A Guide to Nachos 5.0j

Dan Hettena

Rick Cox

rick@rescomp.berkeley.edu

We have ported the Nachos instructional operating system [1
(http://http.cs.berkeley.edu/~tea/nachos/nachos.ps)] to Java, and in the process of doing
so, many details changed (hopefully for the better). [2
(http://www.cs.duke.edu/~narten/110/nachos/main/main.html)] remains an excellent
resource for learning about the C++ versions of Nachos, but an update is necessary to
account for the differences between the Java version and the C++ versions.

We attempt to describe Nachos 5.0j in the same way that [2
(http://www.cs.duke.edu/~narten/110/nachos/main/main.html)] described previous
versions of Nachos, except that we defer some of the details to the Javadoc-generated
documentation. We do not claim any originality in this documentation, and freely offer
any deserved credit to Narten.

Table of Contents

[[. NacNoS aNA TNE JAVA POIL........coeviiiiiiiiiiee et e e e e e e e e e e e e e s b e re s e e e eeaeeeesesssssabban e seeeasannens 1]
A\ F=Tol AT TS AV, F= Tl aT T B

1. Nachos and the Java Port

The Nachos instructional operating system, developed at Berkeley, was first tested on guinea pig students
in 1992 [1 (http://http.cs.berkeley.edu/~tea/nachos/nachos.ps)]. The authors intended it to be a simple,
yet realistic, project for undergraduate operating systems classes. Nachos is now in wide use.

A Guide to Nachos 5.0j

The original Nachos, written in a subset of C++ (with a little assembly), ran as a regular UNIX process.
It simulated the hardware devices of a simple computer: it had a timer, a console, a MIPS R3000
processor, a disk, and a network link. In order to achieve reasonable performance, the operating system
kernel ran natively, while user processes ran on the simulated processor. Because it was simulated,
multiple Nachos instances could run on the same physical computer.

1.1. Why Java?

Despite the success of Nachos, there are good reasons to believe that it would be more useful in Java:

- Java is much simpler than C++. It is not necessary to restrict Nachos to a subset of the language;
students can understand the whole language.

« Java is type-safe. C++ is not type-safe; it is possible for a C++ program to perform a legal operation
(e.g. writing off the end of an array) such that the operation of the program can no longer be described
in terms of the C++ language. This turns out to be a major problem; some project groups are unable to
debug their projects within the alotted time, primarily because of bugs not at all related to operating
systems concepts.

« Itis much more reasonable to machine-grade a Java project than a C++ project.

- Many undergraduate data structures classes, including the one at Berkeley, now use Java, not C++;
students know Java well.

« Java is relatively portable. Nachos 4.0 uses unportable assembly to support multithreading. Adding a
new target to Nachos 4.0 required writing a bit of additional code for the port.

1.2. Will it work?

One of the first concerns many people have about Java is its speed. It is an undebatable fact that Java
programs run slower than their C++ equivalents. This statement can be misleading, though:

« Compiling is a significant part of the Nachos 4.0 debug cycle. Because javac compiles as much as it
can everytime it is invoked, Nachos 5.0j actually compiles faster than Nachos 4.0 (running on a local
disk partition with no optimizations enabled).

- Generating large files on network partitions further slows down the debug cycle. Nachos 5.0j’s .class
files are significantly smaller than Nachos 4.0's .o files, even when compiling with -Os. This is in part
due to C++ templates, which, without a smart compiler or careful management, get very big.

- Type-safe languages are widely known to make debugging cycles more effective.

A Guide to Nachos 5.0j

Another common concern is that writing an operating system in a type-safe language is unrealistic. In
short, itis unrealistic, but not as unrealistic as you might think. Two aspects of real operating systems are
lost by using Java, but neither are critical:

- Since the JVM provides threads for Nachos 5.0j, the context switch code is no longer exposed. In
Nachos 4.0, students could read the assembly code used to switch between threads. But, as mentioned
above, this posed a portability problem.

