conflict Misses: increase cache size and/or associativity
- Capacity Misses: increase cache size

- Coherence Misses: Caused by external processors or I/0
devices

* Cache Organizations:
- Direct Mapped: single block per set
- Set associative: more than one block per set
- Fully associative: all entries equivalent
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Summary #2/2: Translation Caching (TLB)

* PTE: Page Table Entries
- Includes physical page number
- Control info (valid bit, writeable, dirty, user, etc)

« A cache of translations called a “"Translation Lookaside
Buffer” (TLB)

- Relatively small number of entries (< 512)
- Fully Associative (Since conflict misses expensive)
- TLB entries contain PTE and optional process ID
* On TLB miss, page table must be traversed
- If located PTE is invalid, cause Page Fault
* On context switch/change in page table
- TLB entries must be invalidated somehow
* TLB is logically in front of cache
- Thus, needs to be overlapped with cache access to be

ol 6¢1lly fast
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