
CS162
Operating Systems and
Systems Programming

Lecture 25

Protection and Security
in Distributed Systems

November 27, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 25.211/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Testing
• Testing Goals

– Reveal faults
– Clarify Specification

• Testing Frameworks:
– Provide mechanism for applying tests (driver), checking
results, reporting problems

– Oracle: simpler version of code for testing outputs
– Assertions: Documents (and checks) important invariants

• Levels of Tests:
– Unit testing: per module
– Integration Testing: tying modules together
– Code Inspections:

» One person explains to others how a piece of code works
» Finds 70%-90% of bugs

– Regression Testing: making sure bugs don’t reappear
» When you find a bug, Write a test that exhibits the bug,
» And always run that test when the code changes

Lec 25.311/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Server cache
F1:V1F1:V2

Review: Use of caching to reduce network load

Read (RPC)
Return (Data)

Write
 (RP

C)

ACK

Client

cache

Client

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done
locally, don’t need to do any network traffic…fast!

• Problems:
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

→V1
read(f1)→V1
read(f1)→V1

→OK

read(f1)→V1

read(f1)→V2

Lec 25.411/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Finish discussing distributed file systems/Caching
• Security Mechanisms

– Authentication
– Authorization
– Enforcement

• Cryptographic Mechanisms

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 25.511/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to
server’s disk before results are returned to the client
– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice
changes! (more on this later)

Lec 25.611/27/06 Kubiatowicz CS162 ©UCB Fall 2006

NFS Continued
• NFS servers are stateless; each request provides all

arguments require for execution
– E.g. reads include information for entire operation, such
as ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file –
each operation stands on its own

• Idempotent: Performing requests multiple times has
same effect as performing it exactly once
– Example: Server crashes between disk I/O and message
send, client resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-
write file block – no side effects

– Example: What about “remove”? NFS does operation
twice and second time returns an advisory error

• Failure Model: Transparent to client system
– Is this a good idea? What if you are in the middle of
reading a file and server crashes?

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know

they are talking over network)

Lec 25.711/27/06 Kubiatowicz CS162 ©UCB Fall 2006

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified,
but other clients use old version of file until timeout.

– What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

Server
Write

 (RP
C)

ACK

Client

cache

Client

cache

F1:V1

F1:V2

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)

Lec 25.811/27/06 Kubiatowicz CS162 ©UCB Fall 2006

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done,
another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the
same as if all processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new

copy; otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time

Lec 25.911/27/06 Kubiatowicz CS162 ©UCB Fall 2006

NFS Pros and Cons

• NFS Pros:
– Simple, Highly portable

• NFS Cons:
– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic

Lec 25.1011/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Andrew File System

• Andrew File System (AFS, late 80’s) → DCE DFS
(commercial product)

• Callbacks: Server records who has copy of file
– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only
after the file is closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible

immediately to other programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file

Lec 25.1111/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch

new version from server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask
everyone “who has which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache ⇒ more files can be cached locally
– Callbacks ⇒ server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writes→server, cache misses→server
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

Lec 25.1211/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

• Project 4 design document
– Due Tomorrow (November 28th

• MIDTERM II: Monday December 4th!
– 4:00-7:00pm, 10 Evans
– All material from last midterm and up to previous class
– Includes virtual memory
– One page of handwritten notes, both sides

• Final Exam
– December 16th,8:00-11:00, Bechtel Auditorium
– Covers whole course
– Two pages of handwritten notes, both sides

• Final Topics: Any suggestions?

Lec 25.1311/27/06 Kubiatowicz CS162 ©UCB Fall 2006

World Wide Web

• Key idea: graphical front-end to RPC protocol

• What happens when a web server fails?
– System breaks!
– Solution: Transport or network-layer redirection

» Invisible to applications
» Can also help with scalability (load balancers)
» Must handle “sessions” (e.g., banking/e-commerce)

• Initial version: no caching
– Didn’t scale well – easy to overload servers

Lec 25.1411/27/06 Kubiatowicz CS162 ©UCB Fall 2006

WWW Caching

• Use client-side caching to reduce number of
interactions between clients and servers and/or
reduce the size of the interactions:
– Time-to-Live (TTL) fields – HTTP “Expires” header
from server

– Client polling – HTTP “If-Modified-Since” request
headers from clients

– Server refresh – HTML “META Refresh tag”
causes periodic client poll

• What is the polling frequency for clients and
servers?
– Could be adaptive based upon a page’s age and its
rate of change

• Server load is still significant!

