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Review: Testing
• Testing Goals

– Reveal faults
– Clarify Specification

• Testing Frameworks:
– Provide mechanism for applying tests (driver), checking 
results, reporting problems

– Oracle: simpler version of code for testing outputs
– Assertions: Documents (and checks) important invariants

• Levels of Tests:
– Unit testing: per module
– Integration Testing: tying modules together
– Code Inspections:

» One person explains to others how a piece of code works
» Finds 70%-90% of bugs

– Regression Testing: making sure bugs don’t reappear
» When you find a bug, Write a test that exhibits the bug,
» And always run that test when the code changes
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Review: Use of caching to reduce network load
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• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done 
locally, don’t need to do any network traffic…fast!

• Problems: 
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other
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Goals for Today

• Finish discussing distributed file systems/Caching
• Security Mechanisms

– Authentication
– Authorization
– Enforcement

• Cryptographic Mechanisms

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne 
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz.
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Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close 
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory 
– manipulating links and directories 
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to 
server’s disk before results are returned to the client 
– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice 
changes! (more on this later)
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NFS Continued
• NFS servers are stateless; each request provides all 

arguments require for execution
– E.g. reads include information for entire operation, such 
as ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file –
each operation stands on its own

• Idempotent: Performing requests multiple times has 
same effect as performing it exactly once
– Example: Server crashes between disk I/O and message 
send, client resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-
write file block – no side effects

– Example: What about “remove”?  NFS does operation 
twice and second time returns an advisory error 

• Failure Model: Transparent to client system
– Is this a good idea?  What if you are in the middle of 
reading a file and server crashes? 

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know 

they are talking over network)
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• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified, 
but other clients use old version of file until timeout.

– What if multiple clients write to same file? 
» In NFS, can get either version (or parts of both)
» Completely arbitrary!
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NFS Cache consistency

F1 still ok?
No: (F1:V2)
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• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, 
another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the 
same as if all processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new 

copy; otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time
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NFS Pros and Cons

• NFS Pros:
– Simple, Highly portable

• NFS Cons:
– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic
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Andrew File System

• Andrew File System (AFS, late 80’s) → DCE DFS 
(commercial product)

• Callbacks: Server records who has copy of file
– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only 
after the file is closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible 

immediately to other programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file
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Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server 

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch 

new version from server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask 
everyone “who has which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache ⇒ more files can be cached locally
– Callbacks ⇒ server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writes→server, cache misses→server
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation
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Administrivia

• Project 4 design document
– Due Tomorrow (November 28th

• MIDTERM II: Monday December 4th!
– 4:00-7:00pm, 10 Evans
– All material from last midterm and up to previous class
– Includes virtual memory 
– One page of handwritten notes, both sides

• Final Exam 
– December 16th,8:00-11:00, Bechtel Auditorium
– Covers whole course 
– Two pages of handwritten notes, both sides

• Final Topics: Any suggestions?
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World Wide Web

• Key idea: graphical front-end to RPC protocol

• What happens when a web server fails?
– System breaks!
– Solution: Transport or network-layer redirection 

» Invisible to applications
» Can also help with scalability (load balancers)
» Must handle “sessions” (e.g., banking/e-commerce)

• Initial version: no caching
– Didn’t scale well – easy to overload servers
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WWW Caching

• Use client-side caching to reduce number of 
interactions between clients and servers and/or 
reduce the size of the interactions:
– Time-to-Live (TTL) fields – HTTP “Expires” header 
from server

– Client polling – HTTP “If-Modified-Since” request 
headers from clients

– Server refresh – HTML “META Refresh tag”
causes periodic client poll

• What is the polling frequency for clients and 
servers? 
– Could be adaptive based upon a page’s age and its 
rate of change

• Server load is still significant!
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WWW Proxy Caches

• Place caches in the network to reduce server load
– But, increases latency in lightly loaded case
– Caches near servers called “reverse proxy caches”

» Offloads busy server machines
– Caches at the “edges” of the network called “content 
distribution networks”
» Offloads servers and reduce client latency

