
CS162
Operating Systems and
Systems Programming

Lecture 24

Testing Methodologies/
Distributed File Systems

November 22, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 24.211/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Distributed Applications

• Message Abstraction: send/receive messages
– Already atomic: no receiver gets portion of a message
and two receivers cannot get same message

• Interface:
– Mailbox (mbox): temporary holding area for messages

» Includes both destination location and queue
– Send(message,mbox)

» Send message to remote mailbox identified by mbox
– Receive(buffer,mbox)

» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

• Two-phase commit: distributed decision making
– First, make sure everyone guarantees that they will
commit if asked (prepare)

– Next, ask everyone to commit

Network

Send

Receive

Lec 24.311/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General
– n-1 Lieutenants
– Some number of these (f<n/3) can be insane or malicious

• The commanding general must send an order to his n-1
lieutenants such that:

– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal
lieutenants obey the order he sends

• Various algorithms exist to solve problem
– Newer algorithms have message complexity O(n2)

• Use of BFT (Byzantine Fault Tolerance) algorithm
– Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

Request Distributed
Decision

Lec 24.411/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etworkN

et
wo

rk

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B

mbox1

mbox2

Lec 24.511/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Finish RPC
• Testing Methodologies
• Examples of Distributed File Systems
• Cache Coherence Protocols

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Slides on Testing from George Necula (CS169)
Many slides generated from my lecture notes by Kubiatowicz.

Lec 24.611/22/06 Kubiatowicz CS162 ©UCB Fall 2006

RPC Details
• Equivalence with regular procedure call

– Parameters ⇔ Request Message
– Result ⇔ Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box)

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition
language (IDL)”

» Contains, among other things, types of arguments/return
– Output: stub code in the appropriate source language

» Code for client to pack message, send it off, wait for
result, unpack result and return to caller

» Code for server to unpack message, call procedure, pack
results, send them off

• Cross-platform issues:
– What if client/server machines are different
architectures or in different languages?

» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded

(avoids unnecessary conversions).

Lec 24.711/22/06 Kubiatowicz CS162 ©UCB Fall 2006

RPC Details (continued)
• How does client know which mbox to send to?

– Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)

– Binding: the process of converting a user-visible name
into a network endpoint

» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service

» Name service provides dynmaic translation of service→mbox
– Why dynamic binding?

» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request

Lec 24.811/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Problems with RPC
• Non-Atomic failures

– Different failure modes in distributed system than on a
single machine

– Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same

machine to fail
» Some machine is compromised by malicious party

– Before RPC: whole system would crash/die
– After RPC: One machine crashes/compromised while
others keep working

– Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?

– Answer? Distributed transactions/Byzantine Commit
• Performance

– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware that RPC is not free

» Caching can help, but may make failure handling complex

Lec 24.911/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Cross-Domain Communication/Location Transparency
• How do address spaces communicate with one another?

– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address
spaces on different machines on the same machine

– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)

Lec 24.1011/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces
of software (client or server)

– Location transparent: service can be local or remote
» For example in the X windowing system: Each X client can

be on a separate machine from X server; Neither has to run
on the machine with the frame buffer.

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure

Lec 24.1111/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

• My office hours
– No office hours Thursday (Thanksgiving)

• Project 4 design document
– Due Tuesday November 28th

• MIDTERM II: Monday December 4th!
– 4:00-7:00pm, 10 Evans
– All material from last midterm and up to previous class
– Includes virtual memory
– One page of handwritten notes, both sides

• Final Exam
– December 16th,8:00-11:00, Bechtel Auditorium
– Covers whole course
– Two pages of handwritten notes, both sides

• Final Topics: Any suggestions?

Lec 24.1211/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Role of Testing

• Testing is basic to every engineering discipline
– Design a drug
– Manufacture an airplane
– Etc.

• Why?
– Because our ability to predict how our creations will
behave is imperfect

– We need to check our work, because we will make
mistakes

• Some Testing Goals:
– Reveal faults
– Establish confidence

» of reliability
» of (probable) correctness
» of detection (therefore absence) of particular faults

– Clarify/infer the specification

Lec 24.1311/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Typical Software Licence

• 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS
NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING
THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

• 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Lec 24.1411/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Independent Testing

• Programmers never believe they made mistake
– Plus a vested interest in not finding mistakes

• Design and programming are constructive tasks
– Testers must seek to break the software

• Wrong conclusions:
– The developer should not be testing at all

» Instead: “Test before you code”
– Testers get involved once software is done

» Instead: Testers involved at all stages
– Toss the software over the wall for testing

» Instead: Testers and developers collaborate in developing
the test suite

– Testing team is responsible for assuring quality
» Instead: Quality is assured by a good software process

