
CS162
Operating Systems and
Systems Programming

Lecture 27

Peer-to-peer Systems
and Other Topics

December 6th, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 27.212/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Requests for Final topics
• Hidden Software Attacks

– Some amusing final material 
from last time

• Some topics people 
requested:

– Dragons: too big of a topic
» Here is a Chinese dragon 

from Wikipedia
– Google OS
– Parallel OSs
– Quantum Computing

• Some Other Topics
– Windows vs. Linux
– Peer-to-Peer Systems 
(OceanStore)

Lec 27.312/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Shrink Wrap Software Woes

• Can I trust software installed by the computer 
manufacturer?

– Not really, most major computer manufacturers 
have shipped computers with viruses

– How?
» Forget to update virus scanner on “gold” master 

machine
• Software companies, PR firms, and others 

routinely release software that contains viruses

• Linux hackers say “Start with the source”
– Does that work?

Lec 27.412/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Ken Thompson’s self-replicating program
• Bury Trojan horse in binaries, so no evidence in source

– Replicates itself to every UNIX system in the world and 
even to new UNIX’s on new platforms.  No visible sign.

– Gave Ken Thompson ability to log into any UNIX system
• Two steps: Make it possible (easy); Hide it (tricky)
• Step 1: Modify login.c

A: if (name == “ken”)
don’t check password
log in as root

– Easy to do but pretty blatant!  Anyone looking will see.
• Step 2: Modify C compiler

– Instead of putting code in login.c, put in compiler:
B: if see trigger1

insert A into input stream

– Whenever compiler sees trigger1 (say /*gobbledygook*/), 
puts A into input stream of compiler

– Now, don’t need A in login.c, just need trigger1



Lec 27.512/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Self Replicating Program Continued
• Step 3: Modify compiler source code:

C: if see trigger2
insert B+C into input stream

– Now compile this new C compiler to produce binary
• Step 4: Self-replicating code!

– Simply remove statement C  in compiler source code and 
place “trigger2” into source instead

» As long as existing C compiler is used to recompile the C 
compiler, the code will stay into the C compiler and will 
compile back door into login.c

» But no one can see this from source code!
• When porting to new machine/architecture, use 

existing C compiler to generate cross-compiler
– Code will migrate to new architecture!

• Lesson: never underestimate the cleverness of 
computer hackers for hiding things!

Lec 27.612/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Google OS
• Is it real or Memorex?

– Pure speculation! Googling Google…
– Very thin local client (web)

» Google purchased writely, a web-
based word processing system

» Gmail: web-based email
– Storage at Google

» GDrive, GDS and Lighthouse?
» Mysterious powerpoint presentation about future products 

that disappeared quickly. Lots of speculation.
– Computing at Google
– Truly distributed system, access anywhere, anytime?

» What about privacy????
• Goobuntu: Google’s distribution of Linux

– A version of the Ubuntu desktop Linux distribution, based 
on Debian and the Gnome desktop

• Google pack (Announced at CES in January 2006)
– A collection of desktop software bundled together

Lec 27.712/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Types of Parallel Machines
• Symmetric Multiprocessor

– Multiple processors in box with 
shared memory communication

– Current MultiCore chips like this
– Every processor runs copy of OS

• Non-uniform shared-memory with 
separate I/O through host 

– Multiple processors 
» Each with local memory
» general scalable network 

– Extremely light “OS” on node 
provides simple services 

» Scheduling/synchronization
– Network-accessible host for I/O

• Cluster
– Many independent machine 
connected with general network 

– Communication through messages 

P P P P

Bus

Memory

P/M P/M P/M P/M

P/M P/M P/M P/M

P/M P/M P/M P/M

P/M P/M P/M P/M

Host

Network
Lec 27.812/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Parallel OS Difference – the Kernel
• Job of OS is support and protect

– Need to stay out of way of application
• Traditional single-threaded OS

– Only one thread active inside kernel at a time
» One exception – interrupt handlers
» Does not mean that that there aren’t many threads – just 

that all but one of them are asleep or in user-space
» Easiest to think about – no problems introduced by sharing

– Easy to enforce if only one processor (with single core)
» Never context switch when thread is in middle of system call
» Always disable interrupts when dangerous 

– Didn’t get in way of performance, since only one task could 
actually happen simultaneously anyway

• Problem with Parallel OSs: code base already very large 
by time that parallel processing hit mainstream

– Lots of code that couldn’t deal with multiple simultaneous 
threads ⇒One or two locks for whole system



Lec 27.912/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Some Tricky Things about Parallel OSs
• How to get truly multithreaded kernel?

