Cs162
Operating Systems and
Systems Programming
Lecture 26

Protection and Security
in Distributed Systems II

November 29, 2006
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Authentication: Identifying Users %
ia=

* How to identify users to the system?
- Passwords
» Shared secret between two parties

» Since only user knows password, someone types correct
password = must be user typing it

» Very common technique
- Smart Cards

» Electronics embedded in card capable of
providing long passwords or satisfying
challenge — response queries

» May have display to allow reading of password

» Or can be J:Iugged in directly. several
credit cards now in this category

- Biometrics

» Use of one or more intrinsic physical or | |
behavioral traits to identify someone ‘ ity

» Examples: fingerprint reader,
palm reader, retinal scan

» Becoming quite a bit more common
11/29/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 26.2

Review: Private Key Cryptography

* Private Key (Symmetric) Encryption:
- Single key used for both encryption and decryption

* Plaintext: Unencrypted Version of message

- Ciphertext: Encrypted Version of message

—> Encrypt Decrypt
‘ Insecure

o)
2- Transmission g'

SPY s I (ciphertext) 1 S CIA
a Key Key 3

+ Important properties

- Can't derive plain text from ciphertext (decode) without
access to key

- Can't derive key from plain text and ciphertext

- As long as password stays secret, get both secrecy and
authentication

- Symmetric Key Algorithms: DES, Triple-DES, AES

11/29/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 26.3

Goals for Today

* Use of Cryptographic Mechanisms
- Authorization Mechanisms
- Worms and Viruses

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
11/29/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 26.4

Public Key Encryption

+ Can we per‘Tor‘m Key distribufion without an
authentication server?
- Yes. Use a Public-Key Cryptosystem.
* Public Key Details
- Don't have one key, have two: K, i, Kirivate
» Two keys are mathematically related to one another
» Really hard to derive K. from K
- Forward encryption:
» Encrypt: (cleartext)krblic= ciphertext,
» Decrypt: (ciphertext,)private = cleartext
- Reverse encryption:
» Encrypt: (cleartext)<erivate = ciphertext,
» Decrypt: (ciphertext,)rblic = cleartext
- Note that ciphertext; # ciphertext,
» Can't derive one from the other!
* Public Key Examples:
- RSA: Rivest, Shamir, and Adleman
» K ublic of form (kpublic' N)' Kpr'ivafe of form (kpr'ivafe' N)
» Nz pq. Can break code if know p and q

11/29706E cc: Elllpflc c%zxsfoﬁszy ?;%Qrf;%ggixall 2006 Lec 26.5

orivate @Nd vice versa

Public Key Encryption Details

* Idéar K can be made public, Keep Kt private

Insecure Channel

public === Bpriva'r
private publig

Alice Insecure Channel Bob
+ Gives message privacy (restricted receiver):

- Public keys (secure destination points) can be acquired
by anyone/used by anyone

- Only person with private key can decrypt message
* What about authentication?
- Use combination of private and public key
- Alice—Bob: [(I'm Alice)#rrivate Rest of message]Brublic
- Provides restricted sender and receiver

« But: how does Alice know that it was Bob who sent

her B,;.? And vice versa..
11/29/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 26.6

Secure Hash Function

Hash DFCD3454BBEA788A
Fox > Fun?:iion | 7512696C24D97009
CA992D17

The red fox Hash 52ED879E70F71D92
runs across [y Functi)| 6EB6957008E03CE4
the ice dnetion CA6945D3

* Hash Function: Short summary of data (message)
- For instance, h;=H(M,) is the hash of message M,
» h; fixed length, despite size of message M;.
» Often, h, is called the “digest” of M.
* Hash function H is considered secure if
- It is infeasible to find M, with h;=H(M,): ie. can't
easily find other message with same digest as given
message.
- It is infeasible to locate two messages, m; and m,,
which “collide”, i.e. for which H(m,) = H(m,)
- A small change in a message changes many bits of
digest/can't tell anything about message given its hash