- The kernel can allocate kernel memory without releasing it; the garbage collector will release it. In
Linux, this would be similar to removing all calls tdree . This, however, is conceptually one of the
simplest forms of resource allocation within the kernel (there’s a lot more to Linuxkthalioc and
kfree). The Nachos kernel must still directly manage the allocation of physical pages among
processes, and must close files when processes exit, for example.

2. Nachos Machine

Nachos simulates a real CPU and harware devices, including interrupts and memory management. The
Java package nachos.machine provides this simulation.

2.1. Configuring Nachos

The nachos simulation is configured for the various projects usinggittes.conf file (for the most

part, this file is equivelant to the BIOS or OpenFirmware configuration of modern PCs or Macintoshes).
It specifies which hardware devices to include in the simulation as well as which Nachos kernel to use.
The project directories include appropriate configurations, and, where neccessary, the project handouts
document any changes to this file required to complete the project.

2.2. Boot Process

The nachos boot process is similar to that of a real machine. An instance of the nachos.machine.Machine
class is created to begin booting. The hardware (Machine object) first initializes the devices including the
interrupt controller, timer, elevator controller, MIPS processor, console, and file system.

The Machine object then hands control to the particular AutoGrader in use, an action equivelant to
loading the bootstrap code from the boot sector of the disk. It is the AutoGrader that creates a Nachos
kernel, starting the operating system. Students need not worry about this step in the boot process - the
interesting part begins with the kernel.

A Guide to Nachos 5.0j

A Nachos kernel is just a subclass of nachos.machine.Kernel. For instance, the thread project uses
nachos.threads.ThreadedKernel (and later projects inherit from ThreadedKernel).

2.3. Nachos Hardware Devices

The Nachos machine simulation includes several hardware devices. Some would be found in most
modern computers (e.g. the network interface), while others (such as the elevator controller) are unique
to Nachos. Most classes in theachine directory are part of the hardware simulation, while all classes
outside that directory are part of the Nachos operating system.

2.3.1. Interrupt Management

The nachos.machine.Interrupt class simulates interrupts by maintaining an event queue together with a
simulated clock. As the clock ticks, the event queue is examined to find events scheduled to take place
now. The interrupt controller is returned Machine.interrupt()

The clock is maintained entirely in software and ticks only under the following conditions:

- Every time interrupts are re-enabled (i.e. only when interrupts are disabled and get enabled again), the
clock advances 10 ticks. Nachos code frequently disables and restores interrupts for mutual exclusion
purposes by making explicit calls tiisable() andrestore()

- Whenever the MIPS simulator executes one instruction, the clock advances one tick.

Note: Nachos C++ users: Nachos C++ allowed the simulated time to be advanced to that of the next
interrupt whenever the ready list is empty. This provides a small performance gain, but it creates
unnatural interaction between the kernel and the hardware, and it is unnecessary (a normal OS uses
an idle thread, and this is exactly what Nachos does now).

Whenever the clock advances, the event queue is examined and any pending interrupt events are serviced
by invoking the device event handler associated with the event. Note that this hamtieaisinterrupt

handler (a.k.a. interrupt service routine). Interrupt handlers are part of software, while device event
handlers are part of the hardware simulation. A device event handlanvakethe software interrupt

handler for the device, as we will see later. For this reason, the Interrupt class disables interrupts before
calling a device event handler.

A Guide to Nachos 5.0j

Caution

Due to a bug in the current release of Nachos, only the timer interrupt handler may
cause a context switch (the problem is that a few device event handlers are not
reentrant; in order for an interrupt handler to be allowed to do a context switch, the
device event handler that invoked it must be reentrant). All interrupt handlers
besides the timer interrupt handler must not directly or indirectly cause a context
switch before returning, or deadlock may occur. However, you probably won't even
want to context switch in any other interrupt handler anyway, so this should not be
a problem.

The Interrupt class accomplishes the above through three methods. These methods are only accessible to
hardware simulation devices.

- schedule() takes atime and a device event handler as arguments, and schedules the specified
handler to be called at the specified time.

