CS162
Operating Systems and
Systems Programming
Lecture 22

Networking II

November 15, 2006
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Hierarchical Networking (The Internet)

+ How can we build a network with millions of hosts?
- Hierarchy! Not every host connected to every other one
- Use a network of Routers to connect subnets together

Other
subnets

~ Transcontinen
outen+ Link

Lec 22.2

Review: Network Protocols

* Profocol: Agreement between fwo parties as fo how
information’is to be transmitted

- Physical level: mechanical and electrical network (e.g. how
are 0 and 1 represented)

- Link level: packet formats/error control (for instance, the
CSMA/CD protocol)
- Network level: network routing, addressing
- Transport Level: reliable message delivery
* Protocols on today's Internet:

ssh

...

...

Physical/Link Ethernet ATM Packet radio

11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.3

Review: Basic Networking Limitations

* The physical/link layer is pretty limited
- Packets of limited size
» Maximum Transfer Unit (MTU): often 200-1500 bytes
- Packets can get lost or garbled
- Hardware routing limited to physical link or switch
- Physical routers crash/links get damaged
» Baltimore tunnel fire (July 2001): cut major Internet links
* Handling Arbitrary Sized Messages:
- Must deal with limited physical packet size
- Split big message into smaller ones (called fragments)
» Must be reassembled at destination
» May happen on demand if packet routed through areas of
reduced MTU (e.g. TCP)
- Checksum computed on each fragment or whole message
* Need resilient routing algorithms to send messages on
wide area
- Multi-hop routing mechanisms
- Redundant links/Ability to route around failed links

11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.4

Review: IP Packet Format
« IP Packet Format:

IP Header Size of datagram Flags &
Length (header+data) Fragmentation
0 15 16 Y g1 to it loge
IP Ver4 —5 7 TIHL| To5 | Total length(16-bits) g
. 16-bit identification |flags| 13-bit frag off
L;;m(i‘gos)\b TTL __l» protocol [16-bit header checksum I;Ohg;:gér
P ~ 32-bit source IP address
Type of _~ 32-bit destination IP address |
transport~” g options (if any) b
protocol 2 Pd
Data

+ Each protocol represents different packet formats
after first 20 bytes:
- Examples: ICMP(1), TCP(6), UDP (17), IPSEC(50,51)

11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.5

Goals for Today

* Networking
- Reliable Messaging
» TCP windowing and congestion avoidance
- Two-phase commit

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.6

Building a messaging service

+ Process To process communication
- Basic routing gets packets from machine—machine
- What we really want is routing from process—process
» Add “ports”, which are 16-bit identifiers
» A communication channel (connection) defined by 5 items:
[source addr, source port, dest addr, dest port, protocol]
+ UDP: The Unreliable Datagram Protocol
- Layered on top of basic IP (IP Protocol 17)
» Datagram: an unreliable, unordered, packet sent from
source user — dest user (Call it UDP/IP)

IP Header
(20 bytes)

16-bit source port |16-bit destination port
16-bit UDP length 16-bit UDP checksum
< <
UDP Data

- Imporfant aspect: Tow overhead!
» Often used for high-bandwidth video streams
» Manr uses of UDP considered "anti-social” - none of the

“well-behaved” aspects of (say) TCP/IP
11/15/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 22.7

Performance Considerations

* Before continue, need some performance metrics
- Overhead: CPU time to put packet on wire
- Throughput: Maximum number of bytes per second

» Depends on "wire speed”, but also limited by slowest router
(routing delay) or by congestion at routers

- Latency: time until first bit of packet arrives at receiver
» Raw transfer time + overhead at each routing hop

+ Contributions to Latency
- Wire latency: depends on speed of light on wire
» about 1-1.5 ns/foot
- Router latency: depends on internals of router
» Could be < 1 ms (for a good router)

» Question: can router handle full wire throughput?
11/15/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 22.8

