
CS162
Operating Systems and
Systems Programming

Lecture 26

Protection and Security
in Distributed Systems II

November 29, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 26.211/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Authentication: Identifying Users
• How to identify users to the system?

– Passwords
» Shared secret between two parties
» Since only user knows password, someone types correct

password ⇒ must be user typing it
» Very common technique

– Smart Cards
» Electronics embedded in card capable of

providing long passwords or satisfying
challenge → response queries

» May have display to allow reading of password
» Or can be plugged in directly; several

credit cards now in this category
– Biometrics

» Use of one or more intrinsic physical or
behavioral traits to identify someone

» Examples: fingerprint reader,
palm reader, retinal scan

» Becoming quite a bit more common

Lec 26.311/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Private Key Cryptography
• Private Key (Symmetric) Encryption:

– Single key used for both encryption and decryption
• Plaintext: Unencrypted Version of message
• Ciphertext: Encrypted Version of message

• Important properties
– Can’t derive plain text from ciphertext (decode) without
access to key

– Can’t derive key from plain text and ciphertext
– As long as password stays secret, get both secrecy and
authentication

• Symmetric Key Algorithms: DES, Triple-DES, AES

Insecure
Transmission
(ciphertext)

Decrypt

Key

Encrypt

Key

Plaintext

PlaintextSPY CIA

Lec 26.411/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Use of Cryptographic Mechanisms
• Authorization Mechanisms
• Worms and Viruses

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 26.511/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Public Key Encryption
• Can we perform key distribution without an

authentication server?
– Yes. Use a Public-Key Cryptosystem.

• Public Key Details
– Don’t have one key, have two: Kpublic, Kprivate

» Two keys are mathematically related to one another
» Really hard to derive Kpublic from Kprivate and vice versa

– Forward encryption:
» Encrypt: (cleartext)Kpublic= ciphertext1
» Decrypt: (ciphertext1)Kprivate = cleartext

– Reverse encryption:
» Encrypt: (cleartext)Kprivate = ciphertext2
» Decrypt: (ciphertext2)Kpublic = cleartext

– Note that ciphertext1 ≠ ciphertext2
» Can’t derive one from the other!

• Public Key Examples:
– RSA: Rivest, Shamir, and Adleman

» Kpublic of form (kpublic, N), Kprivate of form (kprivate, N)
» N = pq. Can break code if know p and q

– ECC: Elliptic Curve Cryptography
Lec 26.611/29/06 Kubiatowicz CS162 ©UCB Fall 2006

• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys (secure destination points) can be acquired
by anyone/used by anyone

– Only person with private key can decrypt message
• What about authentication?

– Use combination of private and public key
– Alice→Bob: [(I’m Alice)Aprivate Rest of message]Bpublic
– Provides restricted sender and receiver

• But: how does Alice know that it was Bob who sent
her Bpublic? And vice versa…

Bprivate
Aprivate

Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel

Lec 26.711/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Secure Hash Function

• Hash Function: Short summary of data (message)
– For instance, h1=H(M1) is the hash of message M1

» h1 fixed length, despite size of message M1.
» Often, h1 is called the “digest” of M1.

• Hash function H is considered secure if
– It is infeasible to find M2 with h1=H(M2); ie. can’t easily find other message with same digest as given
message.

– It is infeasible to locate two messages, m1 and m2, which “collide”, i.e. for which H(m1) = H(m2)
– A small change in a message changes many bits of
digest/can’t tell anything about message given its hash

• Hash function Examples: MD5, SHA-1, SHA-256

DFCD3454BBEA788A
751A696C24D97009
CA992D17

The red fox
runs across

the ice

Hash
Function

Hash
Function

52ED879E70F71D92
6EB6957008E03CE4
CA6945D3

Fox

Lec 26.811/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Signatures/Certificate Authorities
• Can use Xpublic for person X to define their identity

– Presumably they are the only ones who know Xprivate.– Often, we think of Xpublic as a “principle” (user)
• Suppose we want X to sign message M?

– Use private key to encrypt the digest, i.e. H(M)Xprivate

– Send both M and its signature:
» Signed message = [M,H(M)Xprivate]

– Now, anyone can verify that M was signed by X
» Simply decrypt the digest with Xpublic
» Verify that result matches H(M)

• Now: How do we know that the version of Xpublic that
we have is really from X???
– Answer: Certificate Authority

» Examples: Verisign, Entrust, Etc.
– X goes to organization, presents identifying papers

» Organization signs X’s key: [Xpublic, H(Xpublic)CAprivate]
» Called a “Certificate”

– Before we use Xpublic, ask X for certificate verifying key
» Check that signature over Xpublic produced by trusted

authority
• How do we get keys of certificate authority?