- tick() advances the time by 1 tick or 10 ticks, depending on whether Nachos is in user mode or
kernel mode. It is called byetStatus() whenever interrupts go from being disabled to being
enabled, and also [Brocessor.run() after each user instruction is executed.

« checklfDue() invokes event handlers for queued events until no more events are due to occur. It is
invoked bytick()

The Interrupt class also simulates the hardware interface to enable and disable interrupts (see the Javadoc
for Interrupt).

The remainder of the hardware devices present in Nachos depend on the Interrupt device. No hardware
devices in Nachos create threads, thus, the only time the code in the device classes execute is due to a
function call by the running KThread or due to an interrupt handler executed by the Interrupt object.

2.3.2. Timer

Nachos provides an instance of a Timer to simulate a real-time clock, generating interrupts at regular
intervals. It is implemented using the event driven interrupt mechanism described above.
Machine.timer() returns a reference to this timer.

Timer supports only two operations:

- getTime() returns the number of ticks since Nachos started.

- setinterruptHandler() sets the timer interrupt handler, which is invoked by the simulated timer
approximately evergtats. TimerTicks ticks.

A Guide to Nachos 5.0j

The timer can be used to provide preemption. Note however that the timer interrupts do not always occur
at exactly the same intervals. Do not rely on timer interrupts being equally spaced; instead, use
getTime()

2.3.3. Serial Console

Nachos provides three classes of I/0 devices with read/write interfaces, of which the simplest is the

serial console. The serial console, specified by the SerialConsole class, simulates the behavior of a serial
port. It provides byte-wide read and write primitives that never block. The machine’s serial console is
returned byMachine.console()

The read operation tests if a byte of data is ready to be returned. If so, it returns the byte immediately,
and otherwise it returns -1. When another byte of data is received, a receive interrupt occurs. Only one
byte can be queued at a time, so it is not possible for two receive interrupts to occur without an
intervening read operation.

The write operation starts transmitting a byte of data and returns immediately. When the transmission is
complete and another byte can be sent, a send interrupt occurs. If two writes occur without an
intervening send interrupt, the actual data transmitted is undefined (so the kernel should always wait for a
send interrupt first).

Note that the receive interrupt handler and send interrupt handler are provided by the kernel, by calling
setinterruptHandlers()

Implementation note: in a normal Nachos session, the serial console is implemented by class
StandardConsole, which uses stdin and stdout. It schedules a read device event every
Stats.ConsoleTime ticks to poll stdin for another byte of data. If a byte is present, it stores it and
invokes the receive interrupt handler.

2.3.4. Disk

The file systems project has not yet been ported, so the disk has not been tested.

2.3.5. Network Link

Separate Nachos instances running on the same real-life machine can communicate with each other over
a network, using the NetworkLink class. An instance of this class is returned by
Machine.networkLink()

The network link’s interface is similar to the serial console’s interface, except that instead of receiving
and sending bytes at a time, the network link receives and sends packets at a time. Packets are instances
of the Packet class.

A Guide to Nachos 5.0j

Each network link has bnk addressa number that uniquely identifies the link on the network. The link
address is returned lgetLinkAddress()

A packet consists of a header and some data bytes. The header specifies the link address of the machine
sending the packet (the source link address), the link address of the machine to which the packet is being
sent (the destination link address), and the number of bytes of data contained in the packet. The data
bytes are not analyzed by the network hardware, while the header is. When a link transmits a packet, it
transmits it only to the link specified in the destination link address field of the header. Note that the
source address can be forged.

The remainder of the interface to NetworkLink is equivalent to that of SerialConsole. The kernel can
check for a packet by callingceive() , which returnshull if no packet is available. Whenever a
packet arrives, a receive interrupt is generated. The kernel can send a packet byseadl{hg, but it

must wait for a send interrupt before attempting to send another packet.

3. Threads and Scheduling

Nachos provides a kernel threading package, allowing multiple tasks to run concurrently (see
nachos.threads.ThreadedKernel and nachos.threads.KThread). Once the user-prcesses are implmented
(phase 2), some threads may be running the MIPS processor simulation. As the scheduler and thread
package are concerned, there is no difference between a thread running the MIPS simulation and one
running just kernel Java code.