* Hash function Examples: MD5, SHA-1, SHA-256

11/29/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 26.7

Signatures/Certificate Authorities

+ Can use X UP Tor person X fo define Their laenhry

l
- Presumab yc‘rhey are the only ones who know X
- Often, we think of X, as a “principle” (usery
- Suppose we want X to sign message M? .
- Use private key to encrypt the digest, i.e. H(M)*private
- Send both M and its signature:
» Signed message = [M H(M)*private]
- Now, "anyone can verify that M was signed by X
» Simply decrypt the digest with X
» Verify that result matches H(M) .
* Now: How do we know that the version of X
we have is really from X???
- Answer: Certificate Authority
» Examples: Verisign, Entrust, Etc.
- X goes to organization, Er‘esem‘s identifying papers
» Organization signs X's key: [X pjic, HXpupiic)*PVere]
» Called a “Certificate”
- Before we use X ... ask X for certificate verifying key
» Check that sigﬁa’rur'e over X, produced by trusted

thori
- How do wcémgye'r keys of certificate authority?

- Compiled into your browser, for instance!
11/29/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 26.8

rivate *

public

public that

Security through SSL

- SSL Web Protocol i +»
- lP}or"r 41:;?_: s:cur'e hﬂp.r_ A Ns.certs |
- Use public-key encryption = ks
for ey-disfr%uﬁonyp \%4&»
- Server has a certificate signed by certificate authority

- Contains server info (organization, IP address, etc)
- Also contains server's public key and expiration date
+ Establishment of Shared, 48-byte "master secret”

- Client sends 28-byte random value n, to server

- Server returns its own 28-byte random value n_, plus its
certificate cert,

- Client verifies certificate by checking with public key of
certificate authority compiled into browser

» Also check expiration date

- Client picks 46-byte “premaster” secret (pms), encrypts
it with public key of server, and sends to server

- Now, both server and client have n_, n,, and pms

» Each can compute 48-byte master secret using one-way
and collision-resistant function on three values

» Random “nonces” n_ and n, make sure master secret fresh
11/29/06 Kubiatowicz C5162 ©UCB Fall 2006 Lec 26.9

SSL Pitfalls

* Netscape claimed to provide secure comm. (SSL)
- So you could send a credit card # over the Internet

* Three problems (reported in NYT):

- Algorithm for picking session keys was predictable
(used time of day) - brute force key in a few hours

- Made new version of Netscape to fix #1, available to
users over Internet (unencrypted!)

» Four byte patch to Netscape executable makes it
always use a specific session key

» Could insert backdoor by mangling packets containing
executable as they fly by on the Internet.
» Many mirror sites (including Berkeley) to redistribute

new version - anyone with root access to any machine
on LAN at mirror site could insert the backdoor

- Buggy helper applications - can exploit any bug in

either Netscape, or its helper applications
11/29/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 26.10

Cryptographic Summary A,

* Private Key Encryption (also Symmetric Key) /' {{
- Pros: Very Fast
» can encrypt at network speed (even without hardware)
- Cons: NeeJ to distribute secret key to both parties
* Public Key Encryption (also Asymmetric Key)
- Pros: Can distribute keys in public
» Need certificate authority (Public Key Infrastructure)
- Cons: Very Slow
» 100—1000 times slower than private key encryption
- Session Key
- Randomly generated private key used for single session
- Often distributed via public key encryption
- Secure Hash
- Fixed length summary of data that is hard to spoof
* Message Authentication Code (MAC)

- Technique for using secure hash and session key to
verify individual pdckets (even at the IP level)

- IPSEC: IP Protocol 50/51, authentic/encrypted IP
+ Signature over Document

- Hash of document encrypted with private key
11/29/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 26.11

Administrivia
* MIDTERM II: Monday December 4'hl
- 4:00-7:00pm, 10 Evans
- All material from last midterm and up to today
- Includes virtual memory
- One page of handwritten notes, both sides
* Final Exam
- December 16™,8:00-11:00, Bechtel Auditorium
- Covers whole course (except final lecture)
- Two pages of handwritten notes, both sides
* Last Day of Class - Next Wednesday
- One more section on Thursday?
+ Final Topics suggestions (so far):
- Google OS
- Parallel OS
- Cybersecurity attacks
- Peer-to-peer systems

11/29/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 26.12

Recall: Authorization: Who Can Do What?