Lec 24.1511/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Principles of Testability
• Testers have two jobs

– Clarify the specification
– Find (important) bugs

• Avoid unpredictable results
– No unnecessary non-deterministic behavior

• Design in self-checking
– Have system check its own work (Asserts!)
– May require adding some redundancy to the code

• Avoid system state
– System retains nothing across units of work

» A transaction, a session, etc.
– System returns to well-known state after each task

» Easiest system to test (or to recover from failure)
• Minimize interactions between features

– Number of interactions can easily grow huge
– Rich breeding ground for bugs

• Have a test interface
Lec 24.1611/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Testing Frameworks

• Key components of a test system are
– Building the system to test

» May build many different versions to test
– Running the tests
– Deciding whether tests passed/failed

» Sometimes a non-trivial task (e.g., compilers) !
– Reporting results

• Testing frameworks provide these functions
– E.g., Tinderbox, JUnit

Lec 24.1711/22/06 Kubiatowicz CS162 ©UCB Fall 2006

output

• Oracle = alternative realization of the
specification

• Examples of oracles
– The “eyeball oracle”

» Expensive, not dependable, lack of automation
– A prototype, or sub-optimal implementation

» E.g., bubble-sort as oracle for quick sort
– A manual list of expected results

correct
output

What is an Oracle?

Program

Oracle

input

compare

Lec 24.1811/22/06 Kubiatowicz CS162 ©UCB Fall 2006

• Easy to check the result of some algorithms
– E.g., computing roots of polynomials, vs. checking
that the result is correct

– E.g., executing a query, vs. checking that the results
meet the conditions

» Not easy to check that you got all results though !

Result Checking

outputPrograminput check

Lec 24.1911/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Data Driven Tests

• Build a database of event tuples (or test vectors)
– E.g: < Input1, Input2, Input3, Input4, Result>
– So: <3, 4, “hello”, 5, 42>

<3, 5, “goodbye”, 5, failure>
• A test is a series of such events chained together

– Produce a high-level “driver” program to apply tuples to
the system under test

» Tuples could be in a file and read in by driver program
– Can be completely automatic

Input OutputModule checkDriver
Program

Test
Vectors

Expected Results

Lec 24.2011/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Assertions

• Use assert(…) liberally
– Documents important invariants
– Makes your code self-checking
– And does it on every execution !
– You still have to worry about coverage

• May need to write functions that check invariants
• Opinion: Most programmers don’t use assert enough

Lec 24.2111/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Testing Strategies

Unit test

Integration test

Validation testing

Code

Design

Requirements

Te
st

ing
 di

re
ct

ion

Lec 24.2211/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Unit Tests

• Focus on smallest unit of design
– A procedure, a class, a component

• Test the following
– Local data structures
– Basic algorithm
– Boundary conditions
– Error handling

• Good idea to plan unit tests ahead

Lec 24.2311/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Integration Testing

• If all parts work, how come the whole doesn’t?
• For software, the whole is more than the sum of

the parts
– Individual imprecision is magnified (e.g., races)
– Unclear interface design

• Don’t try the “big bang” integration !
• Do incremental integration

– Top-down integration
– Bottom-up integration

Lec 24.2411/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Top-Down Integration

• Test the main control module first
• Slowly replace stubs with real code

– Can go depth-first
» Along a favorite path, to create quickly a working

system
– Or, breadth first

• Problem: you may need complex stubs to test
higher-levels

Module

Stubs

Lec 24.2511/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Bottom-Up Integration
• Integrate already tested modules
• No stubs, but need drivers

– Often the drivers are easier to write
• Example:

– Financial code that depends on subroutine for
computing roots of polynomials

– We cannot test the code without the subroutine
» A simple stub might not be enough

– We can develop and test the subroutine first
• Plan for testability !

Module1

Driver1

Module2

Driver2

Module1
Lec 24.2611/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Stress Testing

• Push system into extreme situations
– And see if it still works . . .

• Stress
– Performance

» Feed data at very high rates
– Interfaces

» Replace APIs with badly behaved stubs
– Internal structures

» Works for any size array? Try sizes 0 and 1.
– Resources

» Set memory artificially low.
» Same for # of file descriptors, network

connections, etc.

Lec 24.2711/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Stress Testing (Cont.)

