
CS162
Operating Systems and
Systems Programming

Lecture 22

Networking II

November 15, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 22.211/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Hierarchical Networking (The Internet)

• How can we build a network with millions of hosts?
– Hierarchy! Not every host connected to every other one
– Use a network of Routers to connect subnets together

subnet1

subnet2

Router

Other
subnets

Router

Router

Transcontinental
Link

subnet3Other
subnets

Lec 22.311/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Network Protocols
• Protocol: Agreement between two parties as to how

information is to be transmitted
– Physical level: mechanical and electrical network (e.g. how
are 0 and 1 represented)

– Link level: packet formats/error control (for instance, the
CSMA/CD protocol)

– Network level: network routing, addressing
– Transport Level: reliable message delivery

• Protocols on today’s Internet:

Ethernet ATM Packet radio

IP
UDP TCP

RPC
NFS WWW e-mail ssh

Physical/Link

Network

Transport

Lec 22.411/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Basic Networking Limitations
• The physical/link layer is pretty limited

– Packets of limited size
» Maximum Transfer Unit (MTU): often 200-1500 bytes

– Packets can get lost or garbled
– Hardware routing limited to physical link or switch
– Physical routers crash/links get damaged

» Baltimore tunnel fire (July 2001): cut major Internet links
• Handling Arbitrary Sized Messages:

– Must deal with limited physical packet size
– Split big message into smaller ones (called fragments)

» Must be reassembled at destination
» May happen on demand if packet routed through areas of

reduced MTU (e.g. TCP)
– Checksum computed on each fragment or whole message

• Need resilient routing algorithms to send messages on
wide area
– Multi-hop routing mechanisms
– Redundant links/Ability to route around failed links

Lec 22.511/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: IP Packet Format
• IP Packet Format:

• Each protocol represents different packet formats
after first 20 bytes:
– Examples: ICMP(1), TCP(6), UDP (17), IPSEC(50,51)

16-bit identification
ToS4

13-bit frag off
Total length(16-bits)

protocolTTL 16-bit header checksum
32-bit source IP address

32-bit destination IP address

IHL
flags

options (if any)

Data

0 15 16 31
IP Ver4

IP Header
Length

Size of datagram
(header+data)

Flags &
Fragmentation
to split large

messages

Time to
Live (hops)

Type of
transport
protocol

IP header
20 bytes

Lec 22.611/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Networking
– Reliable Messaging

» TCP windowing and congestion avoidance
– Two-phase commit

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 22.711/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Building a messaging service
• Process to process communication

– Basic routing gets packets from machine→machine
– What we really want is routing from process→process

» Add “ports”, which are 16-bit identifiers
» A communication channel (connection) defined by 5 items:

[source addr, source port, dest addr, dest port, protocol]
• UDP: The Unreliable Datagram Protocol

– Layered on top of basic IP (IP Protocol 17)
» Datagram: an unreliable, unordered, packet sent from

source user → dest user (Call it UDP/IP)

– Important aspect: low overhead!
» Often used for high-bandwidth video streams
» Many uses of UDP considered “anti-social” – none of the

“well-behaved” aspects of (say) TCP/IP

UDP Data

16-bit UDP length 16-bit UDP checksum
16-bit source port 16-bit destination port

IP Header
(20 bytes)

Lec 22.811/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Performance Considerations
• Before continue, need some performance metrics

– Overhead: CPU time to put packet on wire
– Throughput: Maximum number of bytes per second

» Depends on “wire speed”, but also limited by slowest router
(routing delay) or by congestion at routers

– Latency: time until first bit of packet arrives at receiver
» Raw transfer time + overhead at each routing hop

• Contributions to Latency
– Wire latency: depends on speed of light on wire

» about 1–1.5 ns/foot
– Router latency: depends on internals of router

» Could be < 1 ms (for a good router)
» Question: can router handle full wire throughput?