3.1. Thread Package

All Nachos threads are instances of nachos.threads.KThread (threads capable of running user-level MIPS
code are a subclass of KThread, nachos.userprog.UThread). A nachos.machine.TCB object is contained
by each KThread and provides low-level support for context switches, thread creation, thread

destruction, and thread yield.

Every KThread has status member that tracks the state of the thread. Certain KThread methods will
fail (with a Lib.assert()) if called on threads in the wrong state; check the KThread Javadoc for
details.

statusNew

A newly created, yet to be forked thread.

A Guide to Nachos 5.0j

statusReady
A thread waiting for access to the CPKIlhread.ready() will add the thread to the ready queue
and set the status tvatusReady

statusRunning
The thread currently using the CPKIThread.restoreState() is responsible for setting
status tostatusRunning , and is called bKThread.runNextThread()

statusBlocked
A thread which is asleep (as set kyhread.sleep()), waiting on some resource besides the
CPU.

statusFinished
A thread scheduled for destruction. Usehread.finish() to set this status.

Internally, Nachos implements threading using a Java thread for each TCB. The Java threads are
synchronized by the TCBs such that exactly one is running at any given time. This provides the illusion

of context switches saving state for the current thread and loading the saved state of the new thread. This
detail, however, is only important for use with debuggers (which will show multiple Java threads), as the
behavior is equivelant to a context switch on a real processor.

3.2. Scheduler

A sub-class (specified in theachos.conf) of the abstract base class nachos.threads.Scheduler is
responsible for scheduling threads for all limited resources, be it the CPU, a synchronization construct
like a lock, or even a thread join operation. For each resource a hachos.threads.ThreadQueue is created

by Scheduler.newThreadQueue() . The implementation of the resource (e.g.
nachos.threads.Semaphore class) is responsible for adding KThreads to the ThreadQueue
(ThreadQueue.waitForAccess()) and requesting the ThreadQueue return the next thread

(ThreadQueue.nextThread()). Thus, all scheduling decisions (including those regarding the CPU’s
ready queue) reduce to the selection of the next thread by the ThreadQueu€-objects

Various phases of the project will require modifications to the scheduler base class. The
nachos.threads.RoundRobinScheduler is the default, and implements a fully functional (though naive)
FIFO scheduler. Phase 1 of the projects requires the student to complete the
nachos.threads.PriorityScheduler; for phase 2, students complete nachos.threads.LotteryScheduler.

A Guide to Nachos 5.0j

3.3. Creating the First Thread

Upto the point where the Kernel is created, the boot process is fairly easy to follow - Nachos is just
making Java objects, same as any other Java program. Also like any other single-threaded Java program,
Nachos code is executing on the initial Java thread created automaticaly for it by Java.
ThreadedKernel.initialize() has the task of starting threading:

public void initialize(String[] args) {

/I start threading
new KThread(null);

}

The first clue that something special is happening should be that the new KThread object created is not
stored in a variable insideitialize() . The constructor for KThread follows the following procedure
the first time it is called:

Create the ready queughfeadedKernel.scheduler.newThreadQueue()).
Allocate the CPU to the new KThread object being createabyQueue.acquire(this)).

SetKThread.currentThread to the new KThread being made.

Eal A

Set the TCB object of the new KThreadTaB.currentTCB() . In doing so, the currently running
Java thread is assigned to the new KThread object being created.

5. Change thetatus of the new KThread from the defaulitdétusNew) to statusRunning . This
bypasses thstatusReady state.

6. Create an idle thread.

a. Make another new KThread, with the target set to an infiyiélel() loop.

b. Fork the idle thread off from the main thread.

After this procedure, there are two KThread objects, each with a TCB object (one for the main thread,
and one for the idle thread). The main thread is not special - the scheduler treats it exactly like any other
KThread. The main thread can create other threads, it can die, it can block. The Nachos session will not
end until all KThreads finish, regardless of whether the main thread is alive.

