
CS162
Operating Systems and
Systems Programming

Lecture 4

Thread Dispatching

September 10, 2007
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 4.29/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Recall: Modern Process with Multiple Threads

• Process: Operating system abstraction to represent 
what is needed to run a single, multithreaded 
program

• Two parts:
– Multiple Threads

» Each thread is a single, sequential stream of execution
– Protected Resources:

» Main Memory State (contents of Address Space)
» I/O state (i.e. file descriptors)

• Why separate the concept of a thread from that of 
a process?
– Discuss the “thread” part of a process (concurrency)
– Separate from the “address space” (Protection)
– Heavyweight Process ≡ Process with one thread

Lec 4.39/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency
– “Active” component of a process

• Address spaces encapsulate protection
– Keeps buggy program from trashing the system
– “Passive” component of a process

Lec 4.49/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Recall: Classification

• Real operating systems have either
– One or many address spaces
– One or many threads per address space

• Did Windows 95/98/ME have real memory protection?
– No: Users could overwrite process tables/System DLLs

Mach, OS/2, Linux,
Win 95?, Mac OS X,

Win NT to XP, 
Solaris, HP-UX

Embedded systems 
(Geoworks, VxWorks, 

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early 
Macintosh

Many

One

# threads
Per AS:

ManyOne

#
 o

f 
ad

dr
sp

ac
es

:



Lec 4.59/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Goals for Today

• Further Understanding Threads
• Thread Dispatching
• Beginnings of Thread Scheduling

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne 
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz.

Lec 4.69/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Recall: Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {
if (tmp<2)
B();

printf(tmp);
}
B() {
C();

}
C() {
A(2);

}
A(1);

A: tmp=2
ret=C+1Stack

Pointer

Stack Growth

A: tmp=1
ret=exit

B: ret=A+2

C: ret=B+1

Lec 4.79/10/07 Kubiatowicz CS162 ©UCB Fall 2007

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

16 s0 callee saves

. . . (callee must save)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)

MIPS: Software conventions for Registers

• Before calling procedure:
– Save caller-saves regs
– Save v0, v1
– Save ra

• After return, assume
– Callee-saves reg OK
– gp,sp,fp OK (restored!)
– Other things trashed

Lec 4.89/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Single-Threaded Example

• Imagine the following C program:

main() {
ComputePI(“pi.txt”);
PrintClassList(“clist.text”);

}

• What is the behavior here?
– Program would never print out class list
– Why? ComputePI would never finish



Lec 4.99/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Use of Threads
• Version of program with Threads:

main() {
CreateThread(ComputePI(“pi.txt”));
CreateThread(PrintClassList(“clist.text”));

}

• What does “CreateThread” do?
– Start independent thread running given procedure

• What is the behavior here?
– Now, you would actually see the class list
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time 
CPU1 CPU2

Lec 4.109/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Memory Footprint of Two-Thread Example

• If we stopped this program and examined it with a 
debugger, we would see
– Two sets of CPU registers
– Two sets of Stacks

• Questions: 
– How do we position stacks relative to 
each other?

– What maximum size should we choose
for the stacks?

– What happens if threads violate this?
– How might you catch violations?

Code

Global Data

Heap

Stack 1

Stack 2

A
ddress Space

Lec 4.119/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Per Thread State

• Each Thread has a Thread Control Block (TCB)
– Execution State: CPU registers, program counter, 
pointer to stack

– Scheduling info: State (more later), priority, CPU time
– Accounting Info
– Various Pointers (for implementing scheduling queues)
– Pointer to enclosing process? (PCB)?
– Etc (add stuff as you find a need)

• In Nachos: “Thread” is a class that includes the TCB
• OS Keeps track of TCBs in protected memory

– In Array, or Linked List, or …

Lec 4.129/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Lifecycle of a Thread (or Process)

• As a thread executes, it changes state:
– new:  The thread is being created
– ready:  The thread is waiting to run
– running:  Instructions are being executed
– waiting:  Thread waiting for some event to occur
– terminated:  The thread has finished execution

• “Active” threads are represented by their TCBs
– TCBs organized into queues based on their state



Lec 4.139/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Ready Queue And Various I/O Device Queues

• Thread not running ⇒ TCB is in some scheduler queue
– Separate queue for each device/signal/condition 
– Each queue can have a different scheduler policy

Other
State
TCB9

Link
Registers

Other
State
TCB6

Link
Registers

Other
State
TCB16

Link
Registers

Other
State
TCB8

Link
Registers

Other
State
TCB2

Link
Registers

Other
State
TCB3

Link
Registers

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Ready
Queue

Tape
Unit 0

Disk
Unit 0

Disk
Unit 2

Ether
Netwk 0

Lec 4.149/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Administrivia

• Audio Podcasts are now available
– RSS, stream, MP3 downloads

• Group assignments now posted on website
– Check out the “Group/Section Assignment” link
– Please attend your newly assigned section

Thomas Kho4 EvansF 10:00-11:00A105

B51 Hildebrand

75 Evans

155 Barrows

81 Evans

Location

Todd KosloffTh 4:00-5:00P104

Todd KosloffTh 2:00-3:00P103

Kelvin LwinTh 12:00-1:00P102

Kelvin LwinTh 10:00-11:00A101

TATimeSection

Lec 4.159/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Administrivia
• New Office Hour for me: Tuesday from 2:00-3:00
• Group assignments finished!