Router Router

LR1 LR2LW1 LW2 Lw3

Lec 22.911/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Sample Computations
• E.g.: Ethernet within Soda

– Latency: speed of light in wire is 1.5ns/foot, which
implies latency in building < 1 μs (if no routers in path)

– Throughput: 10-1000Mb/s
– Throughput delay: packet doesn’t arrive until all bits

» So: 4KB/100Mb/s = 0.3 milliseconds (same order as disk!)
• E.g.: ATM within Soda

– Latency (same as above, assuming no routing)
– Throughput: 155Mb/s
– Throughput delay: 4KB/155Mb/s = 200μ

• E.g.: ATM cross-country
– Latency (assuming no routing):

» 3000miles * 5000ft/mile ⇒ 15 milliseconds
– How many bits could be in transit at same time?

» 15ms * 155Mb/s = 290KB
– In fact, Berkeley→MIT Latency ~ 45ms

» 872KB in flight if routers have wire-speed throughput
• Requirements for good performance:

– Local area: minimize overhead/improve bandwidth
– Wide area: keep pipeline full!

Lec 22.1011/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Sequence Numbers
• Ordered Messages

– Several network services are best constructed by
ordered messaging
» Ask remote machine to first do x, then do y, etc.

– Unfortunately, underlying network is packet based:
» Packets are routed one at a time through the network
» Can take different paths or be delayed individually

– IP can reorder packets! P0,P1 might arrive as P1,P0
• Solution requires queuing at destination

– Need to hold onto packets to undo misordering
– Total degree of reordering impacts queue size

• Ordered messages on top of unordered ones:
– Assign sequence numbers to packets

» 0,1,2,3,4…..
» If packets arrive out of order, reorder before delivering to

user application
» For instance, hold onto #3 until #2 arrives, etc.

– Sequence numbers are specific to particular connection
» Reordering among connections normally doesn’t matter

– If restart connection, need to make sure use different
range of sequence numbers than previously…

Lec 22.1111/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Reliable Message Delivery: the Problem
• All physical networks can garble and/or drop packets

– Physical media: packet not transmitted/received
» If transmit close to maximum rate, get more throughput –

even if some packets get lost
» If transmit at lowest voltage such that error correction just

starts correcting errors, get best power/bit
– Congestion: no place to put incoming packet

» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two host try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender send faster than receiver

can process?
• Reliable Message Delivery on top of Unreliable Packets

– Need some way to make sure that packets actually make
it to receiver
» Every packet received at least once
» Every packet received at most once

– Can combine with ordering: every packet received by
process at destination exactly once and in order

Lec 22.1211/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Using Acknowledgements

• How to ensure transmission of packets?
– Detect garbling at receiver via checksum, discard if bad
– Receiver acknowledges (by sending “ack”) when packet
received properly at destination

– Timeout at sender: if no ack, retransmit
• Some questions:

– If the sender doesn’t get an ack, does that mean the
receiver didn’t get the original message?
» No

– What if ack gets dropped? Or if message gets delayed?
» Sender doesn’t get ack, retransmits. Receiver gets message

twice, acks each.

BA
Packet

ack

BA

Packet

ack

Packet
Timeout

Lec 22.1311/15/06 Kubiatowicz CS162 ©UCB Fall 2006

BA Pkt #0

Ack #0
Pkt #1

Ack #1
Pkt #0

Ack #0

How to deal with message duplication
• Solution: put sequence number in message to identify

re-transmitted packets
– Receiver checks for duplicate #’s; Discard if detected

• Requirements:
– Sender keeps copy of unack’ed messages

» Easy: only need to buffer messages
– Receiver tracks possible duplicate messages

» Hard: when ok to forget about received message?
• Alternating-bit protocol:

– Send one message at a time; don’t send
next message until ack received

– Sender keeps last message; receiver
tracks sequence # of last message received

• Pros: simple, small overhead
• Con: Poor performance

– Wire can hold multiple messages; want to
fill up at (wire latency × throughput)