- How do we decide who is authorized [~ .= 1 |
to do actions in the system? o | R B[A | e
+ Access Control Maftrix: contains - - :
all permissions in the system P ™| e
- Resources across top b, | o
» Files, Devices, etc... e
- Domains in COIUmns 0 | | read | execule
» A domain might be a user or a | i ot

group of permissions
» E.g. above: User D; can read F, or execute F;
- In practice, table would be huge and sparsel!
+ Two approaches to implementation
- Access Control Lists: store Fermissions with each object
» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users
and permissions for each group
- Capability List: each process tracks objects has
permission to touch
» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has
access to, not each page has list of processes ..

11/29/06 Kubiatowicz €S162 ©UCB Fall 2006

Lec 26.13

How fine-grained should access control be?

+ Example of the problem:
- Suppose you buy a copy of a new game from "Joe's Game
World” and then run it.
- It's running with your userid
» It removes all the files you own, including the project due
the next day...
* How can you prevent this?
- Have to run the program under some userid.
» Could create a second games userid for the user, which
has no write privileges.
» Like the “nobody” userid in UNIX - can't do much
- But what if the game needs to write out a file recording
scores?
» Would need to give write privileges to one particular file
(or directory) to your games userid.
- But what about non-game programs you want to use,
such as Quicken?
» Now you need to create your own private quicken userid, if
you want to make sure tha the copy of Quicken you bought
can't corrupt non-quicken-related f)zles

- But - how to get this right??? Pretty complex...
11/29/06 Kubiatowicz €5162 ©UCB Fall 2006

Lec 26.14

Authorization Continued

* Principle of least privilege: programs, users, and
sKsTems should get only enough privileges to perform
their tasks

- Very hard to do in practice

» How do you figure out what the minimum set of privileges
is needed to run your programs?

- People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows
* One solution: Signed Software

- Only use software from sources that you trust, thereby

dealing with the problem by means of authentication
- Fine for big, established firms such as Microsoft, since
they can make their signing keys well known and people
trust them
» Actually, not always fine: recently, one of Microsoft's
sighing ke¥s was compromised, leading to malicious
software that looked valid
- What about new startups?
» Who “validates” them?
» How easy is it to fool them?

11/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Lec 26.15

How to perform Authorization for Distributed Systems?

Different
Authorization
Domains

* Issues: Are all user names in world unique?
- No! They only have small number of characters
» kubi@mit.edu — kubitron@lcs.mit.edu —
kubitron@cs.berkeley.edu
» However, someone thought their friend was kubi@mit.edu
and I got very private email intended for someone else...
- Need something better, more unique to identify person
* Suppose want to connect with any server at any time?
- Need an account on every machine! (possibly with
different user name for each account)
- OR: Need to use something more universal as identity
» Public Keys! (Called "Principles”)

» People are their public keys

11/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Lec 26.16

Distributed Access Control
Access Control List (ACL) for X:

File X

Owner Key:
0x22347EF...

ACL verifier
ash, Timestamp,)R: Key: 0x546DFEFA34...
Signature (owner)/RW: Key: 0x467D34EFS3...

RX: Group Key: 0xA2D3498672...

ash, Timestamp, :
signafure (gr-oup) Key ¢ 0x6647DBCOYAC...