For the most part the idle thread is also a normal thread, which can be contexted switched like any other.
The only difference is it will never be added to the ready qué&déread.ready() has an explicit

check for the idle thread). InsteadréfadyQueue.nextThread() returnsnull , the thread system will
switch to the idle thread.

A Guide to Nachos 5.0j

Note: While the Nachos idle thread does nothing but yield() forever, some systems use the idle
thread to do work. One common use is zeroing memory to prepare it for reallocation.

3.4. Creating More Threads

Creating subsequent threads is much simpler. As described in the KThread Javadoc, a new KThread is
created, passing the constructor a Runnable object. Térk(), is called:

KThread newThread = new KThread(myRunnable);
newThread.fork();

This sequence results in the new thread being placed on the ready queue. The currently running thread
does not immediatly yield, however.

3.4.1. Java Anonymous Classes in Nachos

The Nachos source is relatively clean, using only basic Java, with the exception of the use of anonymous
classes to replicate the functionality of function pointers in C++. The following code illustrates the use of
an anonymous class to create a new KThread object which, when forked, will execute the

myFunction() method of the encolosing object.

Runnable myRunnable = new Runnable() {
public void run() {
myFunction();

}
h
KThread newThread = new KThread(myRunnable);

This code creates a new object of type Runnable inside the context of the enclosing object. Since
myRunnable has no methochyFunction() , executingnyRunnable.run() will cause Java to look in
the enclosing class forrayFunction() method.

3.5. On Thread Death

All threads have some resources allocated to them which are neccessary for the thread to run (e.g. the
TCB object). Since the thread itself cannot deallocate these resources while it is running, it leaves a
virtual will asking the next thread which runs to deallocate its resources. This is implemented in

10

A Guide to Nachos 5.0j

KThread.finish() , Which setKThread.toBeDestroyed to the currently running thread. It then
sets current threadgatus field to statusFinished and callssleep()

Since the thread is not waiting on a ThreadQueue object, its sleep will be permanent (that is, Nachos will
never try to wake the thread). This scheme does, however, require that after every context switch, the
newly running thread must cheakBeDestroyed

Note: In the C++ version of Nachos, thread death was complicated by the explicit memory
deallocation required, combined with dangling references that still pointing to the thread after death
(for example, most thread join() implementations requires some reference to the thread). In Java,
the garbage collector is responsible for noticing when these references are detached, significantly
simplifying the thread finishing process.

4. The Nachos Simulated MIPS Machine

Nachos simulates a machine with a processor that roughly approximates the MIPS architecture. In
addition, an event-driven simulated clock provides a mechanism to schedule events and execute them at a
later time. This is a building block for classes that simulate various hardware devices: a timer, an elevator
bank, a console, a disk, and a network link.

The simulated MIPS processor can execute arbitrary programs. One simply loads instructions into the
processor’s memory, initializes registers (including the program counter, regPC) and then tells the
processor to start executing instructions. The processor then fetches the instruction that regPC points at,
decodes it, and executes it. The process is repeated indefinitely, until either an instruction causes an
exception or a hardware interrupt is generated. When an exception or interrupt takes place, execution of
MIPS instructions is suspended, and a Nachos interrupt service routine is invoked to deal with the
condition.

Conceptually, Nachos has two modes of execution, one of which is the MIPS simulator. Nachos executes
user-level processes by loading them into the simulator’s memory, initializing the simulator’s registers

and then running the simulator. User-programs can only access the memory associated with the

simulated processor. The second mode corresponds to the Nachos "kernel". The kernel executes when
Nachos first starts up, or when a user-program executes an instruction that causes an exception (e.g.,
illegal instruction, page fault, system call, etc.). In kernel mode, Nachos executes the way normal Java
programs execute. That is, the statements corresponding to the Nachos source code are executed, and the
memory accessed corresponds to the memory assigned to Nachos variables.

11

A Guide to Nachos 5.0j

4.1. Processor Components

The Nachos/MIPS processor is implemented by the Processor class, an instance of which is created
when Nachos first starts up. The Processor class exports a number of public methods and fields that the
Nachos kernel accesses directly. In the following, we describe some of the important variables of the
Processor class; describing their role helps explain what the simulated hardware does.