– More things happening simultaneously⇒need for:
» Synchronization: thread-safe queues, critical sections, …
» Reentrant Code – code that can have multiple threads 

executing in it at the same time
» Removal of global variables – since multiple threads may 

need a variable at the same time
– Potential for greater performance⇒need for:

» Splitting kernel tasks into pieces 
• Very labor intensive process of parallelizing kernel

– Needed to rewrite major portions of kernel with finer-
grained locks

» Shared among multiple threads on multiple processors⇒
Must satisfy multiple parallel requests 

» Bottlenecks (coarse-grained locks) in resource allocation 
can kill all performance

• Truly multithreaded mainstream kernels are recent: 
– Linux 2.6, Windows XP, …

Lec 27.1012/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Windows vs Linux
• Windows came from personal computer domain

– Add-on to IBM PC providing a windowing user interface
» Became “good at” doing graphical interfaces

– Didn’t have protection until Windows NT
» Multiple users supported (starting with Window NT), but 

can’t necessarily have multiple GUIs running at same time
– Product differentiation model:

» Purchase separate products to get email, web servers, file 
servers, compilers, debuggers…

• Linux came from long line of UNIX Mainframe OSs
– Targeted at high-performance computation and I/O

» High performance servers
» GUI historically lacking compared to Windows

– Protection model from beginning
» Multiple users supported at core of OS

– Full function Mainframe OS: email, web servers, file 
servers, ftp servers, compilers, debuggers, etc.

Lec 27.1112/06/06 Kubiatowicz CS162 ©UCB Fall 2006

• Internal Structure is different
– Windows XP evolved from NT which was a microkernel

» Core “executive” runs in protected mode
» Many services run in user mode (Although Windowing runs 

inside kernel for performance)
» Object-oriented design: communication by passing objects
» Event registration model: many subsystems can ask for 

callbacks when events happen
» Loadable modules for device drivers and system extension

– Linux Evolved from monolithic kernel
» Many portions of kernel operate in same address space
» Loadable modules for device drivers and system extension
» Fewer layers ⇒ higher performance

• Source Code development model
– Windows: closed code development

» Must sign non-disclosure to get access to source code
» “Cathedral” model of development: only Microsoft’s 

developers produce code for Windows
– Linux: open development model

» All distributions make source code available to analyze
» “Bazaar” model of development: many on the net contribute 

to making Linux distribution 

Windows vs Linux

Lec 27.1212/06/06 Kubiatowicz CS162 ©UCB Fall 2006

• Perceptions:
– Windows has more bugs/is more vulnerable to viruses?

» True?  Hard to say for sure
» More Windows systems ⇒ more interesting for hackers

– Linux simpler to manage?
» True? Well, Windows has hidden info (e.g. registry)
» Linux has all configuration available in clear text

– Microsoft is untrustworthy? Many distrust “the man”
» Quick to adopt things like Digital Rights Management (DRM)
» Quick to embrace new models of income such as software 

rental which counter traditional understanding of software
– Windows is slow?

» This definitely seemed to be true with earlier versions
» Less true now, but complexity may still get in way

• Why choose one over other?
– Which has greater diversity of graphical programs?

» Probably Windows
– Which cheaper? Well, versions of Linux are “free
– Which better for developing code and managing servers?

» Probably Linux, although this is changing
» OS API (e.g. system calls) definitely seem simpler

Windows vs Linux



Lec 27.1312/06/06 Kubiatowicz CS162 ©UCB Fall 2006

What IS Quantum Computing?

Lec 27.1412/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Can we Use Quantum Mechanics to Compute?

• Weird properties of quantum mechanics?
– You’ve already seen one: tunneling of electrons through 
insulators to make TMJ RAM

– Quantization: Only certain values or orbits are good
» Remember orbitals from chemistry???

– Superposition: Schizophrenic physical elements don’t 
quite know whether they are one thing or another

• All existing digital abstractions try to eliminate QM
– Transistors/Gates designed with classical behavior
– Binary abstraction: a “1” is a “1” and a “0” is a “0”

• Quantum Computing: 
Use of Quantization and Superposition to compute.

• Interesting results:
– Shor’s algorithm: factors in polynomial time!
– Grover’s algorithm: Finds items in unsorted database in 
time proportional to square-root of n.