• Challenges:
– Caching static traffic easy, but only ~40% of traffic
– Dynamic and multimedia is harder

» Multimedia is a big win: Megabytes versus Kilobytes
– Same cache consistency problems as before

• Caching is changing the Internet architecture
– Places functionality at higher levels of comm. protocols
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Protection vs Security
• Protection: one or more mechanisms for controlling the 

access of programs, processes, or users to resources
– Page Table Mechanism
– File Access Mechanism

• Security: use of protection mechanisms to prevent 
misuse of resources
– Misuse defined with respect to policy

» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

– Requires consideration of the external environment 
within which the system operates
» Most well-constructed system cannot protect information 

if user accidentally reveals password
• What we hope to gain today and next time

– Conceptual understanding of how to make systems secure
– Some examples, to illustrate why providing security is 
really hard in practice
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Preventing Misuse
• Types of Misuse:

– Accidental:
» If I delete shell, can’t log in to fix it!
» Could make it more difficult by asking: “do you really want 

to delete the shell?”
– Intentional:

» Some high school brat who can’t get a date, so instead he 
transfers $3 billion from B to A.

» Doesn’t help to ask if they want to do it (of course!)
• Three Pieces to Security

– Authentication: who the user actually is
– Authorization: who is allowed to do what
– Enforcement: make sure people do only what they are 
supposed to do

• Loopholes in any carefully constructed system:
– Log in as superuser and you’ve circumvented 
authentication

– Log in as self and can do anything with your resources; 
for instance: run program that erases all of your files

– Can you trust software to correctly enforce 
Authentication and Authorization?????
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Authentication: Identifying Users
• How to identify users to the system?

– Passwords
» Shared secret between two parties
» Since only user knows password, someone types correct 

password ⇒ must be user typing it
» Very common technique

– Smart Cards
» Electronics embedded in card capable of 

providing long passwords or satisfying 
challenge → response queries

» May have display to allow reading of password
» Or can be plugged in directly; several 

credit cards now in this category
– Biometrics

» Use of one or more intrinsic physical or 
behavioral traits to identify someone

» Examples: fingerprint reader, 
palm reader, retinal scan

» Becoming quite a bit more common
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Passwords: Secrecy
• System must keep copy of secret to 

check against passwords
– What if malicious user gains access to list 
of passwords?
» Need to obscure information somehow

– Mechanism: utilize a transformation that is difficult to 
reverse without the right key (e.g. encryption)

• Example: UNIX /etc/passwd file
– passwd→one way transform(hash)→encrypted passwd
– System stores only encrypted version, so OK even if 
someone reads the file!

– When you type in your password, system compares 
encrypted version

• Problem: Can you trust encryption algorithm?
– Example: one algorithm thought safe had back door

» Governments want back door so they can snoop
– Also, security through obscurity doesn’t work

» GSM encryption algorithm was secret; accidentally released; 
Berkeley grad students cracked in a few hours

“eggplant”
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Passwords: How easy to guess?
• Ways of Compromising Passwords

– Password Guessing: 
» Often people use obvious information like birthday, 

favorite color, girlfriend’s name, etc…
– Dictionary Attack: 

» Work way through dictionary and compare encrypted 
version of dictionary words with entries in /etc/passwd

– Dumpster Diving:
» Find pieces of paper with passwords written on them
» (Also used to get social-security numbers, etc)

• Paradox: 
– Short passwords are easy to crack
– Long ones, people write down!

• Technology means we have to use longer passwords
– UNIX initially required lowercase, 5-letter passwords: 
total of 265=10million passwords
» In 1975, 10ms to check a password→1 day to crack
» In 2005, .01μs to check a password→0.1 seconds to crack

– Takes less time to check for all words in the dictionary!
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Passwords: Making harder to crack
• How can we make passwords harder to crack?

– Can’t make it impossible, but can help
• Technique 1: Extend everyone’s password with a unique 

number (stored in password file)
– Called “salt”. UNIX uses 12-bit “salt”, making dictionary 
attacks 4096 times harder

– Without salt, would be possible to pre-compute all the 
words in the dictionary hashed with the UNIX algorithm: 
would make comparing with /etc/passwd easy!