– Compiled into your browser, for instance!

Lec 26.911/29/06 Kubiatowicz CS162 ©UCB Fall 2006

(pms)Ks

• SSL Web Protocol
– Port 443: secure http
– Use public-key encryption
for key-distribution

• Server has a certificate signed by certificate authority
– Contains server info (organization, IP address, etc)
– Also contains server’s public key and expiration date

• Establishment of Shared, 48-byte “master secret”
– Client sends 28-byte random value nc to server
– Server returns its own 28-byte random value ns, plus its certificate certs
– Client verifies certificate by checking with public key of
certificate authority compiled into browser
» Also check expiration date

– Client picks 46-byte “premaster” secret (pms), encrypts
it with public key of server, and sends to server

– Now, both server and client have nc, ns, and pms
» Each can compute 48-byte master secret using one-way

and collision-resistant function on three values
» Random “nonces” nc and ns make sure master secret fresh

ns,certs

Security through SSL
nc

Lec 26.1011/29/06 Kubiatowicz CS162 ©UCB Fall 2006

SSL Pitfalls

• Netscape claimed to provide secure comm. (SSL)
– So you could send a credit card # over the Internet

• Three problems (reported in NYT):
– Algorithm for picking session keys was predictable
(used time of day) – brute force key in a few hours

– Made new version of Netscape to fix #1, available to
users over Internet (unencrypted!)
» Four byte patch to Netscape executable makes it

always use a specific session key
» Could insert backdoor by mangling packets containing

executable as they fly by on the Internet.
» Many mirror sites (including Berkeley) to redistribute

new version – anyone with root access to any machine
on LAN at mirror site could insert the backdoor

– Buggy helper applications – can exploit any bug in
either Netscape, or its helper applications

Lec 26.1111/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Cryptographic Summary
• Private Key Encryption (also Symmetric Key)

– Pros: Very Fast
» can encrypt at network speed (even without hardware)

– Cons: Need to distribute secret key to both parties
• Public Key Encryption (also Asymmetric Key)

– Pros: Can distribute keys in public
» Need certificate authority (Public Key Infrastructure)

– Cons: Very Slow
» 100—1000 times slower than private key encryption

• Session Key
– Randomly generated private key used for single session
– Often distributed via public key encryption

• Secure Hash
– Fixed length summary of data that is hard to spoof

• Message Authentication Code (MAC)
– Technique for using secure hash and session key to
verify individual packets (even at the IP level)

– IPSEC: IP Protocol 50/51, authentic/encrypted IP
• Signature over Document

– Hash of document encrypted with private key
Lec 26.1211/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia
• MIDTERM II: Monday December 4th!

– 4:00-7:00pm, 10 Evans
– All material from last midterm and up to today
– Includes virtual memory
– One page of handwritten notes, both sides

• Final Exam
– December 16th,8:00-11:00, Bechtel Auditorium
– Covers whole course (except final lecture)
– Two pages of handwritten notes, both sides

• Last Day of Class – Next Wednesday
– One more section on Thursday?

• Final Topics suggestions (so far):
– Google OS
– Parallel OS
– Cybersecurity attacks
– Peer-to-peer systems

Lec 26.1311/29/06 Kubiatowicz CS162 ©UCB Fall 2006

• How do we decide who is authorized
to do actions in the system?

• Access Control Matrix: contains
all permissions in the system
– Resources across top

» Files, Devices, etc…
– Domains in columns

» A domain might be a user or a
group of permissions

» E.g. above: User D3 can read F2 or execute F3
– In practice, table would be huge and sparse!

• Two approaches to implementation
– Access Control Lists: store permissions with each object

» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users

and permissions for each group
– Capability List: each process tracks objects has
permission to touch
» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has

access to, not each page has list of processes …

Recall: Authorization: Who Can Do What?

Lec 26.1411/29/06 Kubiatowicz CS162 ©UCB Fall 2006

How fine-grained should access control be?
• Example of the problem:

– Suppose you buy a copy of a new game from “Joe’s Game
World” and then run it.

– It’s running with your userid
» It removes all the files you own, including the project due

the next day…
• How can you prevent this?