Lec 25.1511/27/06 Kubiatowicz CS162 ©UCB Fall 2006

WWW Proxy Caches

• Place caches in the network to reduce server load
– But, increases latency in lightly loaded case
– Caches near servers called “reverse proxy caches”

» Offloads busy server machines
– Caches at the “edges” of the network called “content
distribution networks”
» Offloads servers and reduce client latency

• Challenges:
– Caching static traffic easy, but only ~40% of traffic
– Dynamic and multimedia is harder

» Multimedia is a big win: Megabytes versus Kilobytes
– Same cache consistency problems as before

• Caching is changing the Internet architecture
– Places functionality at higher levels of comm. protocols

Lec 25.1611/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Protection vs Security
• Protection: one or more mechanisms for controlling the

access of programs, processes, or users to resources
– Page Table Mechanism
– File Access Mechanism

• Security: use of protection mechanisms to prevent
misuse of resources
– Misuse defined with respect to policy

» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

– Requires consideration of the external environment
within which the system operates
» Most well-constructed system cannot protect information

if user accidentally reveals password
• What we hope to gain today and next time

– Conceptual understanding of how to make systems secure
– Some examples, to illustrate why providing security is
really hard in practice

Lec 25.1711/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Preventing Misuse
• Types of Misuse:

– Accidental:
» If I delete shell, can’t log in to fix it!
» Could make it more difficult by asking: “do you really want

to delete the shell?”
– Intentional:

» Some high school brat who can’t get a date, so instead he
transfers $3 billion from B to A.

» Doesn’t help to ask if they want to do it (of course!)
• Three Pieces to Security

– Authentication: who the user actually is
– Authorization: who is allowed to do what
– Enforcement: make sure people do only what they are
supposed to do

• Loopholes in any carefully constructed system:
– Log in as superuser and you’ve circumvented
authentication

– Log in as self and can do anything with your resources;
for instance: run program that erases all of your files

– Can you trust software to correctly enforce
Authentication and Authorization?????

Lec 25.1811/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Authentication: Identifying Users
• How to identify users to the system?

– Passwords
» Shared secret between two parties
» Since only user knows password, someone types correct

password ⇒ must be user typing it
» Very common technique

– Smart Cards
» Electronics embedded in card capable of

providing long passwords or satisfying
challenge → response queries

» May have display to allow reading of password
» Or can be plugged in directly; several

credit cards now in this category
– Biometrics

» Use of one or more intrinsic physical or
behavioral traits to identify someone

» Examples: fingerprint reader,
palm reader, retinal scan

» Becoming quite a bit more common

Lec 25.1911/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Passwords: Secrecy
• System must keep copy of secret to

check against passwords
– What if malicious user gains access to list
of passwords?
» Need to obscure information somehow

– Mechanism: utilize a transformation that is difficult to
reverse without the right key (e.g. encryption)

• Example: UNIX /etc/passwd file
– passwd→one way transform(hash)→encrypted passwd
– System stores only encrypted version, so OK even if
someone reads the file!

– When you type in your password, system compares
encrypted version

• Problem: Can you trust encryption algorithm?
– Example: one algorithm thought safe had back door

» Governments want back door so they can snoop
– Also, security through obscurity doesn’t work

» GSM encryption algorithm was secret; accidentally released;
Berkeley grad students cracked in a few hours

“eggplant”

Lec 25.2011/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Passwords: How easy to guess?
• Ways of Compromising Passwords

– Password Guessing:
» Often people use obvious information like birthday,

favorite color, girlfriend’s name, etc…
– Dictionary Attack:

» Work way through dictionary and compare encrypted
version of dictionary words with entries in /etc/passwd

– Dumpster Diving:
» Find pieces of paper with passwords written on them
» (Also used to get social-security numbers, etc)

• Paradox:
– Short passwords are easy to crack
– Long ones, people write down!

• Technology means we have to use longer passwords
– UNIX initially required lowercase, 5-letter passwords:
total of 265=10million passwords
» In 1975, 10ms to check a password→1 day to crack
» In 2005, .01μs to check a password→0.1 seconds to crack

– Takes less time to check for all words in the dictionary!