• Stress testing will find many obscure bugs
– Explores the corner cases of the design
“Bugs lurk in corners, and congregate at boundaries”

• Some may not be worth fixing
– Bugs too unlikely to arise in practice

• A corner case now is tomorrow’s common case
– Data rates, data sizes always increasing
– Your software will be stressed

Lec 24.2811/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Code Coverage

• Code Coverage
– Make sure that code is covered

• Control flow coverage criteria: Make sure you
have tests that exercise every…

– Statement (node, basic block) coverage
– Branch (edge) and condition coverage
– Data flow (syntactic dependency) coverage

• More sophisticated coverage criteria increase the
#units to be covered in a program

Lec 24.2911/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Control Flow Graphs: The One Slide Tutorial

• A graph
• Nodes are basic blocks

– Maximal single-entry, jump-exit code segments
• Edges are transfers of control between basic blocks

– E.g. Branches.

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * 3

Lec 24.3011/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Basic structural criteria (ex.)

Edge ac is required by all-
edges but not by all-nodes
coverage

• abcdedf – all nodes

Typical loop coverage
criterion would require zero
iterations (cdf), one
iteration (cdedf), and
multiple iterations
(cdededed...df)

a

b

c

d

e

f

Lec 24.3111/22/06 Kubiatowicz CS162 ©UCB Fall 2006

z := x + y

Data flow coverage criteria (ex.)y := 7

• An untested def-use
association could hide an
erroneous computation

– Even though we have all-node
and all-edge coverage

• This suggests all paths
coverage

y := 7

y := y + 1

y := 0

Lec 24.3211/22/06 Kubiatowicz CS162 ©UCB Fall 2006

x := -2

x := x + 1

x < 0

All Paths Coverage

• There could be an
exponential number of paths
in a acyclic program

– 2 conditionals ⇒ 4 max
combinations

• Many are not reachable:
L1-L2-L3-L4-L6

• We choose
– x = 0: L1-L2-L3-L4-L5-L6
– x = -1: L1-L3-L4-L6
– x = -2: L1-L3-L4-L5-L6A

x < 0 yes

yes

L2

L1

L3

L4

L5

L6

Lec 24.3311/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Code Coverage (Cont.)
• Code coverage has proven value

– It’s a real metric, though far from perfect
• But 100% coverage does not mean no bugs

– Many bugs lurk in corner cases
– E.g., a bug visible after loop executes 1,025
times

• And 100% coverage is almost never achieved
– Products ship with < 60% coverage
– High coverage may not even be economically
desirable

» May be better to focus on tricky parts
• Code coverage helps identify weak test suites

– Tricky bits with low coverage are a danger sign
– Areas with low coverage suggest something is missing in
the test suite

Lec 24.3411/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Code Inspections
• Problem: Testing is weak

– Can never test more than a tiny fraction of possibilities
– Testers don’t know as much about the code as the
developers

» But developers can only do so much testing
• Here’s an idea: Understand the code!

– One person explains to a group of programmers how a
piece of code works

• Key points
– Don’t try to read too much code at one sitting

» A few pages at most
– Everyone comes prepared

» Distribute code beforehand
– No blame

» Goal is to understand, clarify code, not roast programmers

Lec 24.3511/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Experience with Inspections

• Inspections work!
– Finds 70%-90% of bugs in studies
– Dramatically reduces cost of finding bugs

• Other advantages
– Teaches everyone the code
– Finds bugs earlier than testing

• Bottom line: More than pays for itself

Lec 24.3611/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Regression Testing
• Idea

– When you find a bug,
– Write a test that exhibits the bug,
– And always run that test when the code changes,
– So that the bug doesn’t reappear

• Without regression testing, it is surprising how often
old bugs reoccur

– Regression testing ensures forward progress
– We never go back to old bugs

• Regression testing can be manual or automatic
– Ideally, run regressions after every change
– To detect problems as quickly as possible

• But, regression testing is expensive
– Limits how often it can be run in practice
– Reducing cost is a long-standing research problem

Lec 24.3711/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Testing: When are you done?

• When you run out of time?
• Consider rate of bug finding

– Rate is high ⇒ NOT DONE
– Rate is low ⇒ May need
new testing methodology

• Coverage Metrics
– How well did you cover the
design with test cases?

• Types of testing:
– Directed Testing – test
explicit behavior

– Random Testing – apply
random values or orderings

– Daemons – continuous
error/unexpected behavior
insertion

Alewife Numbers

Lec 24.3811/22/06 Kubiatowicz CS162 ©UCB Fall 2006

mount
coeus:/sue

mount
kubi:/prog

mount
kubi:/jane

Distributed File Systems

• Distributed File System:
– Transparent access to files stored on a remote disk

• Naming choices (always an issue):
– Hostname:localname: Name files explicitly

» No location or migration transparency
– Mounting of remote file systems

» System manager mounts remote file system
by giving name and local mount point

» Transparent to user: all reads and writes
look like local reads and writes to user
e.g. /users/sue/foo→/sue/foo on server