– Have to run the program under some userid.
» Could create a second games userid for the user, which

has no write privileges.
» Like the “nobody” userid in UNIX – can’t do much

– But what if the game needs to write out a file recording
scores?
» Would need to give write privileges to one particular file

(or directory) to your games userid.
– But what about non-game programs you want to use,
such as Quicken?
» Now you need to create your own private quicken userid, if

you want to make sure tha the copy of Quicken you bought
can’t corrupt non-quicken-related files

– But – how to get this right??? Pretty complex…

Lec 26.1511/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Authorization Continued
• Principle of least privilege: programs, users, and

systems should get only enough privileges to perform
their tasks
– Very hard to do in practice

» How do you figure out what the minimum set of privileges
is needed to run your programs?

– People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows

• One solution: Signed Software
– Only use software from sources that you trust, thereby
dealing with the problem by means of authentication

– Fine for big, established firms such as Microsoft, since
they can make their signing keys well known and people
trust them
» Actually, not always fine: recently, one of Microsoft’s

signing keys was compromised, leading to malicious
software that looked valid

– What about new startups?
» Who “validates” them?
» How easy is it to fool them?

Lec 26.1611/29/06 Kubiatowicz CS162 ©UCB Fall 2006

How to perform Authorization for Distributed Systems?

• Issues: Are all user names in world unique?
– No! They only have small number of characters

» kubi@mit.edu → kubitron@lcs.mit.edu →
kubitron@cs.berkeley.edu

» However, someone thought their friend was kubi@mit.edu
and I got very private email intended for someone else…

– Need something better, more unique to identify person
• Suppose want to connect with any server at any time?

– Need an account on every machine! (possibly with
different user name for each account)

– OR: Need to use something more universal as identity
» Public Keys! (Called “Principles”)
» People are their public keys

Different
Authorization

Domains

Lec 26.1711/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Client 1
Domain 1

Distributed Access Control

• Distributed Access Control List (ACL)
– Contains list of attributes (Read, Write, Execute, etc)
with attached identities (Here, we show public keys)
» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

– ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

Server 1: Domain 2

File X
Owner Key:
0x22347EF…

File X
Owner Key:
0x22347EF…

Access Control List (ACL) for X:

R: Key: 0x546DFEFA34…
RW:Key: 0x467D34EF83…
RX: Group Key: 0xA2D3498672…

ACL verifier
Hash, Timestamp,
Signature (owner)

Server 2: Domain 3

Group ACL:
Key: 0xA786EF889A…
Key: 0x6647DBC9AC…

GACL verifier
Hash, Timestamp,
Signature (group)

(Re
ad

 X
)K
clie

nt

Ke
y:

0x
66

47
DB

C9
AC

…

Re
ad

Gr
ou

p

GA
CL

(da
ta)

Kse
rve

r

Lec 26.1811/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Analysis of Previous Scheme
• Positive Points:

– Identities checked via signatures and public keys
» Client can’t generate request for data unless they have

private key to go with their public identity
» Server won’t use ACLs not properly signed by owner of file

– No problems with multiple domains, since identities
designed to be cross-domain (public keys domain neutral)

• Revocation:
– What if someone steals your private key?

» Need to walk through all ACLs with your key and change…!
» This is very expensive

– Better to have unique string identifying you that people
place into ACLs
» Then, ask Certificate Authority to give you a certificate

matching unique string to your current public key
» Client Request: (request + unique ID)Cprivate; give server

certificate if they ask for it.
» Key compromise⇒must distribute “certificate revocation”,

since can’t wait for previous certificate to expire.
– What if you remove someone from ACL of a given file?

» If server caches old ACL, then person retains access!
» Here, cache inconsistency leads to security violations!

Lec 26.1911/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Analysis Continued
• Who signs the data?

– Or: How does the client know they are getting valid
data?

– Signed by server?
» What if server compromised? Should client trust server?

– Signed by owner of file?
» Better, but now only owner can update file!
» Pretty inconvenient!

– Signed by group of servers that accepted latest update?
» If must have signatures from all servers ⇒ Safe, but one

bad server can prevent update from happening
» Instead: ask for a threshold number of signatures
» Byzantine agreement can help here

• How do you know that data is up-to-date?
– Valid signature only means data is valid older version
– Freshness attack:

» Malicious server returns old data instead of recent data
» Problem with both ACLs and data
» E.g.: you just got a raise, but enemy breaks into a server

and prevents payroll from seeing latest version of update
– Hard problem

» Needs to be fixed by invalidating old copies or having a
trusted group of servers (Byzantine Agrement?) Lec 26.2011/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Involuntary Installation
• What about software loaded without your consent?

