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Review: Authentication: Identifying Users
• How to identify users to the system?

– Passwords
» Shared secret between two parties
» Since only user knows password, someone types correct 

password ⇒ must be user typing it
» Very common technique

– Smart Cards
» Electronics embedded in card capable of 

providing long passwords or satisfying 
challenge → response queries

» May have display to allow reading of password
» Or can be plugged in directly; several 

credit cards now in this category
– Biometrics

» Use of one or more intrinsic physical or 
behavioral traits to identify someone

» Examples: fingerprint reader, 
palm reader, retinal scan

» Becoming quite a bit more common
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Review: Private Key Cryptography
• Private Key (Symmetric) Encryption:

– Single key used for both encryption and decryption
• Plaintext: Unencrypted Version of message
• Ciphertext: Encrypted Version of message

• Important properties
– Can’t derive plain text from ciphertext (decode) without 
access to key

– Can’t derive key from plain text and ciphertext
– As long as password stays secret, get both secrecy and 
authentication

• Symmetric Key Algorithms: DES, Triple-DES, AES 
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Goals for Today

• Use of Cryptographic Mechanisms
• Authorization Mechanisms
• Worms and Viruses

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne 
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz.
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Public Key Encryption
• Can we perform key distribution without an 

authentication server?
– Yes.  Use a Public-Key Cryptosystem.

• Public Key Details
– Don’t have one key, have two: Kpublic, Kprivate

» Two keys are mathematically related to one another
» Really hard to derive Kpublic from Kprivate and vice versa

– Forward encryption:
» Encrypt: (cleartext)Kpublic= ciphertext1
» Decrypt: (ciphertext1)Kprivate = cleartext

– Reverse encryption:
» Encrypt: (cleartext)Kprivate = ciphertext2
» Decrypt: (ciphertext2)Kpublic = cleartext

– Note that ciphertext1 ≠ ciphertext2
» Can’t derive one from the other!

• Public Key Examples:
– RSA: Rivest, Shamir, and Adleman

» Kpublic of form (kpublic, N), Kprivate of form (kprivate, N)
» N = pq. Can break code if know p and q

– ECC: Elliptic Curve Cryptography
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• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys (secure destination points) can be acquired 
by anyone/used by anyone

– Only person with private key can decrypt message
• What about authentication?

– Use combination of private and public key
– Alice→Bob: [(I’m Alice)Aprivate Rest of message]Bpublic
– Provides restricted sender and receiver

• But: how does Alice know that it was Bob who sent 
her Bpublic?  And vice versa…

Bprivate
Aprivate

Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel
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Secure Hash Function

• Hash Function: Short summary of data (message)
– For instance, h1=H(M1) is the hash of message M1

» h1 fixed length, despite size of message M1.
» Often, h1 is called the “digest” of M1.

• Hash function H is considered secure if 
– It is infeasible to find M2 with h1=H(M2); ie. can’t easily find other message with same digest as given 
message.

– It is infeasible to locate two messages, m1 and m2, which “collide”, i.e. for which H(m1) = H(m2)
– A small change in a message changes many bits of 
digest/can’t tell anything about message given its hash

• Hash function Examples: MD5, SHA-1, SHA-256

DFCD3454BBEA788A
751A696C24D97009
CA992D17

The red fox
runs across

the ice

Hash
Function

Hash
Function

52ED879E70F71D92
6EB6957008E03CE4
CA6945D3

Fox
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Signatures/Certificate Authorities
• Can use Xpublic for person X to define their identity

– Presumably they are the only ones who know Xprivate.– Often, we think of Xpublic as a “principle” (user)
• Suppose we want X to sign message M?

– Use private key to encrypt the digest, i.e. H(M)Xprivate

– Send both M and its signature:
» Signed message = [M,H(M)Xprivate]

– Now, anyone can verify that M was signed by X
» Simply decrypt the digest with Xpublic
» Verify that result matches H(M)

• Now: How do we know that the version of Xpublic that 
we have is really from X???
– Answer: Certificate Authority

» Examples: Verisign, Entrust, Etc.
– X goes to organization, presents identifying papers

» Organization signs X’s key: [ Xpublic, H(Xpublic)CAprivate]
» Called a “Certificate”

– Before we use Xpublic, ask X for certificate verifying key
» Check that signature over Xpublic produced by trusted 

authority
• How do we get keys of certificate authority?