The processor provides registers and physical memory, and supports virtual memory. It provides
operations to run the machine and to examine and modify its current state. When Nachos first starts up, it
creates an instance of the Processor class and makes it available thtanite.processor() . The

following aspects of the processor are accessible to the Nachos kernel:

Registers

The processor’s registers are accessible throegiRegister() andwriteRegister() . The
registers include MIPS registers 0 through 31, the low and high registers used for multiplication and
division, the program counter and next program counter registers (two are necessary because of
branch delay slots), a register specifying the cause of the most recent exception, and a register
specifying the virtual memory address associated with the most recent exception. Recall that the
stack pointer register and return address registers are general MIPS registers (specifically, they are
registers 29 and 31, respectively). Recall also that r0 is always 0 and cannot be modified.

Physical memory

Memory is byte-addressable and organized into 1-kilobyte pages, the same size as disk sectors. A
reference to the main memory array is returnedyé@emory() . Memory corresponding to

physical addressican be accessed in Nachosveichine.processor().getMemory()[m] . The
number of pages of physical memory is returnedybyNumPhysPages()

Virtual memory

The processor supports VM through either a single linear page table or a software-managed TLB
(but not both). The mode of address translation is actually used is determimedHag.conf

and is returned biasTLB() . If the processor does not have a TLB, the kernel can tell it what page
table to use by callingetPageTable() . If the processor does have a TLB, the kernel can query
the size of the TLB by callingetTLBSize() , and the kernel can read and write TLB entries by
callingreadTLBEntry() andwriteTLBEntry()

Exceptions

When the processor attempts to execute an instruction and it results in an exception, the kernel
exception handler is invoked. The kernel must tell the processor where this exception handler is by
invoking setExceptionHandler() . If the exception resulted from a syscall instruction, it is the
kernel's responsibility to advance the PC register, which it should do by caltivencePC() .

12

A Guide to Nachos 5.0j

At this point, we know enough about the Processor class to explain how it executes arbitrary user
programs. First, we load the program’s instructions into the processor’s physical memory (i.e. the array
returned bygetMemory()). Next, we initialize the processor’s page table and registers. Finally, we
invokerun() , which begins the fetch-execute cycle for the processor.

run() causes the processor to enter an infinite fetch-execute loop. This method should only be called
after the registers and memory have been properly initialized. Each iteration of the loop does three things:

1. It attempts to run an instruction. This should be very familiar to students who have studied the
generic 5-stage MIPS pipeline. Note that when an exception occurs, the pipline is aborted.

a. The 32-bit instruction is fetched from memory, by reading the word of virtual memory pointed
to by the PC register. Reading virtual memory can cause an exception.

b. The instruction is decoded by looking at its 6-tyit field and looking up the meaning of the
instruction in one of three tables.

c. The instruction is executed, and data memory reads and writes occur. An exception can occur if
an arithmetic error occurs, if the instruction is invalid, if the instruction was a syscall, or if a
memory operand could not be accessed.

d. The registers are modified to reflect the completion of the instruction.

2.1f an exception occurred, handle it. The cause of the exception is written to the cause register, and if
the exception involved a bad virtual address, this address is written to the bad virtual address register.
If a delayed load is in progress, it is completed. Finally, the kernel's exception handler is invoked.

3. It advances the simulated clock (the clock, used to simulate interrupts, is discussed in the following
section).

Note that from a user-level process’s perspective, exceptions take place in the same way as if the
program were executing on a bare machine; an exception handler is invoked to deal with the problem.
However, from our perspective, the kernel's exception handler is actually called via a normal procedure
call by the simulated processor.

The processor provides three methods we have not discussesbyesddress()
offsetFromAddress|() , andpageFromAddress() . These are utility procedures that help the kernel
go between virtual addresses and virtual-page/offset pairs.