– Macros attached to documents (such as Microsoft Word)
– Active X controls (programs on web sites with potential
access to whole machine)

– Spyware included with normal products
• Active X controls can have access to the local machine

– Install software/Launch programs
• Sony Spyware [Sony XCP] (October 2005)

– About 50 recent CDs from Sony automatically install
software when you played them on Windows machines
» Called XCP (Extended Copy Protection)
» Modify operating system to prevent more than 3 copies

and to prevent peer-to-peer sharing
– Side Effects:

» Reporting of private information to Sony
» Hiding of generic file names of form $sys_xxx; easy for

other virus writers to exploit
» Hard to remove (crashes machine if not done carefully)

– Vendors of virus protection software declare it spyware
» Computer Associates, Symantec, even Microsoft

Lec 26.2111/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Enforcement
• Enforcer checks passwords, ACLs, etc

– Makes sure the only authorized actions take place
– Bugs in enforcer⇒things for malicious users to exploit

• In UNIX, superuser can do anything
– Because of coarse-grained access control, lots of stuff
has to run as superuser in order to work

– If there is a bug in any one of these programs, you lose!
• Paradox

– Bullet-proof enforcer
» Only known way is to make enforcer as small as possible
» Easier to make correct, but simple-minded protection model

– Fancy protection
» Tries to adhere to principle of least privilege
» Really hard to get right

• Same argument for Java or C++: What do you make
private vs public?
– Hard to make sure that code is usable but only necessary
modules are public

– Pick something in middle? Get bugs and weak protection!
Lec 26.2211/29/06 Kubiatowicz CS162 ©UCB Fall 2006

State of the World
• State of the World in Security

– Authentication: Encryption
» But almost no one encrypts or has public key identity

– Authorization: Access Control
» But many systems only provide very coarse-grained access
» In UNIX, need to turn off protection to enable sharing

– Enforcement: Kernel mode
» Hard to write a million line program without bugs
» Any bug is a potential security loophole!

• Some types of security problems
– Abuse of privilege

» If the superuser is evil, we’re all in trouble/can’t do anything
» What if sysop in charge of instructional resources went

crazy and deleted everybody’s files (and backups)???
– Imposter: Pretend to be someone else

» Example: in unix, can set up an .rhosts file to allow logins
from one machine to another without retyping password

» Allows “rsh” command to do an operation on a remote node
» Result: send rsh request, pretending to be from trusted

user→install .rhosts file granting you access

Lec 26.2311/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Other Security Problems
• Virus:

– A piece of code that attaches itself to a program or file
so it can spread from one computer to another, leaving
infections as it travels

– Most attached to executable files, so don’t get
activated until the file is actually executed

– Once caught, can hide in boot tracks, other files, OS
• Worm:

– Similar to a virus, but capable of traveling on its own
– Takes advantage of file or information transport
features

– Because it can replicate itself, your computer might send
out hundreds or thousands of copies of itself

• Trojan Horse:
– Named after huge wooden horse in Greek mythology
given as gift to enemy; contained army inside

– At first glance appears to be useful software but does
damage once installed or run on your computer

Lec 26.2411/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Security Problems: Buffer-overflow Condition
#define BUFFER SIZE 256
int process(int argc,

char *argv[])
{
char buffer[BUFFER SIZE];
if (argc < 2)

return -1;
else {

strcpy(buffer,argv[1]);
return 0;

}
} Before attack After attack

• Technique exploited by many network attacks
– Anytime input comes from network request and is not
checked for size

– Allows execution of code with same privileges as running
program – but happens without any action from user!

• How to prevent?
– Don’t code this way! (ok, wishful thinking)
– New mode bits in Intel, Amd, and Sun processors

» Put in page table; says “don’t execute code in this page”

Lec 26.2511/29/06 Kubiatowicz CS162 ©UCB Fall 2006

The Morris Internet Worm
• Internet worm (Self-reproducing)

– Author Robert Morris, a first-year Cornell grad student
– Launched close of Workday on November 2, 1988
– Within a few hours of release, it consumed resources to
the point of bringing down infected machines

• Techniques
– Exploited UNIX networking features (remote access)
– Bugs in finger (buffer overflow) and sendmail programs
(debug mode allowed remote login)

– Dictionary lookup-based password cracking
– Grappling hook program uploaded main worm program

Lec 26.2611/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Some other Attacks
• Trojan Horse Example: Fake Login

– Construct a program that looks like normal login program
– Gives “login:” and “password:” prompts

» You type information, it sends password to someone, then
either logs you in or says “Permission Denied” and exits

– In Windows, the “ctrl-alt-delete” sequence is supposed to
be really hard to change, so you “know” that you are
getting official login program

• Is SONY XCP a Trojan horse?
• Salami attack: Slicing things a little at a time

– Steal or corrupt something a little bit at a time
– E.g.: What happens to partial pennies from bank interest?