Lec 25.2111/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Passwords: Making harder to crack
• How can we make passwords harder to crack?

– Can’t make it impossible, but can help
• Technique 1: Extend everyone’s password with a unique

number (stored in password file)
– Called “salt”. UNIX uses 12-bit “salt”, making dictionary
attacks 4096 times harder

– Without salt, would be possible to pre-compute all the
words in the dictionary hashed with the UNIX algorithm:
would make comparing with /etc/passwd easy!

– Also, way that salt is combined with password designed to
frustrate use of off-the-shelf DES hardware

• Technique 2: Require more complex passwords
– Make people use at least 8-character passwords with
upper-case, lower-case, and numbers
» 708=6x1014=6million seconds=69 days@0.01μs/check

– Unfortunately, people still pick common patterns
» e.g. Capitalize first letter of common word, add one digit

Lec 25.2211/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Passwords: Making harder to crack (con’t)
• Technique 3: Delay checking of passwords

– If attacker doesn’t have access to /etc/passwd, delay
every remote login attempt by 1 second

– Makes it infeasible for rapid-fire dictionary attack
• Technique 4: Assign very long passwords

– Long passwords or pass-phrases can have more entropy
(randomness→harder to crack)

– Give everyone a smart card (or ATM card) to carry around
to remember password
» Requires physical theft to steal password
» Can require PIN from user before authenticates self

– Better: have smartcard generate pseudorandom number
» Client and server share initial seed
» Each second/login attempt advances to next random number

• Technique 5: “Zero-Knowledge Proof”
– Require a series of challenge-response questions

» Distribute secret algorithm to user
» Server presents a number, say “5”; user computes something

from the number and returns answer to server
» Server never asks same “question” twice

– Often performed by smartcard plugged into system

Lec 25.2311/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Authentication in Distributed Systems
• What if identity must be established across network?

– Need way to prevent exposure of information while still
proving identity to remote system

– Many of the original UNIX tools sent passwords over the
wire “in clear text”
» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread

• What do we need? Cannot rely on physical security!
– Encryption: Privacy, restrict receivers
– Authentication: Remote Authenticity, restrict senders

NetworkPA
SS: gina

Lec 25.2411/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Private Key Cryptography
• Private Key (Symmetric) Encryption:

– Single key used for both encryption and decryption
• Plaintext: Unencrypted Version of message
• Ciphertext: Encrypted Version of message

• Important properties
– Can’t derive plain text from ciphertext (decode) without
access to key

– Can’t derive key from plain text and ciphertext
– As long as password stays secret, get both secrecy and
authentication

• Symmetric Key Algorithms: DES, Triple-DES, AES

Insecure
Transmission
(ciphertext)

Decrypt

Key

Encrypt

Key

Plaintext

PlaintextSPY CIA

Lec 25.2511/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Key Distribution
• How do you get shared secret to both places?

– For instance: how do you send authenticated, secret mail
to someone who you have never met?

– Must negotiate key over private channel
» Exchange code book
» Key cards/memory stick/others

• Third Party: Authentication Server (like Kerberos)
– Notation:

» Kxy is key for talking between x and y
» (…)K means encrypt message (…) with the key K
» Clients: A and B, Authentication server S

– A asks server for key:
» A→S: [Hi! I’d like a key for talking between A and B]
» Not encrypted. Others can find out if A and B are talking

– Server returns session key encrypted using B’s key
» S→A: Message [Use Kab (This is A! Use Kab)Ksb] Ksa
» This allows A to know, “S said use this key”

– Whenever A wants to talk with B
» A→B: Ticket [This is A! Use Kab]Ksb
» Now, B knows that Kab is sanctioned by S

Lec 25.2611/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Authentication Server Continued

• Details
– Both A and B use passwords (shared with key server) to
decrypt return from key servers

– Add in timestamps to limit how long tickets will be used
to prevent attacker from replaying messages later

– Also have to include encrypted checksums (hashed
version of message) to prevent malicious user from
inserting things into messages/changing messages

– Want to minimize # times A types in password
» A→S (Give me temporary secret)
» S→A (Use Ktemp-sa for next 8 hours)Ksa
» Can now use Ktemp-sa in place of Ksa in prototcol

Key
ServerReq

Tick
et

Tick
et

Ticket
Secure Communication

Lec 25.2711/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Public Key Encryption
• Can we perform key distribution without an

authentication server?
– Yes. Use a Public-Key Cryptosystem.