4.2. Address Translation

The simulated processor supports one of two address translation modes: linear page tables, or a
software-managed TLB. While the former is simpler to program, the latter more closely corresponds to
what current machines support.

13

A Guide to Nachos 5.0j

In both cases, when translating an address, the processor breaks the 32-bit virtual address into a virtual
page number (VPN) and a page offset. Since the processor’s page size is 1KB, the offset is 10 bits wide
and the VPN is 22 bits wide. The processor then translates the virtual page number into a translation
entry.

Each translation entry (see the TranslationEntry class) contains six fields: a valid bit, a read-only bit, a
used bit, a dirty bit, a 22-bit VPN, and a 22-bit physical page number (PPN). The valid bit and read-only
bit are set by the kernel and read by the processor. The used and dirty bits are set by the processor, and
read and cleared by the kernel.

4.2.1. Linear Page Tables

When in linear page table mode, the processor uses the VPN to index into an array of translation entries.
This array is specified by callingetPageTable() . If, in translating a VPN, the VPN is greater than or
equal to the length of the page table, or the VPN is within range but the corresponding translation entry’s
valid bit is clear, then a page fault occurs.

In general, each user process will have its own private page table. Thus, each process switch requires
callingsetPageTable() . On a real machine, the page table pointer would be stored in a special
processor register.

4.2.2. Software-Managed TLB

When in TLB mode, the processor maintains a small array of translation entries that the kernel can
read/write usingeadTLBEntry() andwriteTLBEntry() . On each address translation, the processor
searches the entire TLB for the first entry whose VPN matches.

5. User-Level Processes

Nachos runs each user program in its own private address space. Nachos can run any COFF MIPS
binaries that meet a few restrictions. Most notably, the code must only make system calls that Nachos
understands. Also, the code must not use any floating point instructions, because the Nachos MIPS
simulator does not support coprocessors.

5.1. Loading COFF Binaries

COFF (Common Object File Format) binaries contain a lot of information, but very little of it is actually

14

A Guide to Nachos 5.0j

relevent to Nachos programs. Further, Nachos provides a COFF loader class, hachos.machine.Coff, that
abstracts away most of the details. But a few details are still important.

A COFF binary is broken into one or mosectionsA section is a contiguous chunk of virtual memory,

all the bytes of which have similar attributes (code vs. data, read-only vs. read-write, initialized vs.
uninitialized). When Nachos loads a program, it creates a new processor, and then copies each section
into the program’s virtual memory, at some start address specified by the section. A COFF binary also
specifies an initial value for the PC register. The kernel must initialize this register, as well as the stack
pointer, and then instruct the processor to start executing the program.

The Coff constructor takes one argument, an OpenFile referring to the MIPS binary file. If there is any
error parsing the headers of the specified binary, an EOFException is thrown. Note that if this constructor
succeeds, the file belongs to the Coff object; it should not be closed or accessed anymore, except through
Coff operations.

There are four Coff methods:

- getNumSections() returns the number of sections in this binary.

« getSection() takes a section number, betweeandgetNumSections() - 1 , and returns a
CoffSection object representing the section. This class is described below.

« getEntryPoint() returns the value with which to initialize the program counter.

- close() releases any resources allocated by the loader. This includes closing the file passed to the
constructor.

The CoffSection class allows Nachos to access a single section within a COFF executable. Note that
while the MIPS cross-compiler generates a variety of sections, the only important distinction to the
Nachos kernel is that some sections are read-only (i.e. the program should never write to any byte in the
section), while some sections are read-write (i.e. omrst data). There are four methods for accessing
COFF sections:

« getFirstVPN() returns the first virtual page number occupied by the section.

- getLength() returns the number of pages occupied by the section. This section therefore occupies
pagegetFirstyPN() throughgetFirstVPN() + getLength() - 1 . Sections should never
overlap.

- isReadOnly() returns true if and only if the section is read-only (i.e. it only contains code or
constant data).

- loadPage() reads a page of the section into main memory. It takes two arguments, the page within
the section to load (in the ran@ethroughgetLength() - 1) and the physical page of memory to
write.