» Bank keeps them! Hacker re-programmed system so that
partial pennies would go into his account.

» Doesn’t seem like much, but if you are large bank can be
millions of dollars

• Eavesdropping attack
– Tap into network and see everything typed
– Catch passwords, etc
– Lesson: never use unencrypted communication!

Lec 26.2711/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Tenex Password Checking

• Tenex – early 70’s, BBN
– Most popular system at universities before UNIX
– Thought to be very secure, gave “red team” all the
source code and documentation (want code to be
publicly available, as in UNIX)

– In 48 hours, they figured out how to get every
password in the system

• Here’s the code for the password check:
for (i = 0; i < 8; i++)

if (userPasswd[i] != realPasswd[i])

go to error

• How many combinations of passwords?
– 2568?
– Wrong!

Lec 26.2811/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Defeating Password Checking

• Tenex used VM, and it interacts badly with the above code
– Key idea: force page faults at inopportune times to break

passwords quickly
• Arrange 1st char in string to be last char in pg, rest on next pg

– Then arrange for pg with 1st char to be in memory, and rest
to be on disk (e.g., ref lots of other pgs, then ref 1st page)

a|aaaaaa
|

page in memory| page on disk
• Time password check to determine if first character is correct!

– If fast, 1st char is wrong
– If slow, 1st char is right, pg fault, one of the others wrong
– So try all first characters, until one is slow
– Repeat with first two characters in memory, rest on disk

• Only 256 * 8 attempts to crack passwords
– Fix is easy, don’t stop until you look at all the characters

Lec 26.2911/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Defense in Depth: Layered Network Security
• How do I minimize the damage when security fails?

– For instance: I make a mistake in the specification
– Or: A bug lets something run that shouldn’t?

• Firewall: Examines every packet to/from public internet
– Can disable all traffic to/from certain ports
– Can route certain traffic to DMZ (De-Militarized Zone)

» Semi-secure area separate from critical systems
– Can do network address translation

» Inside network, computers have private IP addresses
» Connection from inside→outside is translated
» E.g. [10.0.0.2,port 2390] → [169.229.60.38,port 80]

[12.4.35.2,port 5592] → [169.229.60.38,port 80]

Lec 26.3011/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Shrink Wrap Software Woes

• Can I trust software installed by the computer
manufacturer?
– Not really, most major computer manufacturers
have shipped computers with viruses

– How?
» Forgot to update virus scanner on “gold” master

machine
• Software companies, PR firms, and others

routinely release software that contains viruses

• Linux hackers say “Start with the source”
– Does that work?

Lec 26.3111/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Ken Thompson’s self-replicating program
• Bury Trojan horse in binaries, so no evidence in source

– Replicates itself to every UNIX system in the world and
even to new UNIX’s on new platforms. No visible sign.

– Gave Ken Thompson ability to log into any UNIX system
• Two steps: Make it possible (easy); Hide it (tricky)
• Step 1: Modify login.c

A: if (name == “ken”)
don’t check password
log in as root

– Easy to do but pretty blatant! Anyone looking will see.
• Step 2: Modify C compiler

– Instead of putting code in login.c, put in compiler:
B: if see trigger1

insert A into input stream

– Whenever compiler sees trigger1 (say /*gobbledygook*/),
puts A into input stream of compiler

– Now, don’t need A in login.c, just need trigger1

Lec 26.3211/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Self Replicating Program Continued
• Step 3: Modify compiler source code:

C: if see trigger2
insert B+C into input stream

– Now compile this new C compiler to produce binary
• Step 4: Self-replicating code!

– Simply remove statement C in compiler source code and
place “trigger2” into source instead
» As long as existing C compiler is used to recompile the C

compiler, the code will stay into the C compiler and will
compile back door into login.c

» But no one can see this from source code!
• When porting to new machine/architecture, use

existing C compiler to generate cross-compiler
– Code will migrate to new architecture!

• Lesson: never underestimate the cleverness of
computer hackers for hiding things!

Lec 26.3311/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusion
• Distributed identity

– Use cryptography (Public Key, Signed by PKI)
• Use of Public Key Encryption to get Session Key

– Can send encrypted random values to server, now share
secret with server

– Used in SSL, for instance
• Authorization

– Abstract table of users (or domains) vs permissions
– Implemented either as access-control list or capability list

• Issues with distributed storage example
– Revocation: How to remove permissions from someone?
– Integrity: How to know whether data is valid
– Freshness: How to know whether data is recent

• Buffer-Overrun Attack: exploit bug to execute code