– Compiled into your browser, for instance!
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(pms)Ks

• SSL Web Protocol
– Port 443: secure http
– Use public-key encryption 
for key-distribution 

• Server has a certificate signed by certificate authority
– Contains server info (organization, IP address, etc)
– Also contains server’s public key and expiration date

• Establishment of Shared, 48-byte “master secret”
– Client sends 28-byte random value nc to server
– Server returns its own 28-byte random value ns, plus its certificate certs
– Client verifies certificate by checking with public key of 
certificate authority compiled into browser
» Also check expiration date

– Client picks 46-byte “premaster” secret (pms), encrypts 
it with public key of server, and sends to server

– Now, both server and client have nc, ns, and pms
» Each can compute 48-byte master secret using one-way 

and collision-resistant function on three values
» Random “nonces” nc and ns make sure master secret fresh

ns,certs

Security through SSL
nc
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SSL Pitfalls

• Netscape claimed to provide secure comm. (SSL)
– So you could send a credit card # over the Internet

• Three problems (reported in NYT):
– Algorithm for picking session keys was predictable 
(used time of day) – brute force key in a few hours

– Made new version of Netscape to fix #1, available to 
users over Internet (unencrypted!)
» Four byte patch to Netscape executable makes it 

always use a specific session key
» Could insert backdoor by mangling packets containing 

executable as they fly by on the Internet.
» Many mirror sites (including Berkeley) to redistribute 

new version – anyone with root access to any machine 
on LAN at mirror site could insert the backdoor

– Buggy helper applications – can exploit any bug in 
either Netscape, or its helper applications
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Cryptographic Summary
• Private Key Encryption (also Symmetric Key)

– Pros: Very Fast
» can encrypt at network speed (even without hardware)

– Cons: Need to distribute secret key to both parties
• Public Key Encryption (also Asymmetric Key)

– Pros: Can distribute keys in public
» Need certificate authority (Public Key Infrastructure)

– Cons: Very Slow
» 100—1000 times slower than private key encryption

• Session Key
– Randomly generated private key used for single session
– Often distributed via public key encryption

• Secure Hash
– Fixed length summary of data that is hard to spoof

• Message Authentication Code (MAC)
– Technique for using secure hash and session key to 
verify individual packets (even at the IP level)

– IPSEC: IP Protocol 50/51, authentic/encrypted IP
• Signature over Document

– Hash of document encrypted with private key
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Administrivia
• MIDTERM II: Monday December 4th!

– 4:00-7:00pm, 10 Evans
– All material from last midterm and up to today
– Includes virtual memory 
– One page of handwritten notes, both sides

• Final Exam 
– December 16th,8:00-11:00, Bechtel Auditorium
– Covers whole course (except final lecture)
– Two pages of handwritten notes, both sides

• Last Day of Class – Next Wednesday
– One more section on Thursday?

• Final Topics suggestions (so far):
– Google OS
– Parallel OS
– Cybersecurity attacks
– Peer-to-peer systems
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• How do we decide who is authorized
to do actions in the system?

• Access Control Matrix: contains
all permissions in the system
– Resources across top 

» Files, Devices, etc…
– Domains in columns

» A domain might be a user or a 
group of permissions

» E.g. above: User D3 can read F2 or execute F3
– In practice, table would be huge and sparse!

• Two approaches to implementation
– Access Control Lists: store permissions with each object

» Still might be lots of users! 
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users 

and permissions for each group
– Capability List: each process tracks objects has 
permission to touch
» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has 

access to, not each page has list of processes …

Recall: Authorization: Who Can Do What?
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How fine-grained should access control be?
• Example of the problem:

– Suppose you buy a copy of a new game from “Joe’s Game 
World” and then run it.

– It’s running with your userid
» It removes all the files you own, including the project due 

the next day…
• How can you prevent this?

– Have to run the program under some userid.  
» Could create a second games userid for the user, which 

has no write privileges.
» Like the “nobody” userid in UNIX – can’t do much

– But what if the game needs to write out a file recording 
scores?
» Would need to give write privileges to one particular file 

(or directory) to your games userid.
– But what about non-game programs you want to use, 
such as Quicken?
» Now you need to create your own private quicken userid, if 

you want to make sure tha the copy of Quicken you bought 
can’t corrupt non-quicken-related files

– But – how to get this right??? Pretty complex…

Lec 26.1511/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Authorization Continued
• Principle of least privilege: programs, users, and 

systems should get only enough privileges to perform 
their tasks
– Very hard to do in practice

» How do you figure out what the minimum set of privileges 
is needed to run your programs?