• Con: doesn’t work if network can delay
or duplicate messages arbitrarily

Lec 22.1411/15/06 Kubiatowicz CS162 ©UCB Fall 2006

BA
Better messaging: Window-based acknowledgements

N=5 Q
ueue

ack
#0

ack
#4

pkt#0

pkt#4

• Window based protocol (TCP):
– Send up to N packets without ack

» Allows pipelining of packets
» Window size (N) < queue at destination

– Each packet has sequence number
» Receiver acknowledges each packet
» Ack says “received all packets up

to sequence number X”/send more
• Acks serve dual purpose:

– Reliability: Confirming packet received
– Flow Control: Receiver ready for packet

» Remaining space in queue at receiver
can be returned with ACK

• What if packet gets garbled/dropped?
– Sender will timeout waiting for ack packet

» Resend missing packets⇒ Receiver gets packets out of order!
– Should receiver discard packets that arrive out of order?

» Simple, but poor performance
– Alternative: Keep copy until sender fills in missing pieces?

» Reduces # of retransmits, but more complex
• What if ack gets garbled/dropped?

– Timeout and resend just the un-acknowledged packets

Lec 22.1511/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia
• Projects:

– Project 3 code due tomorrow
– Project 4 design document due November 28th

» Although this is after Thanksgiving – make good use of
time since this is a difficule project

• MIDTERM II: Dec 4th

» All material from last midterm and up to Wednesday 11/29
» Lectures #13 – 26

• Final Exam
» Sat Dec 16th, 8:00am-11:00am, Bechtel Auditorium
» All Material

• Final Topics: Any suggestions?
– Please send them to me…

Lec 22.1611/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Transmission Control Protocol (TCP)

• Transmission Control Protocol (TCP)
– TCP (IP Protocol 6) layered on top of IP
– Reliable byte stream between two processes on different
machines over Internet (read, write, flush)

• TCP Details
– Fragments byte stream into packets, hands packets to IP

» IP may also fragment by itself
– Uses window-based acknowledgement protocol (to minimize
state at sender and receiver)
» “Window” reflects storage at receiver – sender shouldn’t

overrun receiver’s buffer space
» Also, window should reflect speed/capacity of network –

sender shouldn’t overload network
– Automatically retransmits lost packets
– Adjusts rate of transmission to avoid congestion

» A “good citizen”

Router Router
Stream in: Stream out:
..zyxwvuts gfedcba

Lec 22.1711/15/06 Kubiatowicz CS162 ©UCB Fall 2006

TCP Windows and Sequence Numbers

• Sender has three regions:
– Sequence regions

» sent and ack’ed
» Sent and not ack’ed
» not yet sent

– Window (colored region) adjusted by sender
• Receiver has three regions:

– Sequence regions
» received and ack’ed (given to application)
» received and buffered
» not yet received (or discarded because out of order)

Sequence Numbers

Sent
not acked

Sent
acked

Not yet
sent Sender

Not yet
received

Received
Given to app

Received
Buffered Receiver

Lec 22.1811/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Seq:190
Size:40

Window-Based Acknowledgements (TCP)

Seq:230 A:190/140

Seq:260 A:190/100

Seq:300 A:190/60

Seq:190 A:340/60

Seq:340 A:380/20

Seq:380 A:400/0

A:100/300

Seq:100 A:140/260

Seq:140 A:190/210

100

Seq:100
Size:40

140

Seq:140
Size:50

190

Seq:230
Size:30

230 260

Seq:260
Size:40

300

Seq:300
Size:40

340

Seq:340
Size:40

380

Seq:380
Size:20

400

Retransmit!