Server 2: Domain 3

- Distributed Access Control List (ACL)
- Contains list of attributes (Read, Write, Execute, es'rc)

with attached identities (Here, we show public keys
» ACLs signed by owner of file, only changeable by owner

» Group lists signed by group key
- ACLs can be on different servers than data

» Signatures allow us to validate them
Y, from verifiers
6 Lec 26.17

» ACLs could even be stored separatel
Kubiatowicz €S162 ©UCB Fall 20

11/29/06

Analysis of Previous Scheme

* Positive Points:
- Identities checked via signatures and public keys
» Client can't generate re?‘uesf for data unless they have
private key Yo go with their public identi
» Server won't use ACLs not properly signed by owner of file
- No problems with multiple domains, since identities
designed to be cross-domain (public keys domain neutral)

* Revocation:
- What if someone steals Your' private key?
» Need to walk through all ACLs with your key and change..!

» This is very expensive
- Better to have unique string identifying you that people

place into ACLs
» Then, ask Certificate Authority to give you a certificate
matching unique string to your current public key
» Client Request: (request + unique ID)‘rrivate; give server

certificate if they ask for it.
» Key compromise=>must distribute “certificate revocation”,

since can't wait for previous certificate to expire.

- What if you remove someone from ACL of a given file?
» If server caches old ACL, then person retains access!

» Here, cache inconsistency leads to security violations!

11/29/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 26.18

Analysis Continued

* Who signs The dafa?
- Or: How does the client know they are getting valid
data?
- Signed by server?
» What if server compromised? Should client trust server?

- Signed by owner of file?
» Better, but now only owner can update file!

» Pretty inconvenient!
- Signed by group of servers that accepted latest update?

» If must have signatures from all servers = Safe, but one
bad server can prevent ugdate from happenin

» Instead: ask for a threshold number of signatures

» Byzantine agreement can help here

* How do you know that data is up-to-date?
- Valid signature only means data is valid older version

- Freshness attack:
» Malicious server returns old data instead of recent data

» Problem with both ACLs and data
.g.: you just got a raise, but enemy breaks into a server

» E
and prevents payroll from seeing latest version of update

- Hard problem
» Needs to be fixed by invalidating old copies or having a
trusted group gf.servern (Ryegniinpddgrement?) . 51

11/29/06

Involuntary Installation

* What about soffware loaded without your consent?

- Macros attached to documents (such as Microsoft Word)
- Active X controls (programs on web sites with potential
access to whole machine)
- Spyware included with normal products
+ Active X controls can have access to the local machine

- Install software/Launch programs
+ Sony Spyware [Sony XCP] (October 2005)
- About 50 recent CDs from Sony automatically install
software when you played them on Windows machines
» Called XCP (Extended Copy Protection)
» Modify operating system to prevent more than 3 copies
and to prevent peer-to-peer sharing

- Side Effects:
» Reporting of private information to Sony

» Hiding of generic file names of form $sys_xxx: easy for

other virus writers to exploit
» Hard to remove (crashes machine if not done carefully)

- Vendors of virus protection software declare it spyware

» Computer Associates, Symantec, even Microsoft
Kubiatowicz €S162 ©UCB Fall 2006 Lec 26.20

11/29/06

Enforcement

Enforcer checks passwords, ACLs, etc
- Makes sure the only authorized actions take place
- Bugs in enforcer=things for malicious users to exploit
In UNIX, superuser can do anything
- Because of coarse-grained access control, lots of stuff
has to run as superuser in order to work
- If there is a bug in any one of these programs, you lose!
Paradox
- Bullet-proof enforcer
» Only known way is to make enforcer as small as possible
» Easier to make correct, but simple-minded protection model
- Fancy protection
» Tries to adhere to principle of least privilege
» Really hard to get right
Same argument for Java or C++: What do you make
private vs public?
- Hard to make sure that code is usable but only necessary
modules are public
- Pick something in middle? Get bugs and weak protection!
11/29/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 26.21

State of the World

- State of the World in Security
- Authentication: Encryption
» But almost no one encrypts or has public key identity
- Authorization: Access Control
» But many systems only provide very coarse-grained access
» In UNIX, need to turn off protection to enable sharing
- Enforcement: Kernel mode
» Hard to write a million line program without bugs
» Any bug is a potential security loophole!
- Some types of security problems
- Abuse of privilege
» If the superuser is evil, we're all in trouble/can't do anything

» What if sysor in charge of instructional resources went
crazy and deleted everybody's files (and backups)???