Lec 27.1512/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Quantization: Use of “Spin”

• Particles like Protons have an intrinsic “Spin”
when defined with respect to an external 
magnetic field

• Quantum effect gives “1” and “0”:
– Either spin is “UP” or “DOWN” nothing between

North

South

Spin ½ particle:
(Proton/Electron)

Representation:
|0> or |1>

Lec 27.1612/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Kane Proposal II (First one didn’t quite work)

• Bits Represented by combination of proton/electron spin
• Operations performed by manipulating control gates

– Complex sequences of pulses perform NMR-like operations
• Temperature < 1° Kelvin!

Phosphorus
Impurity Atoms

Single Spin
Control Gates

Inter-bit 
Control Gates



Lec 27.1712/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Now add Superposition!
• The bit can be in a combination of “1” and “0”:

– Written as:  Ψ= C0|0> + C1|1>
– The C’s are complex numbers!
– Important Constraint: |C0|2 + |C1|2 =1

• If measure bit to see what looks like, 
– With probability |C0|2 we will find |0> (say “UP”)
– With probability |C1|2 we will find |1> (say “DOWN”)

• Is this a real effect?  Options:
– This is just statistical – given a large number of protons, 
a fraction of them (|C0|2 ) are “UP” and the rest are 
down.

– This is a real effect, and the proton is really both things 
until you try to look at it

• Reality: second choice! 
– There are experiments to prove it!

Lec 27.1812/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Implications: A register can have many values
• Implications of superposition:

– An n-bit register can have 2n values simultaneously!
– 3-bit example:

Ψ= C000|000>+ C001|001>+ C010|010>+ C011|011>+ 
C100|100>+ C101|101>+ C110|110>+ C111|111>

• Probabilities of measuring all bits are set by 
coefficients:
– So, prob of getting |000> is |C000|2, etc.
– Suppose we measure only one bit (first):

» We get “0” with probability: P0=|C000|2+ |C001|2+ |C010|2+ |C011|2
Result: Ψ=    (C000|000>+ C001|001>+ C010|010>+ C011|011>)

» We get “1” with probability: P1=|C100|2+ |C101|2+ |C110|2+ |C111|2
Result: Ψ=    (C100|100>+ C101|101>+ C110|110>+ C111|111>)

• Problem: Don’t want environment to measure before 
ready!
– Solution: Quantum Error Correction Codes!

Lec 27.1912/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Model?  Operations on coefficients + measurements

• Basic Computing Paradigm:
– Input is a register with superposition of many values 

» Possibly all 2n inputs equally probable!
– Unitary transformations compute on coefficients

» Must maintain probability property (sum of squares = 1)
» Looks like doing computation on all 2n inputs simultaneously!

– Output is one result attained by measurement
• If do this poorly, just like probabilistic computation:

– If 2n inputs equally probable, may be 2n outputs equally 
probable.

– After measure, like picked random input to classical function!
– All interesting results have some form of “fourier transform”

computation being done in unitary transformation

Unitary 
Transformations

Input
Complex

State
Measure

Output
Classical
Answer

Lec 27.2012/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Some Issues in building quantum computer
• What are the bits and how do we manipulate them?

– NMR computation: use “cup of liquid”.  
» Use nuclear spins (special protons on complex molecules).
» Manipulate with radio-frequencies
» IBM Has produced a 7-bit computer

– Silicon options (more scalable)
» Impurity Phosphorus in silicon
» Manipulate through electrons (including measurement)
» Still serious noise/fabrication issues

– Other options:
» Optical (Phases of photons represent bits)
» Single ions trapped in magnetic fields

• How do we prevent the environment from “Measuring”?
– Make spins as insulated from environment as possible
– Quantum Error Correction!

• Where get “clean” bits (I.e. unsuperposed |0> or |1>)?
– Entropy exchange unit: 

» Radiates heat to environment (entropy)
» Produces clean bits (COLD) to enter into device



Lec 27.2112/06/06 Kubiatowicz CS162 ©UCB Fall 2006

ION Trap Quantum Computer: Promising technology

• IONS of Be+ trapped in 
oscillating quadrature field

– Internal electronic modes of 
IONS used for quantum bits

– MEMs technology 
– Target? 50,000 ions
– ROOM Temperature!

• Ions moved to interaction regions
– Ions interactions with one 

another moderated by lasers

Cross-
Sectional

View

Top View

Top

Proposal: NIST Group
Lec 27.2212/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia
• Midterm II

– Still Grading!
– I put up solutions already 

• Status of Project 3 grading – hopefully soon.
• Tomorrow’s section

– Discussion of Midterm II/review for Final
– Questions about Project 4

• Project 4 
– Due this Friday, 12/8

• Final Exam
– 8:00-11:00, December 16th

– Bechtel Auditorium
– Bring 2 sheets of notes, double-sided
– All lectures – except today (this is a freebie!)