Sample Computations

. E.gt: Ethernet within Soda
-Latency: speed of light in wire is 1.5ns/foot, which
implies latency in building < 1 ps (if no routers in path)
- Throughput: 10-1000Mb/s
- Throughput delay: packet doesn't arrive until all bits
» So: 4KB/100Mb/s = 0.3 milliseconds (same order as disk!)
. E.gt: ATM within Soda
- atencn (same as above, assuming no routing)
- Throughput: 155Mb/s
- Throq?;wut delay: 4KB/155Mb/s = 200y
E.q—.: ATM cross-country
-Latency (assuming no routing):
» 3000miles * 5000ft/mile = 15 milliseconds
- How many bits could be in transit at same time?
» 15ms * 1565Mb/s = 290KB
- In fact, Berkeley—>MIT Latency ~ 45ms
» 872KB in flight if routers have wire-speed throughput
* Requirements for good performance:
- Local area: minimize overhead/improve bandwidth
- Wide area: keep pipeline fulll
wid keep pipeline full!

11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.9

Sequence Numbers

* Ordered Messages
- Several network services are best constructed by
ordered messaging
» Ask remote machine to first do x, then do y, etc.
- Unfortunately, underlying network is packet based:
» Packets are routed one at a time through the network
» Can take different paths or be delayed individually
- IP can reorder packets! P,,P; might arrive as P,,P,
+ Solution requires queuing at destination
- Need to hold onto packets to undo misordering
- Total degree of reordering impacts queue size
* Ordered messages on top of unordered ones:
- Assign seguence numbers to packets
»0,1,2,3,4....
» If packets arrive out of order, reorder before delivering to
user application
» For instance, hold onto #3 until #2 arrives, etc.
- Sequence numbers are specific to particular connection
» Reordering among connections normally doesn't matter
- If restart connection, need to make sure use different

range of sequence numbers than ﬂpr‘eviously...
11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.10

Reliable Message Delivery: the Problem

+ All physical networks can garble and/or drop packets
- Physical media: packet not transmitted/received

» If transmit close to maximum rate, get more throughput -
even if some packets get lost

» If transmit at lowest voltage such that error correction just
starts correcting errors, get best power/bit

- Congestion: no place to put incoming packet
» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two host try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender send faster than receiver
can process?
+ Reliable Message Delivery on top of Unreliable Packets
- Need some way to make sure that packets actually make
it to receiver
» Every packet received at least once
» Every packet received at most once
- Can combine with ordering: every packet received by
process at destination exactly once and in order
11/15/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 22.11

Using Acknowledgements
AL B

Packe, e Packey
> Timeout { e

* How to ensure transmission of packets?
- Detect garbling at receiver via checksum, discard if bad
- Receiver acknowledges (by sending “ack") when packet
received properly at destination
- Timeout at sender: if no ack, retransmit
- Some questions:
- If the sender doesn't get an ack, does that mean the
receiver didn't get the original message?
» No
- What if ack gets dropped? Or if message gets delayed?

» Sender doesn't Eet ack, retransmits. Receiver gets message

twice, acks eac
11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.12

How to deal with message duplication

Solufion: put sequence number in message To idenfify
re-transmitted packets
- Receiver checks for duplicate #'s; Discard if detected
Requirements:
- Sender keeps copy of unack'ed messages
» Easy: only need to buffer messages
- Receiver tracks possible duplicate messages
» Hard: when ok to forget about received message?
+ Alternating-bit protocol:
- Send one message at a time; don't send A IP:|B
next message until ack received

- Sender keeps last message: receiver
tracks sequence # of last message received
Pros: simple, small overhead
Con: Poor performance w H#L
- Wire can hold multiple messages; want to
fill up at (wire latency x throughput)
Con: doesn't work if network can delay Ak &
or duplicate messages arbitrarily
11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.13

Wiy

* Window based protocol (TCP):

- Acks serve dual F

Better messaging: Window-based acknowledgements

- Send up to N packets without ack
» Allows pipelining of packets N=5
» Window size (N) < queue at destination
- Each packet has sequence number
» Receiver acknowledges each packet
» Ack says “receivedall packets up
to sequence number X"/send more
urpose:

- Reliability: Confirming packet received
- Flow Control: Receiver ready for packet
» Remaining space in queue at receiver

can be returned with ACK

* What if packet gets garbled/dropped?