– People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows

• One solution: Signed Software
– Only use software from sources that you trust, thereby 
dealing with the problem by means of authentication

– Fine for big, established firms such as Microsoft, since 
they can make their signing keys well known and people 
trust them
» Actually, not always fine: recently, one of Microsoft’s 

signing keys was compromised, leading to malicious 
software that looked valid

– What about new startups?
» Who “validates” them?
» How easy is it to fool them?
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How to perform Authorization for Distributed Systems?

• Issues: Are all user names in world unique?
– No! They only have small number of characters

» kubi@mit.edu → kubitron@lcs.mit.edu →
kubitron@cs.berkeley.edu

» However, someone thought their friend was kubi@mit.edu
and I got very private email intended for someone else…

– Need something better, more unique to identify person
• Suppose want to connect with any server at any time?

– Need an account on every machine! (possibly with 
different user name for each account)

– OR: Need to use something more universal as identity
» Public Keys!  (Called “Principles”)
» People are their public keys

Different 
Authorization

Domains
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Client 1
Domain 1

Distributed Access Control

• Distributed Access Control List (ACL)
– Contains list of attributes (Read, Write, Execute, etc) 
with attached identities (Here, we show public keys)
» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

– ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

Server 1: Domain 2

File X
Owner Key: 
0x22347EF…

File X
Owner Key: 
0x22347EF…

Access Control List (ACL) for X:

R: Key: 0x546DFEFA34…
RW:Key: 0x467D34EF83…
RX: Group Key: 0xA2D3498672…

ACL verifier
Hash, Timestamp, 
Signature (owner)

Server 2: Domain 3

Group ACL:
Key: 0xA786EF889A…
Key: 0x6647DBC9AC…

GACL verifier
Hash, Timestamp, 
Signature (group)
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Analysis of Previous Scheme
• Positive Points:

– Identities checked via signatures and public keys
» Client can’t generate request for data unless they have 

private key to go with their public identity
» Server won’t use ACLs not properly signed by owner of file

– No problems with multiple domains, since identities 
designed to be cross-domain (public keys domain neutral)

• Revocation:
– What if someone steals your private key?

» Need to walk through all ACLs with your key and change…! 
» This is very expensive

– Better to have unique string identifying you that people 
place into ACLs
» Then, ask Certificate Authority to give you a certificate 

matching unique string to your current public key
» Client Request: (request + unique ID)Cprivate; give server 

certificate if they ask for it.
» Key compromise⇒must distribute “certificate revocation”, 

since can’t wait for previous certificate to expire.
– What if you remove someone from ACL of a given file?

» If server caches old ACL, then person retains access!
» Here, cache inconsistency leads to security violations!
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Analysis Continued
• Who signs the data?

– Or: How does the client know they are getting valid 
data?

– Signed by server?
» What if server compromised?  Should client trust server?

– Signed by owner of file?
» Better, but now only owner can update file!
» Pretty inconvenient!

– Signed by group of servers that accepted latest update?
» If must have signatures from all servers ⇒ Safe, but one 

bad server can prevent update from happening
» Instead: ask for a threshold number of signatures
» Byzantine agreement can help here

• How do you know that data is up-to-date?
– Valid signature only means data is valid older version
– Freshness attack:

» Malicious server returns old data instead of recent data
» Problem with both ACLs and data
» E.g.: you just got a raise, but enemy breaks into a server 

and prevents payroll from seeing latest version of update
– Hard problem

» Needs to be fixed by invalidating old copies or having a 
trusted group of servers (Byzantine Agrement?) Lec 26.2011/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Involuntary Installation 
• What about software loaded without your consent?