Lec 27.2312/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Peer-to-Peer: Fully equivalent components

• Peer-to-Peer has many interacting components
– View system as a set of equivalent nodes

» “All nodes are created equal”
– Any structure on system must be self-organizing

» Not based on physical characteristics, location, or 
ownership

Lec 27.2412/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Is Peer-to-peer new?
• Certainly doesn’t seem like it

– What about Usenet?  News groups first truly 
decentralized system

– DNS?  Handles huge number of clients
– Basic IP?  Vastly decentralized, many equivalent routers

• One view: P2P is a reverting to the old internet
– Remember?  (Perhaps you don’t)
– Once upon a time, all members on the internet were 
trusted.

» Every machine had an IP address.
» Every machine was a client and server.
» Many machines were routers and/or were equivalent

• But: peer-to-peer seems to mean something else
– More about the scale (total number) of directly 
interacting components

– Also, has a “bad reputation” (stealing music)



Lec 27.2512/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Research Community View of Peer-to-Peer

• Old View: 
– A bunch of flakey high-school students stealing music

• New View:
– A philosophy of systems design at extreme scale
– Probabilistic design when it is appropriate
– New techniques aimed at unreliable components
– A rethinking (and recasting) of distributed algorithms
– Use of Physical, Biological, and Game-Theoretic techniques 
to achieve guarantees

Lec 27.2612/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Why the hype???
• File Sharing: Napster (+Gnutella, KaZaa, etc)

– Is this peer-to-peer?  Hard to say.
– Suddenly people could contribute to active global network

» High coolness factor
– Served a high-demand niche: online jukebox

• Anonymity/Privacy/Anarchy: FreeNet, Publis, etc
– Libertarian dream of freedom from the man 

» (ISPs? Other 3-letter agencies)
– Extremely valid concern of Censorship/Privacy
– In search of copyright violators, RIAA challenging rights to 
privacy

• Computing: The Grid
– Scavenge numerous free cycles of the world to do work
– Seti@Home most visible version of this

• Management: Businesses
– Businesses have discovered extreme distributed computing
– Does P2P mean “self-configuring” from equivalent resources?
– Bound up in “Autonomic Computing Initiative”?

Lec 27.2712/06/06 Kubiatowicz CS162 ©UCB Fall 2006

OceanStore

Lec 27.2812/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Pac
Bell

Sprint

IBM
AT&T

Canadian
OceanStore

IBM

Utility-based Infrastructure

• Data service provided by storage federation
• Cross-administrative domain 
• Contractual Quality of Service (“someone to sue”)



Lec 27.2912/06/06 Kubiatowicz CS162 ©UCB Fall 2006

OceanStore: 
Everyone’s Data, One Big Utility

“The data is just out there”

• How many files in the OceanStore?
– Assume 1010 people in world
– Say 10,000 files/person (very conservative?)
– So 1014 files in OceanStore!

– If 1 gig files (ok, a stretch), get 1 mole of bytes!
(or a Yotta-Byte if you are a computer person)

Truly impressive number of elements…
… but small relative to physical constants

Aside: SIMS school: 1.5 Exabytes/year (1.5×1018)

Lec 27.3012/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Key Observation: Want Automatic Maintenance

• Can’t possibly manage billions of servers by hand!
• System should automatically:

– Adapt to failure 
– Exclude malicious elements
– Repair itself 
– Incorporate new elements 

• System should be secure and private
– Encryption, authentication

• System should preserve data over the long term 
(accessible for 1000 years):

– Geographic distribution of information
– New servers added from time to time
– Old servers removed from time to time
– Everything just works

Lec 27.3112/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Example: Secure Object Storage

Client
(w/ TCPA)

Client
(w/ TCPA)

Client
(w/ TCPA)

OceanStoreOceanStore

Client
Data

Manager

• Security: Access and Content controlled by client
– Privacy through data encryption
– Optional use of cryptographic hardware for revocation
– Authenticity through hashing and active integrity 
checking

• Flexible self-management and optimization:
– Performance and durability
– Efficient sharing 

Lec 27.3212/06/06 Kubiatowicz CS162 ©UCB Fall 2006

• Untrusted Infrastructure: 
– The OceanStore is comprised of untrusted components
– Individual hardware has finite lifetimes
– All data encrypted within the infrastructure