– Also, way that salt is combined with password designed to 
frustrate use of off-the-shelf DES hardware

• Technique 2: Require more complex passwords
– Make people use at least 8-character passwords with 
upper-case, lower-case, and numbers
» 708=6x1014=6million seconds=69 days@0.01μs/check

– Unfortunately, people still pick common patterns
» e.g. Capitalize first letter of common word, add one digit
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Passwords: Making harder to crack (con’t)
• Technique 3: Delay checking of passwords

– If attacker doesn’t have access to /etc/passwd, delay 
every remote login attempt by 1 second

– Makes it infeasible for rapid-fire dictionary attack
• Technique 4: Assign very long passwords

– Long passwords or pass-phrases can have more entropy 
(randomness→harder to crack)

– Give everyone a smart card (or ATM card) to carry around 
to remember password
» Requires physical theft to steal password
» Can require PIN from user before authenticates self

– Better: have smartcard generate pseudorandom number
» Client and server share initial seed
» Each second/login attempt advances to next random number

• Technique 5: “Zero-Knowledge Proof”
– Require a series of challenge-response questions

» Distribute secret algorithm to user
» Server presents a number, say “5”; user computes something 

from the number and returns answer to server
» Server never asks same “question” twice

– Often performed by smartcard plugged into system
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Authentication in Distributed Systems
• What if identity must be established across network?

– Need way to prevent exposure of information while still 
proving identity to remote system

– Many of the original UNIX tools sent passwords over the 
wire “in clear text”
» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread 

• What do we need? Cannot rely on physical security!
– Encryption: Privacy, restrict receivers
– Authentication: Remote Authenticity, restrict senders

NetworkPA
SS: gina
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Private Key Cryptography
• Private Key (Symmetric) Encryption:

– Single key used for both encryption and decryption
• Plaintext: Unencrypted Version of message
• Ciphertext: Encrypted Version of message

• Important properties
– Can’t derive plain text from ciphertext (decode) without 
access to key

– Can’t derive key from plain text and ciphertext
– As long as password stays secret, get both secrecy and 
authentication

• Symmetric Key Algorithms: DES, Triple-DES, AES 

Insecure
Transmission
(ciphertext)

Decrypt

Key

Encrypt

Key

Plaintext

PlaintextSPY CIA
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Key Distribution
• How do you get shared secret to both places?

– For instance: how do you send authenticated, secret mail 
to someone who you have never met?

– Must negotiate key over private channel 
» Exchange code book 
» Key cards/memory stick/others

• Third Party: Authentication Server (like Kerberos)
– Notation:

» Kxy is key for talking between x and y
» (…)K means encrypt message (…) with the key K
» Clients: A and B, Authentication server S

– A asks server for key:
» A→S: [Hi! I’d like a key for talking between A and B]
» Not encrypted. Others can find out if A and B are talking

– Server returns session key encrypted using B’s key
» S→A: Message [ Use Kab (This is A! Use Kab)Ksb ] Ksa
» This allows A to know, “S said use this key”

– Whenever A wants to talk with B
» A→B: Ticket [ This is A! Use Kab ]Ksb
» Now, B knows that Kab is sanctioned by S
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Authentication Server Continued

• Details
– Both A and B use passwords (shared with key server) to 
decrypt return from key servers

– Add in timestamps to limit how long tickets will be used 
to prevent attacker from replaying messages later

– Also have to include encrypted checksums (hashed 
version of message) to prevent malicious user from 
inserting things into messages/changing messages

– Want to minimize # times A types in password
» A→S (Give me temporary secret)
» S→A (Use Ktemp-sa for next 8 hours)Ksa
» Can now use Ktemp-sa in place of Ksa in prototcol

Key
ServerReq

Tick
et

Tick
et

Ticket
Secure Communication
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Public Key Encryption
• Can we perform key distribution without an 

authentication server?
– Yes.  Use a Public-Key Cryptosystem.