- Sender will timeout waiting for ack packet
» Resend missing packets= Receiver gets packets out of order!

- Should receiver discard packets that arrive out of order?
» Simple, but poor performance

- Alternative: Keep copy until sender fills in missing pieces?
» Reduces # of retransmits, but more complex

* What if ack gets garbled/dropped?

- Timeout and resend

ust the un-acknowledged packets
11/15/06 Kubiatowicz €S5162 ©UCB Fall Lec 22.14

2006

Administrivia

* Projects:
- Project 3 code due tomorrow
- Project 4 design document due November 28

» Although this is after Thanksgiving - make good use of
time since this is a difficule project

- MIDTERM II: Dec 4th
» All material from last midterm and up to Wednesday 11/29
» Lectures #13 - 26

* Final Exam
» Sat Dec 16'™, 8:00am-11:00am, Bechtel Auditorium
» All Material

* Final Topics: Any suggestions?
- Please send them to me...

11/15/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 22.15

Transmission Control Protocol (TCP)

Stream in: Stream out:
[zyxwvuty Router Router) | Igfedcbc>

+ Transmission Control Protocol (TCP)
- TCP (IP Protocol 6) layered on top of IP
- Reliable byte stream between two processes on different
machines over Internet (read, write, flush)
* TCP Details
- Fragments byte stream into packets, hands packets to IP
» IP may also fragment by itself
- Uses window-based acknowledgement protocol (o minimize
state at sender and receiver)
» "Window" reflects storage at receiver - sender shouldn't
overrun receiver's buffer space
» Also, window should reflect speed/capacity of network -
sender shouldn't overload network
- Automatically retransmits lost packets
- Adjusts rate of transmission to avoid congestion

» A “good citizen”
11/15/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 22.16

TCP Windows and Sequence Numbers

——>Sequence Numbers ———

Sent Sent Not yet R } Sender

acked not acked sent

Received Received Not yet
Given to app] Buffered | received =~ [Receiver

+ Sender has three regions:
- Sequence regions
» sent and ack'ed
» Sent and not ack'ed
» not yet sent
- Window (colored region) adjusted by sender
* Receiver has three regions:
- Sequence regions
» received and ack’'ed (given to application)
» received and buffered

» not yet received (or discarded because out of order
11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.17

Window-Based Acknowledgements (TCP)

100 140 190 230 260 300 340 380 400
n v wn v vl v n v »n O |ln O
N 8 N 8 NS INS|I NS | NS | N8 NS
— O - ® .. ® .. ® .. ® .. ® .. o® - |0 —
oo jub a‘._. ..3 a’a ..g W - W I.\.’g
88 08 SQ oo So 38 38 (e

Kubiatowicz C5162 ©UCB Fall 2006

Selective Acknowledgement Option (SACK)

— = T _
>'g Qo
als ~H s £lo
2ls| 8% 53| B
a4 b ox g -]
gl® ~<g j‘.:.n 8|z
ol |58 =8| [k
1 5 &Y =S =1
10— g
o1 I (1)

TCP Header TCP Header

* Vanilla TCP Acknowledgement
- Every message encodes Sequence number and Ack
- Can include data for forward stream and/or ack for
reverse stream
- Selective Acknowledgement
- Acknowledgement information includes not just one
number, but rather ranges of received packets
- Must be specially negotiated at beginning of TCP setup

» Not widely in use (although in Windows since Windows 98)
11/15/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 22.19

Congestion Avoidance

- Congestion
- How long should timeout be for re-sending messages?
» Too long—wastes time if message lost
» Too short—retransmit even though ack will arrive shortly
- Stability problem: more congestion = ack is delayed =
unnecessary timeout = more traffic = more congestion
» Closely related to window size at sender: too big means
utting too much data into network
* How does the sender’'s window size get chosen?
- Must be less than receiver's advertised buffer size
- Try to match the rate of sending packets with the rate
that the slowest link can accommodate
- Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until
acknowledgements start being delayed/lost
* TCP solution: “slow start” (start sending slowly)
- If no timeout, slowly increase window size (throughput)
by 1 for each ack received
-]‘imeouf = congestion, so cut window size ig half
-0 Additive Increase, Multiplicative Decrease

11/15/06 Lec 22.20

Sequence-Number Initialization

* How do you choose an initial sequence number?
- When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!