• Mostly Well-Connected:
– Data producers and consumers are connected to a high-
bandwidth network most of the time

– Exploit multicast for quicker consistency when possible
• Promiscuous Caching:

– Data may be cached anywhere, anytime 

• Responsible Party:
– Some organization (i.e. service provider) guarantees that 
your data is consistent and durable

– Not trusted with content of data, merely its integrity

OceanStore Assumptions

Peer-to-peer

Quality-of-Service



Lec 27.3312/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Peer-to-Peer 
for Data Location

Lec 27.3412/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Peer-to-Peer in OceanStore: DOLR
(Decentralized Object Location and Routing)

GUID1

DOLR

GUID1GUID2

Lec 27.3512/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Stability under extreme circumstances

(May 2003: 1.5 TB over 4 hours)
DOLR Model generalizes to many simultaneous apps

Lec 27.3612/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Object Location with Tapestry DOLR

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

Client to Obj RTT Ping time (1ms buckets)

R
D

P 
(m

in
, m

ed
ia

n,
 9

0%
)



Lec 27.3712/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Peek at OceanStore
Mechanisms

Lec 27.3812/06/06 Kubiatowicz CS162 ©UCB Fall 2006

OceanStore Data Model

• Versioned Objects
– Every update generates a new version
– Can always go back in time (Time Travel)

• Each Version is Read-Only
– Can have permanent name
– Much easier to repair

• An Object is a signed mapping between permanent 
name and latest version

– Write access control/integrity involves managing these 
mappings

Comet Analogy updates

versions

Lec 27.3912/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Self-Verifying Objects

Data
Blocks

VGUIDi VGUIDi + 1

d2 d4d3 d8d7d6d5 d9d1

Data 
B -
Tree

Indirect
Blocks

M

d'8 d'9

M
backpointe
r

copy on 
write

copy on 
write

AGUID = hash{name+keys}

Updates
Heartbeats +

Read-Only Data

Heartbeat: {AGUID,VGUID, Timestamp}signed

Lec 27.4012/06/06 Kubiatowicz CS162 ©UCB Fall 2006

OceanStore API: Universal Conflict Resolution

• Consistency is form of optimistic concurrency 
– Updates contain predicate-action pairs 
– Each predicate tried in turn:

» If none match, the update is aborted
» Otherwise, action of first true predicate is applied

• Role of Responsible Party (RP):
– Updates submitted to RP which chooses total order

• This is powerful enough to synthesize:
– ACID database semantics
– release consistency (build and use MCS-style locks)
– Extremely loose (weak) consistency

IMAP/SMTPNFS/AFS NTFS (soon?)HTTPNative Clients

1. Conflict Resolution
2. Versioning/Branching 
3. Access control
4. Archival Storage

OceanStore
API



Lec 27.4112/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Two Types of OceanStore Data

• Active Data: “Floating Replicas”
– Per object virtual server
– Interaction with other replicas for consistency
– May appear and disappear like bubbles

• Archival Data: OceanStore’s Stable Store
– m-of-n coding: Like hologram

» Data coded into n fragments, any m of which are 
sufficient to reconstruct (e.g m=16, n=64)

» Coding overhead is proportional to n÷m (e.g 4)
» Other parameter, rate, is 1/overhead

– Fragments are cryptographically self-verifying
• Most data in the OceanStore is archival!

Lec 27.4212/06/06 Kubiatowicz CS162 ©UCB Fall 2006

The Path of an 
OceanStore UpdateSecond-Tier

Caches
Inner-Ring

Servers

Clients

Lec 27.4312/06/06 Kubiatowicz CS162 ©UCB Fall 2006

• Simple algorithms for placing replicas on nodes in the 
interior

– Intuition: locality properties
of Tapestry help select positions
for replicas

– Tapestry helps associate
parents and children
to build multicast tree

• Preliminary results
encouraging

• Current Investigations:
– Game Theory
– Thermodynamics

Self-Organizing Soft-State Replication

Lec 27.4412/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Archival Dissemination
of Fragments

Archival
Servers

Archival
Servers



Lec 27.4512/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Aside: Why erasure coding?
High Durability/overhead ratio!

• Exploit law of large numbers for durability!
• 6 month repair, FBLPY:

– Replication: 0.03
– Fragmentation: 10-35

Fraction Blocks Lost 
Per Year (FBLPY)

Lec 27.4612/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Extreme Durability?