• Public Key Details
– Don’t have one key, have two: Kpublic, Kprivate

» Two keys are mathematically related to one another
» Really hard to derive Kpublic from Kprivate and vice versa

– Forward encryption:
» Encrypt: (cleartext)Kpublic= ciphertext1
» Decrypt: (ciphertext1)Kprivate = cleartext

– Reverse encryption:
» Encrypt: (cleartext)Kprivate = ciphertext2
» Decrypt: (ciphertext2)Kpublic = cleartext

– Note that ciphertext1 ≠ ciphertext2
» Can’t derive one from the other!

• Public Key Examples:
– RSA: Rivest, Shamir, and Adleman

» Kpublic of form (kpublic, N), Kprivate of form (kprivate, N)
» N = pq. Can break code if know p and q

– ECC: Elliptic Curve Cryptography
Lec 25.2811/27/06 Kubiatowicz CS162 ©UCB Fall 2006

• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys (secure destination points) can be acquired
by anyone/used by anyone

– Only person with private key can decrypt message
• What about authentication?

– Use combination of private and public key
– Alice→Bob: [(I’m Alice)Aprivate Rest of message]Bpublic
– Provides restricted sender and receiver

• But: how does Alice know that it was Bob who sent
her Bpublic? And vice versa…

Bprivate
Aprivate

Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel

Lec 25.2911/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Secure Hash Function

• Hash Function: Short summary of data (message)
– For instance, h1=H(M1) is the hash of message M1

» h1 fixed length, despite size of message M1.
» Often, h1 is called the “digest” of M1.

• Hash function H is considered secure if
– It is infeasible to find M2 with h1=H(M2); ie. can’t easily find other message with same digest as given
message.

– It is infeasible to locate two messages, m1 and m2, which “collide”, i.e. for which H(m1) = H(m2)
– A small change in a message changes many bits of
digest/can’t tell anything about message given its hash

DFCD3454BBEA788A
751A696C24D97009
CA992D17

The red fox
runs across

the ice

Hash
Function

Hash
Function

52ED879E70F71D92
6EB6957008E03CE4
CA6945D3

Fox

Lec 25.3011/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Use of Hash Functions
• Several Standard Hash Functions:

– MD5: 128-bit output
– SHA-1: 160-bit output

• Can we use hashing to securely reduce load on server?
– Yes. Use a series of insecure mirror servers (caches)
– First, ask server for digest of desired file

» Use secure channel with server
– Then ask mirror server for file

» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

Client

Read File X

Here is hx = H(X)

Insecure
Data
Mirror

File X
Read X

File X File X

Server

Lec 25.3111/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Signatures/Certificate Authorities
• Can use Xpublic for person X to define their identity

– Presumably they are the only ones who know Xprivate.– Often, we think of Xpublic as a “principle” (user)
• Suppose we want X to sign message M?

– Use private key to encrypt the digest, i.e. H(M)Xprivate

– Send both M and its signature:
» Signed message = [M,H(M)Xprivate]

– Now, anyone can verify that M was signed by X
» Simply decrypt the digest with Xpublic
» Verify that result matches H(M)

• Now: How do we know that the version of Xpublic that
we have is really from X???
– Answer: Certificate Authority

» Examples: Verisign, Entrust, Etc.
– X goes to organization, presents identifying papers

» Organization signs X’s key: [Xpublic, H(Xpublic)CAprivate]
» Called a “Certificate”

– Before we use Xpublic, ask X for certificate verifying key
» Check that signature over Xpublic produced by trusted

authority
• How do we get keys of certificate authority?

– Compiled into your browser, for instance!
Lec 25.3211/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusion
• User Identification

– Passwords/Smart Cards/Biometrics
• Passwords

– Encrypt them to help hid them
– Force them to be longer/not amenable to dictionary attack
– Use zero-knowledge request-response techniques

• Distributed identity
– Use cryptography

• Symmetrical (or Private Key) Encryption
– Single Key used to encode and decode
– Introduces key-distribution problem

• Public-Key Encryption
– Two keys: a public key and a private key

» Not derivable from one another
• Secure Hash Function

– Used to summarize data
– Hard to find another block of data with same hash