» Receiver might end up discarding valid packets, or duplicate
ack from original transmission might hide lost packet

- Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection
- Some ways of choosing an initial sequence number:
- Time to live: each packet has a deadline.
» If not delivered in X seconds, then is dropped

» Thus, can re-use sequence numbers if wait for all packets
in flight to be delivered or to expire

- Epoch #: uniquely identifies which set of sequence
numbers are currently being used
» Epoch # stored on disk, Put in every message

» Epoch # incremented on crash and/or when run out of
sequence #

- Pseudo-random increment to previous sequence number

» Used by several protocol implementations
11/15/06 Kubiatowicz €S5162 ©UCB Fall 2006 Lec 22.21

Use of TCP: Sockets

+ Socket: an abstraction of a network I/O queue
- Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine ﬁ:alled “"UNIX socket”) or remote
machine (called "network socket™)
- First introduced in 4.2 BSD UNIX: big innovation at time
» Now most operating systems provide some notion of socket
+ Using Sockets for Client-Server (C/C++ interface):
- On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests

» Perform multiple accept() calls on socket to accept incoming
connection request

» Each successful accept() returns a new socket for a new
connection; can pass this off to handler thread

- On client:

» Create socket, Bind to protocol (TCP), remote address, port

» Perform connect() on socket to make connection

» If connect() successful, have socket connected to server

11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.22

Socket Example (Java)

server:
//Makes socket, binds addr/port, calls listen()
ServerSocket sock = new ServerSocket (6013);
while (true)
Socket client = sock.accept():;
PrintWriter pout = new
PrintWriter (client.getOutputStream(), true) ;

pout.println(“Here is data sent to client!”);

cliént.close();

client:
// Makes socket, binds addr/port, calls connect()
Socket sock = new Socket(“169.229.60.38”7,6013) ;
BufferedReader bin =
new BufferedReader (
new InputStreamReader (sock.getInputStream)) ;
String line;
while ((line = bin.readLine()) !=null)
System.out.println(line);
sock.close() ;
11/15/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 22.23

Distributed Applications

+ How do you actually program a distributed application?
- Need to synchronize multiple threads, running on
different machines
» No shared memory, so cannot use test&set

- One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and
two receivers cannot get same message
+ Interface:
- Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue
— Send (message, mbox)
» Send message to remote mailbox identified by mbox
- Receive (buffer,mbox)
» Wait until mbox has message, copy into buffer, and return

» If threads sleeping on this mbox, wake up one of them
11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.24

Using Messages: Send/Receive behavior

* When should send (message,mbox) return?

- When receiver gets message? (i.e. ack received)

- When message is safely buffered on destination?

- Right away, if message is buffered on source node?
* Actually two questions here:

- When can the sender be sure that the receiver actually
received the message?

- When can sender reuse the memory containing message?
* Mailbox provides 1-way communication from T1-5T2
- T1-buffer—T2

- Very similar to producer/consumer
» Send = V, Receive = P
» However, can't tell if sender/receiver is local or not!

11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.25

Messaging for Producer-Consumer Style

* Using send/receive for producer-consumer style:
Producer:
int msgl[1000];
prepare message; Message
send (msgl,mbox) ;

Consumer:
int buffer[1000];

while (1) { n
receive (buffer,mbox) ; Receive
process message; Message

}

* No need for producer/consumer to keep track of space
in mailbox: handled by send/receive

- One of the roles of the window in TCP: window is size of
buffer on far end

- Restricts sender to forward only what will fit in buffer

11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.26

Messaging for Request/Response communication

* What about two-way communication?
- Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server
- Also called: client-server
» Client = requester, Server = responder
» Server provides “service” (file storage) to the client

- Example: File service
Client: (requesting the file) RequSt
char response[1000]; File
send (“read rutabaga”, server mbox);
receive (response, client mbox) ; Get
Response
Consumer: (responding with the file)
char command[1000], answer[1000];

receive (command, server mbox) ; Receive
decode command; Request

read file into answer;

send (answer, client mbox) ; Send
11/15/06 Kubiatowicz 5162 ®UCB Fall 2006 Response [?2-27

General's Paradox

* General's paradox:
- Constraints of problem:
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured
- Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win
- Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early
+ Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?