15

A Guide to Nachos 5.0j

5.2. Starting a Process

The kernel starts a process in two steps. First, it ¢sdksProcess.newUserProcess() to instantiate
a process of the appropriate class. This is necessary because the process class changes as more
functionality is added to each process. Second, it eallsute() to load and execute the program,
passing the name of the file containing the binary and an array of arguments.

execute() in turn takes two steps. It first loads the program into the process’s address space by calling
load() . Itthen forks a new thread, which initializes the processor’s registers and address translation
information and then callslachine.processor().run() to start executing user code.

load() opens the executable’s file, instantiates a COFF loader to process it, verifies that the sections are
contiguously placed in virtual memory, verifies that the arguments will fit within a single page, calculates
the size of the program in pages (including the stack and arguments)padfi&ctions() to actually

load the contents of each section, and finally writes the command line arguments to virtual memory.

load() lays out the program in virtual memory as follows: first, starting at virtual address 0, the sections
of the executable occupy a contiguous region of virtual memory. Next comes the stack, the size of which
is determined by the variab¢ackPages . Finally, one page is reserved for command line arguments
(thatargv array).

loadSections() allocates physical memory for the program and initializes its page table, and then
loads sections to physical memory (though for the VM project, this loading is done lazily, delayed until
pages are demanded). This is separated from the restdgf because the loading mechanism depends
on the details of the paging system.

In the code you are given, Nachos assumes that only a single process can exist at any given time.
ThereforejoadSections() assumes that no one else is using physical memory, and it initializes its
page table so as to map virtual memory addresses directly to physical memory addresses, without any
translation (i.e. virtual addressmaps to physical addres.

The methodnitRegisters() zeros out the processor’s registers, and then initializes the program
counter, the stack pointer, and the two argument registers (whichalggldandargv) with the values
computed byoad() . initRegisters() is called exactly once by the thread forkectiecute()

5.3. User Threads

User threads (that is, kernel threads that will be used to run user code) require additional state.
Specifically, whenever a user thread starts running, it must restore the processor’s registers, and possibly
restore some address translation information as well. Right before a context switch, a user thread needs
to save the processor’s registers.

To accomplish this, there is a new thread class, UThread, that extends KThread. It is necessary to know
which process, if any, the current thread belongs to. Therefore each UThread is bound to a single process.

16

A Guide to Nachos 5.0j

UThread overridesaveState() andrestoreState() from KThread so as to save/restore the
additional information. These methods deal only with the user register set, and then direct the current
process to deal with process-level state (i.e. address translation information). This separation makes it
possible to allow multiple threads to run within a single process.

5.4. System Calls and Exception Handling

User programs invoke system calls by executing the Mi§&8all instruction, which causes the

Nachos kernel exception handler to be invoked (with the cause register set to
Processor.exceptionSyscall). The kernel must first tell the processor where the exception handler
is by callingMachine.processor().setExceptionHandler()

The default Kernel exception handleiserkernel.exceptionHandler() , reads the value of the
processor’s cause register, determines the current process, and inaodiegxception on the

current process, passing the cause of the exception as an argument. Again, for a syscall, this value will be
Processor.exceptionSyscall

Thesyscall instruction indicates a system call is requested, but doesn'’t indicate which system call to
perform. By convention, user programs place the value indicating the particular system call desried into
MIPS register2 (the first return register0) before executing thsyscall instruction. Arguments to

the system call, when necessary, are passed in MIPS registémsoughr7 (i.e. the argument registers,

a0 ... a3), following the standard C procedure call convention. Function return values, including
system call return values, are expected to be in regigt¢v0) on return.

Note: When accessing user memory from within the exception handler (or within Nachos in general),
user-level addresses cannot be referenced directly. Recall that user-level processes execute in their
own private address spaces, which the kernel cannot reference directly. Use readVirtualMemory() ,
readVirtualMemoryString() , and writeVirtualMemory() to make use of pointer arguments to
syscalls.

Notes

1. The ThreadQueue object representing the ready queue is stored in the static variable
KThread.readyQueue

17