- Imposter: Pretend to be someone else
» Example: in unix, can set up an .rhosts file to allow logins
from one machine to another without retyping passwor
» Allows “rsh” command to do an operation on a remote node
» Result: send rsh request, pretending to be from trusted
user—install .rhosts file granting you access

11/29/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 26.22

Other Security Problems

* Virus:
- A piece of code that attaches itself to a program or file
so it can spread from one computer to another, leaving
infections as it travels

- Most attached to executable files, so don't get
activated until the file is actually executed

- Once caught, can hide in boot tracks, other files, OS
* Worm:
- Similar to a virus, but capable of traveling on its own

- Takes advantage of file or information transport
features

- Because it can replicate itself, your computer might send
out hundreds or thousands of copies of itself

* Trojan Horse:
- Named after huge wooden horse in Greek mythology
given as gift to enemy; contained army insid)é
- At first glance appears to be useful software but does
damage once installed or run on your computer

11/29/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 26.23

Security Problems: Buffer-overflow Condition
##tdefine BUFFER SIZE 256

int process(int argc, - T

char *argvl]) i ot

{ saved frame painter ¥

char buffer [BUFFER SIZE]; ‘
if (argec < 2)

return -1;

NO 0P
bufler{ BUFFER_SIZE - 1) :

% copied
—

else { butier(1) modified shell code
strcpy (buffer,argv(l]);
return o ; bufferi0)) L
}
} Before attack After attack

+ Technique exploited by many network attacks
- Anytime input comes from network request and is not
checked for size
- Allows execution of code with same privileges as running
program - but happens without any action from user!
* How to prevent?
- Don't code this way! (ok, wishful thinking)
- New mode bits in Intel, Amd, and Sun processors

» Put in page table; says “don't execute code in this page”
11/29/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 26.24

The Morris Internet Worm

* Internet worm (Self-reproducing)
- Author Robert Morris, a first-year Cornell grad student
- Launched close of Workday on November 2, 1988

- Within a few hours of release, it consumed resources to
the point of bringing down infected machines

rsh attack

worm

. Techniques targat system infacted system
- Exploited UNIX networking features (remote access)

- Bugs in filzfer (buffer overflow) and sendmail programs
(debug mode allowed remote login)

- Dictionary lookup-based password cracking

- 6rappling hook program uploaded main worm program
11/29/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 26.25

Some other Attacks

* Trojan Horse Example: Fake Login
- Construct a program that looks like normal login program
- Gives "login:” and “password:“ prompts
» You type information, it sends password to someone, then
either logs you in or says "Permission Denied” and exits
- In Windows, the “ctrl-alt-delete” sequence is supposed to
be really hard to change, so you “"know" that you are
getting official login program
Is SONY XCP a Trojan horse?
+ Salami attack: Slicing things a little at a time
- Steal or corrupt something a little bit at a time
- E.g.: What happens to partial pennies from bank interest?
» Bank keeps them! Hacker re-programmed system so that
partial pennies would go into his account.
» Doesn't seem like much, but if you are large bank can be
millions of dollars
+ Eavesdropping attack
- Tap into network and see everything typed
- Catch passwords, etc

- ! nev ication!
11/25/5€5S0n: never use unencrypted communication Lec 26.26

Tenex Password Checking

* Tenex - early 70's, BBN
- Most popular system at universities before UNIX

- Thought to be very secure, gave “red team” all the
source code and documentation (want code to be
publicly available, as in UNIX)

- In 48 hours, they figured out how to get every
password in the system

* Here's the code for the password check:
for (i = 0; i < 8; i++)
if (userPasswd[i] != realPasswdl[i])

go to error
* How many combinations of passwords?
- 2568?
- Wrong!