• Public Key Details
– Don’t have one key, have two: Kpublic, Kprivate

» Two keys are mathematically related to one another
» Really hard to derive Kpublic from Kprivate and vice versa

– Forward encryption:
» Encrypt: (cleartext)Kpublic= ciphertext1
» Decrypt: (ciphertext1)Kprivate = cleartext

– Reverse encryption:
» Encrypt: (cleartext)Kprivate = ciphertext2
» Decrypt: (ciphertext2)Kpublic = cleartext

– Note that ciphertext1 ≠ ciphertext2
» Can’t derive one from the other!

• Public Key Examples:
– RSA: Rivest, Shamir, and Adleman

» Kpublic of form (kpublic, N), Kprivate of form (kprivate, N)
» N = pq. Can break code if know p and q

– ECC: Elliptic Curve Cryptography
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• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys (secure destination points) can be acquired 
by anyone/used by anyone

– Only person with private key can decrypt message
• What about authentication?

– Use combination of private and public key
– Alice→Bob: [(I’m Alice)Aprivate Rest of message]Bpublic
– Provides restricted sender and receiver

• But: how does Alice know that it was Bob who sent 
her Bpublic?  And vice versa…

Bprivate
Aprivate

Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel
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Secure Hash Function

• Hash Function: Short summary of data (message)
– For instance, h1=H(M1) is the hash of message M1

» h1 fixed length, despite size of message M1.
» Often, h1 is called the “digest” of M1.

• Hash function H is considered secure if 
– It is infeasible to find M2 with h1=H(M2); ie. can’t easily find other message with same digest as given 
message.

– It is infeasible to locate two messages, m1 and m2, which “collide”, i.e. for which H(m1) = H(m2)
– A small change in a message changes many bits of 
digest/can’t tell anything about message given its hash

DFCD3454BBEA788A
751A696C24D97009
CA992D17

The red fox
runs across

the ice

Hash
Function

Hash
Function

52ED879E70F71D92
6EB6957008E03CE4
CA6945D3

Fox
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Use of Hash Functions
• Several Standard Hash Functions:

– MD5: 128-bit output
– SHA-1: 160-bit output

• Can we use hashing to securely reduce load on server?
– Yes.  Use a series of insecure mirror servers (caches)
– First, ask server for digest of desired file

» Use secure channel with server
– Then ask mirror server for file

» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

Client

Read File X

Here is hx = H(X)

Insecure
Data
Mirror

File X
Read X

File X File X

Server
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Signatures/Certificate Authorities
• Can use Xpublic for person X to define their identity

– Presumably they are the only ones who know Xprivate.– Often, we think of Xpublic as a “principle” (user)
• Suppose we want X to sign message M?

– Use private key to encrypt the digest, i.e. H(M)Xprivate

– Send both M and its signature:
» Signed message = [M,H(M)Xprivate]

– Now, anyone can verify that M was signed by X
» Simply decrypt the digest with Xpublic
» Verify that result matches H(M)

• Now: How do we know that the version of Xpublic that 
we have is really from X???
– Answer: Certificate Authority

» Examples: Verisign, Entrust, Etc.
– X goes to organization, presents identifying papers

» Organization signs X’s key: [ Xpublic, H(Xpublic)CAprivate]
» Called a “Certificate”

– Before we use Xpublic, ask X for certificate verifying key
» Check that signature over Xpublic produced by trusted 

authority
• How do we get keys of certificate authority?

– Compiled into your browser, for instance!
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Conclusion
• User Identification

– Passwords/Smart Cards/Biometrics
• Passwords

– Encrypt them to help hid them
– Force them to be longer/not amenable to dictionary attack
– Use zero-knowledge request-response techniques

• Distributed identity
– Use cryptography

• Symmetrical (or Private Key) Encryption
– Single Key used to encode and decode
– Introduces key-distribution problem

• Public-Key Encryption
– Two keys: a public key and a private key

» Not derivable from one another
• Secure Hash Function

– Used to summarize data
– Hard to find another block of data with same hash