– A single, global name space: every file
in the world has unique name

» Location Transparency: servers
can change and files can move
without involving user

Network
Read File

Data
Client Server

Lec 24.3911/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Virtual File System (VFS)

• VFS: Virtual abstraction similar to local file system
– Instead of “inodes” has “vnodes”
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to

be used for different types of file systems
– The API is to the VFS interface, rather than any specific
type of file system

Lec 24.4011/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use RPC to translate file system calls
– No local caching/can be caching at server-side

• Advantage: Server provides completely consistent view
of file system to multiple clients

• Problems? Performance!
– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Client

Server

Read (RPC)
Return (Data)

Client

Write
 (RP

C)

ACK

cache

Lec 24.4111/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Server cache
F1:V1F1:V2

Use of caching to reduce network load

Read (RPC)
Return (Data)

Write
 (RP

C)

ACK

Client

cache

Client

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done
locally, don’t need to do any network traffic…fast!

• Problems:
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

→V1
read(f1)→V1
read(f1)→V1

→OK

read(f1)→V1

read(f1)→V2

Lec 24.4211/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Failures

• What if server crashes? Can client wait until server
comes back up and continue as before?

– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after
seek? Then, when client does “read”, it will fail

– Message retries: suppose server crashes after it does
UNIX “rm foo”, but before acknowledgment?

» Message system will retry: send it again
» How does it know not to delete it again? (could solve with

two-phase commit protocol, but NFS takes a more ad hoc
approach)

• Stateless protocol: A protocol in which all information
required to process a request is passed with request

– Server keeps no state about client, except as hints to
help improve performance (e.g. a cache)

– Thus, if server crashes and restarted, requests can
continue where left off (in many cases)

• What if client crashes?
– Might lose modified data in client cache

Crash!

Lec 24.4311/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Schematic View of NFS Architecture

Lec 24.4411/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to
server’s disk before results are returned to the client

– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice
changes! (more on this later)

Lec 24.4511/22/06 Kubiatowicz CS162 ©UCB Fall 2006

NFS Continued
• NFS servers are stateless; each request provides all

arguments require for execution
– E.g. reads include information for entire operation, such
as ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file –
each operation stands on its own

• Idempotent: Performing requests multiple times has
same effect as performing it exactly once

– Example: Server crashes between disk I/O and message
send, client resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-
write file block – no side effects

– Example: What about “remove”? NFS does operation
twice and second time returns an advisory error

• Failure Model: Transparent to client system
– Is this a good idea? What if you are in the middle of
reading a file and server crashes?

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know

they are talking over network)
Lec 24.4611/22/06 Kubiatowicz CS162 ©UCB Fall 2006

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified,
but other clients use old version of file until timeout.

– What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

Server
Write

 (RP
C)

ACK

Client

cache

Client

cache

F1:V1

F1:V2

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)

Lec 24.4711/22/06 Kubiatowicz CS162 ©UCB Fall 2006

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done,
another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the
same as if all processes are running on single system

» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new

copy; otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time

Lec 24.4811/22/06 Kubiatowicz CS162 ©UCB Fall 2006

NFS Pros and Cons

• NFS Pros:
– Simple, Highly portable

• NFS Cons:
– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic

Lec 24.4911/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Andrew File System

• Andrew File System (AFS, late 80’s) → DCE DFS
(commercial product)

• Callbacks: Server records who has copy of file
– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only
after the file is closed

» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible

immediately to other programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file

Lec 24.5011/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch

new version from server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask
everyone “who has which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache ⇒ more files can be cached locally
– Callbacks ⇒ server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writes→server, cache misses→server
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

Lec 24.5111/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusion
• Remote Procedure Call (RPC): Call procedure on remote

machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments without
user programming (in stub)

• Testing Goals
– Reveal faults
– Clarify Specification

• Testing Frameworks:
– Provide mechanism for applying tests (driver), checking
results, reporting problems

– Oracle: simpler version of code for testing outputs
– Assertions: Documents (and checks) important invariants

• Levels of Tests:
– Unit testing: per module
– Integration Testing: tying modules together
– Regression Testing: making sure bugs don’t reappear

Lec 24.5211/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusion (2)

• VFS: Virtual File System layer
– Provides mechanism which gives same system call
interface for different types of file systems

• Distributed File System:
– Transparent access to files stored on a remote disk

» NFS: Network File System
» AFS: Andrew File System

– Caching for performance
• Cache Consistency: Keeping contents of client caches

consistent with one another
– If multiple clients, some reading and some writing, how
do stale cached copies get updated?

– NFS: check periodically for changes
– AFS: clients register callbacks so can be notified by
server of changes