11/29/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 26.27

Defeating Password Checking

+ Tenex used VM, and it interacts badly with the above code

- Key idea: force page faults at inopportune times to break
passwords quickly

*+ Arrange 15" char in string to be last char in pg, rest on next pg

- Then arrange for pg with 1s' char to be in memory, and rest
to be on disk (e.g., ref lots of other pgs, then ref 15t page)

alaaaaaa
I
page in memory| page on disk
- Time password check to determine if first character is correct!
- If fast, 1s' char is wrong
- If slow, 15t char is right, pg fault, one of the others wrong
- So try all first characters, until one is slow
- Repeat with first two characters in memory, rest on disk
*+ Only 256 * 8 attempts to crack passwords

- Fix is easy, don't stop until you look at all the characters
11/29/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 26.28

1

Defense in Depth: Layered Network Security
+ How do I minimize The damage when security fails?

- For instance: I make a mistake in the specification
- Or: A bug lets something run that shouldn't?

* Firewall: Examines every packet to/from public internet

- Can disable all traffic to/from certain ports
- Can route certain traffic to DMZ (De-Militarized Zone)
» Semi-secure area separate from critical systems
- Can do network address translation
» Inside network, computers have private IP addresses
» Connection from inside—outside is translated
» E.g. [10.0.0.2,port 2390] — [169.229.60.38, port 80]
[12.4.35.2,port 5592] — [169.229.60.38,port 80]

Internet access from company’s
camputers

company compulens

oMz

1/29/06 i Lec 26.29

Shrink Wrap Software Woes

* Can I trust software installed by the computer
manufacturer?

- Not really, most major computer manufacturers
have shipped computers with viruses

- How?

» Forgot to update virus scanner on “gold” master
machine

- Software companies, PR firms, and others
routinely release software that contains viruses

+ Linux hackers say “"Start with the source”
- Does that work?

11/29/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 26.30

1

Ken Thompson's self-replicating program

Bury Trojan horse in binaries, so no evidence in source

- Replicates itself to every UNIX system in the world and
even to new UNIX's on new platforms. No visible sign.

- 6ave Ken Thompson ability to log into any UNIX system
Two steps: Make it possible (easy); Hide it (tricky)
Step 1: Modify login.c

A: if (name == “ken”)

don’t check password
log in as root

- Easy to do but pretty blatant! Anyone looking will see.
Step 2: Modify C compiler
- Instead of putting code in login.c, put in compiler:

B: if see triggerl
insert A into input stream

- Whenever compiler sees triggerl (say /*gobbledygook*/),
puts A into input stream of compiler

- Now, don't need A in login.c, just need triggerl

1/29/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 26.31

Self Replicating Program Continued

+ Step 3: Modify compiler source code:

C: if see trigger2
insert B+C into input stream

- Now compile this new C compiler to produce binary
- Step 4: Self-replicating codel
- Simply remove statement C in compiler source code and
place “trigger2” into source instea

» As long as existing C compiler is used to recompile the C
compiler, the code will stay into the C compiler and will
compile back door into login.c

» But no one can see this from source codel

* When porting to new machine/architecture, use
existing C compiler to generate cross-compiler

- Code will migrate to new architecture!

- Lesson: never underestimate the cleverness of
computer hackers for hiding things!

11/29/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 26.32

Conclusion

+ Distributed identity
- Use cryptography (Public Key, Signed by PKI)
* Use of Public Key Encryption to get Session Key

- Can send encrypted random values to server, now share
secret with server

- Used in SSL, for instance
* Authorization

- Abstract table of users (or domains) vs permissions

- Implemented either as access-control list or capability list
+ Issues with distributed storage example

- Revocation: How to remove permissions from someone?

- Integrity: How to know whether data is valid

- Freshness: How to know whether data is recent
+ Buffer-Overrun Attack: exploit bug to execute code

11/29/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 26.33