Lec 22.1911/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Selective Acknowledgement Option (SACK)

• Vanilla TCP Acknowledgement
– Every message encodes Sequence number and Ack
– Can include data for forward stream and/or ack for
reverse stream

• Selective Acknowledgement
– Acknowledgement information includes not just one
number, but rather ranges of received packets

– Must be specially negotiated at beginning of TCP setup
» Not widely in use (although in Windows since Windows 98)

IP H
eader

(20 bytes)

Sequence N
um

ber
A
ck

N
um

ber

TCP Header

IP
 H

ea
de

r
(2

0
by

te
s)

Se
qu

en
ce

 N
um

be
r

A
ck

N
um

be
r

TCP Header

Lec 22.2011/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Congestion Avoidance
• Congestion

– How long should timeout be for re-sending messages?
» Too long→wastes time if message lost
» Too short→retransmit even though ack will arrive shortly

– Stability problem: more congestion ⇒ ack is delayed ⇒
unnecessary timeout ⇒ more traffic ⇒ more congestion
» Closely related to window size at sender: too big means

putting too much data into network
• How does the sender’s window size get chosen?

– Must be less than receiver’s advertised buffer size
– Try to match the rate of sending packets with the rate
that the slowest link can accommodate

– Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until

acknowledgements start being delayed/lost
• TCP solution: “slow start” (start sending slowly)

– If no timeout, slowly increase window size (throughput)
by 1 for each ack received

– Timeout ⇒ congestion, so cut window size in half
– “Additive Increase, Multiplicative Decrease”

Lec 22.2111/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Sequence-Number Initialization
• How do you choose an initial sequence number?

– When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!
» Receiver might end up discarding valid packets, or duplicate

ack from original transmission might hide lost packet
– Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection

• Some ways of choosing an initial sequence number:
– Time to live: each packet has a deadline.

» If not delivered in X seconds, then is dropped
» Thus, can re-use sequence numbers if wait for all packets

in flight to be delivered or to expire
– Epoch #: uniquely identifies which set of sequence
numbers are currently being used
» Epoch # stored on disk, Put in every message
» Epoch # incremented on crash and/or when run out of

sequence #
– Pseudo-random increment to previous sequence number

» Used by several protocol implementations
Lec 22.2211/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Use of TCP: Sockets
• Socket: an abstraction of a network I/O queue

– Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote

machine (called “network socket”)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket
• Using Sockets for Client-Server (C/C++ interface):

– On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming

connection request
» Each successful accept() returns a new socket for a new

connection; can pass this off to handler thread
– On client:

» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

Lec 22.2311/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Socket Example (Java)
server:

//Makes socket, binds addr/port, calls listen()
ServerSocket sock = new ServerSocket(6013);
while(true) {

Socket client = sock.accept();
PrintWriter pout = new

PrintWriter(client.getOutputStream(),true);

pout.println(“Here is data sent to client!”);
…

client.close();
}

client:
// Makes socket, binds addr/port, calls connect()
Socket sock = new Socket(“169.229.60.38”,6013);
BufferedReader bin =

new BufferedReader(
new InputStreamReader(sock.getInputStream));

String line;
while ((line = bin.readLine())!=null)

System.out.println(line);
sock.close();

Lec 22.2411/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Distributed Applications
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on
different machines
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and

two receivers cannot get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive

Lec 22.2511/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Using Messages: Send/Receive behavior
• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)
– When message is safely buffered on destination?
– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that the receiver actually
received the message?

– When can sender reuse the memory containing message?
• Mailbox provides 1-way communication from T1→T2

– T1→buffer→T2
– Very similar to producer/consumer

» Send = V, Receive = P
» However, can’t tell if sender/receiver is local or not!

Lec 22.2611/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:

Producer:
int msg1[1000];
while(1) {

prepare message;
send(msg1,mbox);

}

Consumer:
int buffer[1000];
while(1) {

receive(buffer,mbox);
process message;

}

• No need for producer/consumer to keep track of space
in mailbox: handled by send/receive
– One of the roles of the window in TCP: window is size of
buffer on far end

– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message

Lec 22.2711/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Messaging for Request/Response communication
• What about two-way communication?

– Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server

– Also called: client-server
» Client ≡ requester, Server ≡ responder
» Server provides “service” (file storage) to the client

• Example: File service
Client: (requesting the file)

char response[1000];

send(“read rutabaga”, server_mbox);
receive(response, client_mbox);

Consumer: (responding with the file)
char command[1000], answer[1000];

receive(command, server_mbox);
decode command;
read file into answer;
send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response Lec 22.2811/15/06 Kubiatowicz CS162 ©UCB Fall 2006

General’s Paradox
• General’s paradox:

– Constraints of problem:
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early

• Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?
– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!

11 am ok?

So, 11 it is?
Yes, 11 works

Yeah, but what it you
Don’t get this ack?

Lec 22.2911/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Two-Phase Commit
• Since we can’t solve the General’s Paradox (i.e.

simultaneous action), let’s solve a related problem
– Distributed transaction: Two machines agree to do
something, or not do it, atomically

• Two-Phase Commit protocol does this
– Use a persistent, stable log on each machine to keep track
of whether commit has happened
» If a machine crashes, when it wakes up it first checks its

log to recover state of world at time of crash
– Prepare Phase:

» The global coordinator requests that all participants will
promise to commit or rollback the transaction

» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “abort” in its

log and tells everyone to abort; each records “abort” in log
– Commit Phase:

» After all participants respond that they are prepared, then
the coordinator writes “commit” to its log

» Then asks all nodes to commit; they respond with ack
» After receive acks, coordinator writes “got commit” to log

– Log can be used to complete this process such that all
machines either commit or don’t commit

Lec 22.3011/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Two phase commit example
• Simple Example: A≡ATM machine, B≡The Bank

– Phase 1:
» A writes “Begin transaction” to log

A→B: OK to transfer funds to me?
» Not enough funds:

B→A: transaction aborted; A writes “Abort” to log
» Enough funds:

B: Write new account balance to log
B→A: OK, I can commit

– Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “commit” to log
» Send message to B that commit occurred; wait for ack
» Write “Got Commit” to log

• What if B crashes at beginning?
– Wakes up, does nothing; A will timeout, abort and retry

• What if A crashes at beginning of phase 2?
– Wakes up, sees transaction in progress; sends “abort” to
B

• What if B crashes at beginning of phase 2?
– B comes back up, look at log; when A sends it “Commit”
message, it will say, oh, ok, commit

Lec 22.3111/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Distributed Decision Making Discussion
• Two-Phase Commit: Blocking

– A Site can get stuck in a situation where it cannot
continue until some other site (usually the coordinator)
recovers.

– Example of how this could happen:
» Participant site B writes a “prepared to commit” record to

its log, sends a “yes” vote to the coordintor (site A) and
crashes

» Site A crashes
» Site B wakes up, check its log, and realizes that it has

voted “yes” on the update. It sends a message to site A
asking what happened. At this point, B cannot change its
mind and decide to abort, because update may have
committed

» B is blocked until A comes back
– Blocking is problematic because a blocked site must hold
resources (locks on updated items, pagespinned in
memory, etc) until it learns fate of update

• Alternative: There are alternatives such as “Three
Phase Commit” which don’t have this blocking problem

Lec 22.3211/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusion
• Layering: building complex services from simpler ones
• Datagram: an independent, self-contained network

message whose arrival, arrival time, and content are
not guaranteed

• Performance metrics
– Overhead: CPU time to put packet on wire
– Throughput: Maximum number of bytes per second
– Latency: time until first bit of packet arrives at receiver

• Arbitrary Sized messages:
– Fragment into multiple packets; reassemble at destination

• Ordered messages:
– Use sequence numbers and reorder at destination

• Reliable messages:
– Use Acknowledgements
– Want a window larger than 1 in order to increase
throughput

• TCP: Reliable byte stream between two processes on
different machines over Internet (read, write, flush)

• Two-phase commit: distributed decision making