• Exploiting Infrastructure for Repair
– DOLR permits efficient heartbeat mechanism to notice:

» Servers going away for a while
» Or, going away forever!

– Continuous sweep through data also possible
– Erasure Code provides Flexibility in Timing

• Data transferred from physical medium to physical 
medium

– No “tapes decaying in basement”
– Information becomes fully Virtualized

• Thermodynamic Analogy: Use of Energy (supplied by 
servers) to Suppress Entropy

Lec 27.4712/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Differing Degrees of Responsibility

• Inner-ring provides quality of service
– Handles of live data and write access control
– Focus utility resources on this vital service
– Compromised servers must be detected quickly

• Caching service can be provided by anyone
– Data encrypted and self-verifying
– Pay for service “Caching Kiosks”?

• Archival Storage and Repair
– Read-only data: easier to authenticate and repair
– Tradeoff redundancy for responsiveness

• Could be provided by different companies!

Lec 27.4812/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Closing View on 
Peer-to-Peer



Lec 27.4912/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Peer-to-peer Goal: Stable, large-scale systems

• State of the art:
– Chips: 108 transistors, 8 layers of metal
– Internet: 109 hosts, terabytes of bisection bandwidth
– Societies: 108 to 109 people, 6-degrees of separation

• Complexity is a liability!
– More components ⇒ Higher failure rate
– Chip verification > 50% of design team
– Large societies unstable (especially when centralized)
– Small, simple, perfect components combine to generate 

complex emergent behavior!
• Can complexity be a useful thing?

– Redundancy and interaction can yield stable behavior 
– Better figure out new ways to design things…

Lec 27.5012/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Exploiting Numbers: Thermodynamic Analogy

• Large Systems have a variety of latent order
– Connections between elements
– Mathematical structure (erasure coding, etc)
– Distributions peaked about some desired behavior

• Permits “Stability through Statistics”
– Exploit the behavior of aggregates (redundancy)

• Subject to Entropy
– Servers fail, attacks happen, system changes

• Requires continuous repair
– Apply energy (i.e. through servers) to reduce entropy

Lec 27.5112/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Exploiting Numbers: The Biological Inspiration

• Biological Systems are built from (extremely) faulty 
components, yet:

– They operate with a variety of component failures 
⇒ Redundancy of function and representation

– They have stable behavior ⇒ Negative feedback
– They are self-tuning ⇒ Optimization of common case

• Introspective (Autonomic)
Computing:

– Components for performing
– Components for monitoring and
model building

– Components for continuous 
adaptation

Adapt

Dance

Monitor

Lec 27.5212/06/06 Kubiatowicz CS162 ©UCB Fall 2006

What does this really mean?
• Redundancy, Redundancy, Redundancy:

– Many components that are roughly equivalent
– System stabilized by consulting multiple elements
– Voting/signature checking to exclude bad elements
– Averaged behavior/Median behavior/First Arriving

• Passive Stabilization
– Elements interact to self-correct each other
– Constant resource shuffling 

• Active Stabilization
– Reevaluate and Restore good properties on wider scale
– System-wide property validation
– Negative feedback/chaotic attractor

• Observation and Monitoring
– Aggregate external information to find hidden order
– Use to tune functional behavior and recognize 

dysfunctional behavior. 



Lec 27.5312/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Problems?
• Most people don’t know how to think about this

– Requires new way of thinking
– Some domains closer to thermodynamic realm than 

others:
peer-to-peer networks fit well

• Stability?
– Positive feedback/oscillation easy to get accidentally

• Cost?
– Power, bandwidth, storage, ….

• Correctness?
– System behavior achieved as aggregate behavior
– Need to design around fixed point or chaotic attractor 

behavior (How does one think about this)?
– Strong properties harder to guarantee

• Bad case could be quite bad!
– Poorly designed ⇒Fragile to directed attacks
– Redundancy below threshold ⇒ failure rate increases 

drastically
Lec 27.5412/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusions
• Google OS

– Not so much a product as a speculation on future 
direction

• Parallel OSs
– Need for fine-grained synchronization

• Windows vs Linux: 
– Graphics vs Server?
– Cathedral vs Bazaar
– Controlled vs Free

• Quantum Computing
– Using interesting properties of physics to compute

• Peer to Peer
– A philosophy of systems design at extreme scale
– Probabilistic design when it is appropriate
– New techniques aimed at unreliable components
– A rethinking (and recasting) of distributed algorithms

• Let’s give a hand to the TAs!
• Good Bye!