– Macros attached to documents (such as Microsoft Word)
– Active X controls (programs on web sites with potential 
access to whole machine)

– Spyware included with normal products
• Active X controls can have access to the local machine 

– Install software/Launch programs
• Sony Spyware [Sony XCP] (October 2005)

– About 50 recent CDs from Sony automatically install 
software when you played them on Windows machines
» Called XCP (Extended Copy Protection)
» Modify operating system to prevent more than 3 copies 

and to prevent peer-to-peer sharing
– Side Effects:

» Reporting of private information to Sony
» Hiding of generic file names of form $sys_xxx; easy for 

other virus writers to exploit
» Hard to remove (crashes machine if not done carefully)

– Vendors of virus protection software declare it spyware
» Computer Associates, Symantec, even Microsoft
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Enforcement
• Enforcer checks passwords, ACLs, etc

– Makes sure the only authorized actions take place
– Bugs in enforcer⇒things for malicious users to exploit

• In UNIX, superuser can do anything
– Because of coarse-grained access control, lots of stuff 
has to run as superuser in order to work

– If there is a bug in any one of these programs, you lose!
• Paradox

– Bullet-proof enforcer
» Only known way is to make enforcer as small as possible
» Easier to make correct, but simple-minded protection model

– Fancy protection
» Tries to adhere to principle of least privilege
» Really hard to get right

• Same argument for Java or C++: What do you make 
private vs public?
– Hard to make sure that code is usable but only necessary 
modules are public

– Pick something in middle? Get bugs and weak protection!
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State of the World
• State of the World in Security

– Authentication: Encryption
» But almost no one encrypts or has public key identity

– Authorization: Access Control 
» But many systems only provide very coarse-grained access
» In UNIX, need to turn off protection to enable sharing

– Enforcement: Kernel mode
» Hard to write a million line program without bugs
» Any bug is a potential security loophole! 

• Some types of security problems
– Abuse of privilege

» If the superuser is evil, we’re all in trouble/can’t do anything
» What if sysop in charge of instructional resources went 

crazy and deleted everybody’s files (and backups)???
– Imposter: Pretend to be someone else

» Example: in unix, can set up an .rhosts file to allow logins 
from one machine to another without retyping password

» Allows “rsh” command to do an operation on a remote node
» Result: send rsh request, pretending to be from trusted 

user→install .rhosts file granting you access
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Other Security Problems 
• Virus:

– A piece of code that attaches itself to a program or file 
so it can spread from one computer to another, leaving 
infections as it travels

– Most attached to executable files, so don’t get 
activated until the file is actually executed

– Once caught, can hide in boot tracks, other files, OS
• Worm:

– Similar to a virus, but capable of traveling on its own
– Takes advantage of file or information transport 
features

– Because it can replicate itself, your computer might send 
out  hundreds or thousands of copies of itself

• Trojan Horse:
– Named after huge wooden horse in Greek mythology 
given as gift to enemy; contained army inside

– At first glance appears to be useful software but does 
damage once installed or run on your computer 
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Security Problems: Buffer-overflow Condition
#define BUFFER SIZE 256
int process(int argc, 

char *argv[])
{
char buffer[BUFFER SIZE];
if (argc < 2)

return -1;
else {

strcpy(buffer,argv[1]);
return 0;

}
} Before attack After attack

• Technique exploited by many network attacks
– Anytime input comes from network request and is not 
checked for size

– Allows execution of code with same privileges as running 
program – but happens without any action from user!

• How to prevent?
– Don’t code this way!  (ok, wishful thinking)
– New mode bits in Intel, Amd, and Sun processors

» Put in page table; says “don’t execute code in this page”
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The Morris Internet Worm
• Internet worm (Self-reproducing)

– Author Robert Morris, a first-year Cornell grad student
– Launched close of Workday on November 2, 1988
– Within a few hours of release, it consumed resources to 
the point of bringing down infected machines

• Techniques
– Exploited UNIX networking features (remote access)
– Bugs in finger (buffer overflow) and sendmail programs 
(debug mode allowed remote login)

– Dictionary lookup-based password cracking
– Grappling hook program uploaded main worm program
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Some other Attacks
• Trojan Horse Example: Fake Login

– Construct a program that looks like normal login program
– Gives “login:” and “password:” prompts

» You type information, it sends password to someone, then 
either logs you in or says “Permission Denied” and exits

– In Windows, the “ctrl-alt-delete” sequence is supposed to 
be really hard to change, so you “know” that you are 
getting official login program

• Is SONY XCP a Trojan horse?
• Salami attack: Slicing things a little at a time

– Steal or corrupt something a little bit at a time
– E.g.: What happens to partial pennies from bank interest?

» Bank keeps them!  Hacker re-programmed system so that 
partial pennies would go into his account.