“ "

- Remarkably, "no”, even if all messages get through
11 am ok?

ut what it you
Bon't get this ack?

11/7500 way to be sure last message gefs throughl

Two-Phase Commit

- Since we canT solve The General's Paradox (i.e.
simultaneous action), let's solve a related problem
- Distributed transaction: Two machines agree to do
something, or not do it, atomically
+ Two-Phase Commit protocol does this
- Use a persistent, stable log on each machine to keep track
of whether commit has happened
» If a machine crashes, when it wakes up it first checks its
log to recover state of world at time of crash
- Prepare Phase:
» The global coordinator requests that all participants will
Bromlse to commit or rollback the transaction
» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “abort” in its
log and tells everyone to abort; each records “abort” in log
- Commit Phase:
» After all participants respond that fhe?l are prepared, then
the coordinator writes “commit” to its log
» Then asks all nodes to commit: they respond with ack
» After receive acks, coordinator writes "got commit” to log
- Log can be used to complete this process such that all
machines either commit or don't commit

11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.29

Two phase commit example

. Slmﬁ|e Example: A=ATM machine, B=The Bank
- Phase 1:
» A writes “Begin transaction” to log
A—B: OK to transfer funds to me?
» Not enough funds:
B—A: transaction aborted; A writes "Abort” to log
» Enough funds:
B: Write new account balance to log
B—A: OK, I can commit
- Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “"commit” to lo
» Send message to B that commit occurred; wait for ack
» Write "Got Commit” to log _
* What if B crashes at begmnmﬁ?
- Wakes up, does nothing:” A will timeout, abort and retry
* What if A crashes at beginning of phase 2?
- \é\lakes up, sees transacfion in"progress; sends “abort” to

* What if B crashes at beginning of phase 2?
- B comes back up, look at log; when A sends it "Commit"

message, it will say, oh, ok, commit
11/15/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 22.30

Distributed Decision Making Discussion

+ Two-Phase Commit: Blocking
- A Site can get stuck in a situation where it cannot
continue unfil some other site (usually the coordinator)
recovers.
- Example of how this could happen:

» Participant site B writes a “"prepared to commit” record to
its log, sends a "yes” vote to the coordintor (site A) and
crashes

» Site A crashes

» Site B wakes up, check its log, and realizes that it has
voted “yes” on the update. I‘? sends a message to site A
asking what happened. At this point, B cannot change its
mind ‘and decide to abort, because update may have
committed

» B is blocked until A comes back

- Blocking is Froblemaﬁc because a blocked site must hold
resources (locks on updated items, fpcxgespirmed in
memory, etc) until it learns fate of update

- Alternative: There are alternatives such as "Three
Phase Commit” which don't have this blocking problem

11/15/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 22.31

Conclusion

* Layering: building complex services from simpler ones
- Datagram: an independent, self-contained network
message whose arrival, arrival time, and content are
not guaranteed
* Performance metrics
- Overhead: CPU time to put packet on wire
- Throughput: Maximum number of bytes per second
- Latency: time until first bit of packet arrives at receiver
* Arbitrary Sized messages:
- Fragment into multiple packets: reassemble at destination
* Ordered messages:
- Use sequence numbers and reorder at destination
* Reliable messages:
- Use Acknowledgements
- Want a window larger than 1 in order to increase
throughput
* TCP: Reliable byte stream between two processes on
different machines over Internet (read, write, flush)

* Two-phase commit: distributed decision making
11/15/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 22.32