» Doesn’t seem like much, but if you are large bank can be 
millions of dollars

• Eavesdropping attack
– Tap into network and see everything typed
– Catch passwords, etc 
– Lesson: never use unencrypted communication!
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Tenex Password Checking

• Tenex – early 70’s, BBN
– Most popular system at universities before UNIX
– Thought to be very secure, gave “red team” all the 
source code and documentation (want code to be 
publicly available, as in UNIX)

– In 48 hours, they figured out how to get every 
password in the system

• Here’s the code for the password check:
for (i = 0; i < 8; i++)

if (userPasswd[i] != realPasswd[i])

go to error

• How many combinations of passwords?
– 2568?
– Wrong!
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Defeating Password Checking

• Tenex used VM, and it interacts badly with the above code
– Key idea: force page faults at inopportune times to break 

passwords quickly
• Arrange 1st char in string to be last char in pg, rest on next pg

– Then arrange for pg with 1st char to be in memory, and rest 
to be on disk (e.g., ref lots of other pgs, then ref 1st page)

a|aaaaaa
|

page in memory| page on disk 
• Time password check to determine if first character is correct!

– If fast, 1st char is wrong
– If slow, 1st char is right, pg fault, one of the others wrong
– So try all first characters, until one is slow
– Repeat with first two characters in memory, rest on disk 

• Only 256 * 8 attempts to crack passwords
– Fix is easy, don’t stop until you look at all the characters
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Defense in Depth: Layered Network Security
• How do I minimize the damage when security fails?

– For instance: I make a mistake in the specification
– Or: A bug lets something run that shouldn’t?

• Firewall: Examines every packet to/from public internet
– Can disable all traffic to/from certain ports
– Can route certain traffic to DMZ (De-Militarized Zone)

» Semi-secure area separate from critical systems
– Can do network address translation

» Inside network, computers have private IP addresses
» Connection from inside→outside is translated
» E.g. [10.0.0.2,port 2390] → [169.229.60.38,port 80] 

[12.4.35.2,port 5592] → [169.229.60.38,port 80]

Lec 26.3011/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Shrink Wrap Software Woes

• Can I trust software installed by the computer 
manufacturer?
– Not really, most major computer manufacturers 
have shipped computers with viruses

– How?
» Forgot to update virus scanner on “gold” master 

machine
• Software companies, PR firms, and others 

routinely release software that contains viruses

• Linux hackers say “Start with the source”
– Does that work?
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Ken Thompson’s self-replicating program
• Bury Trojan horse in binaries, so no evidence in source

– Replicates itself to every UNIX system in the world and 
even to new UNIX’s on new platforms.  No visible sign.

– Gave Ken Thompson ability to log into any UNIX system
• Two steps: Make it possible (easy); Hide it (tricky)
• Step 1: Modify login.c

A: if (name == “ken”)
don’t check password
log in as root

– Easy to do but pretty blatant!  Anyone looking will see.
• Step 2: Modify C compiler

– Instead of putting code in login.c, put in compiler:
B: if see trigger1

insert A into input stream

– Whenever compiler sees trigger1 (say /*gobbledygook*/), 
puts A into input stream of compiler

– Now, don’t need A in login.c, just need trigger1
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Self Replicating Program Continued
• Step 3: Modify compiler source code:

C: if see trigger2
insert B+C into input stream

– Now compile this new C compiler to produce binary
• Step 4: Self-replicating code!

– Simply remove statement C  in compiler source code and 
place “trigger2” into source instead
» As long as existing C compiler is used to recompile the C 

compiler, the code will stay into the C compiler and will 
compile back door into login.c

» But no one can see this from source code!
• When porting to new machine/architecture, use 

existing C compiler to generate cross-compiler
– Code will migrate to new architecture!

• Lesson: never underestimate the cleverness of 
computer hackers for hiding things!
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Conclusion
• Distributed identity

– Use cryptography (Public Key, Signed by PKI)
• Use of Public Key Encryption to get Session Key

– Can send encrypted random values to server, now share 
secret with server

– Used in SSL, for instance
• Authorization

– Abstract table of users (or domains) vs permissions
– Implemented either as access-control list or capability list

• Issues with distributed storage example
– Revocation: How to remove permissions from someone?
– Integrity: How to know whether data is valid
– Freshness: How to know whether data is recent

• Buffer-Overrun Attack: exploit bug to execute code