– Look at group link off homepage
– Issues:

» We have a group of three that needs another member in 
Thursday 2-3 section

» We have only three groups in the Thursday 12-1 section
» Can we get anyone to move?  You will get much better 

access to your TA
• Time to start Project 1   

– Go to Nachos page: start reading tasks and Nachos code
• Nachos readers:

– Available from Copy Central now (Required!)
– Includes lectures and printouts of all of the code

• Make sure that you run the register program  
– This should happen automatically when you login, but you 
need to avoid hitting control-C

Lec 4.169/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Dispatch Loop

• Conceptually, the dispatching loop of the operating system 
looks as follows:

Loop {
RunThread(); 
ChooseNextThread();
SaveStateOfCPU(curTCB);
LoadStateOfCPU(newTCB);

}

• This is an infinite loop
– One could argue that this is all that the OS does

• Should we ever exit this loop???
– When would that be?



Lec 4.179/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Running a thread

Consider first portion:   RunThread()

• How do I run a thread?
– Load its state (registers, PC, stack pointer) into CPU
– Load environment (virtual memory space, etc)
– Jump to the PC

• How does the dispatcher get control back?
– Internal events: thread returns control voluntarily
– External events: thread gets preempted

Lec 4.189/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Internal Events

• Blocking on I/O
– The act of requesting I/O implicitly yields the CPU

• Waiting on a “signal” from other thread
– Thread asks to wait and thus yields the CPU

• Thread executes a yield()
– Thread volunteers to give up CPU

computePI() {
while(TRUE) {

ComputeNextDigit();
yield();

}
}

Lec 4.199/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Stack for Yielding Thread

• How do we run a new thread?
run_new_thread() {

newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* next Lecture */

}
• How does dispatcher switch to a new thread?

– Save anything next thread may trash: PC, regs, stack
– Maintain isolation for each thread

yield

ComputePI Stack growthrun_new_thread

kernel_yield
Trap to OS

switch

Lec 4.209/10/07 Kubiatowicz CS162 ©UCB Fall 2007

What do the stacks look like?

• Consider the following 
code blocks:

proc A() {
B();

}
proc B() {

while(TRUE) {
yield();

}
}

• Suppose we have 2 
threads:
– Threads S and T

Thread S

St
ac

k 
gr

ow
th

A

B(while)
yield

run_new_thread
switch

Thread T

A

B(while)
yield

run_new_thread
switch



Lec 4.219/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Saving/Restoring state (often called “Context Switch)
Switch(tCur,tNew) {

/* Unload old thread */
TCB[tCur].regs.r7 = CPU.r7;

…
TCB[tCur].regs.r0 = CPU.r0;
TCB[tCur].regs.sp = CPU.sp;
TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

/* Load and execute new thread */
CPU.r7 = TCB[tNew].regs.r7;

…
CPU.r0 = TCB[tNew].regs.r0;
CPU.sp = TCB[tNew].regs.sp;
CPU.retpc = TCB[tNew].regs.retpc;
return; /* Return to CPU.retpc */

}
Lec 4.229/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Switch Details

• How many registers need to be saved/restored?
– MIPS 4k: 32 Int(32b), 32 Float(32b)
– Pentium: 14 Int(32b), 8 Float(80b), 8 SSE(128b),…
– Sparc(v7): 8 Regs(32b), 16 Int regs (32b) * 8 windows = 

136 (32b)+32 Float (32b)
– Itanium: 128 Int (64b), 128 Float (82b), 19 Other(64b)

• retpc is where the return should jump to.
– In reality, this is implemented as a jump

• There is a real implementation of switch in Nachos.
– See switch.s

» Normally, switch is implemented as assembly!
– Of course, it’s magical!
– But you should be able to follow it!

Lec 4.239/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Switch Details (continued)
• What if you make a mistake in implementing switch?

– Suppose you forget to save/restore register 4
– Get intermittent failures depending on when context switch 
occurred and whether new thread uses register 4

– System will give wrong result without warning
• Can you devise an exhaustive test to test switch code?

– No! Too many combinations and inter-leavings
• Cautionary tail:

– For speed, Topaz kernel saved one instruction in switch()
– Carefully documented!

» Only works As long as kernel size < 1MB
– What happened?  

» Time passed, People forgot
» Later, they added features to kernel (no one removes 

features!)
» Very weird behavior started happening

– Moral of story: Design for simplicity
Lec 4.249/10/07 Kubiatowicz CS162 ©UCB Fall 2007

What happens when thread blocks on I/O?

• What happens when a thread requests a block of 
data from the file system?
– User code invokes a system call
– Read operation is initiated
– Run new thread/switch

• Thread communication similar
– Wait for Signal/Join
– Networking

CopyFile

read

run_new_thread

kernel_read
Trap to OS

switch

Stack growth



Lec 4.259/10/07 Kubiatowicz CS162 ©UCB Fall 2007

External Events

• What happens if thread never does any I/O, 
never waits, and never yields control?
– Could the ComputePI program grab all resources 
and never release the processor?
» What if it didn’t print to console?

– Must find way that dispatcher can regain control!
• Answer: Utilize External Events

– Interrupts: signals from hardware or software 
that stop the running code and jump to kernel

– Timer: like an alarm clock that goes off every 
some many milliseconds

• If we make sure that external events occur 
frequently enough, can ensure dispatcher runs

Lec 4.269/10/07 Kubiatowicz CS162 ©UCB Fall 2007

…
add $r1,$r2,$r3
subi $r4,$r1,#4
slli $r4,$r4,#2

PC
 sa

ve
d

Di
sa
ble

 A
ll I

nts

Su
pe
rvi

so
r M

od
e

Restore PC

User Mode

Raise priority
Reenable All Ints
Save registers
Dispatch to Handler

…

Transfer Network 
Packet from hardware
to Kernel Buffers

…
Restore registers
Clear current Int
Disable All Ints
Restore priority
RTI

“I
nt

er
ru

pt
 H

an
dl
er

”

Example: Network Interrupt

• An interrupt is a hardware-invoked context switch
– No separate step to choose what to run next
– Always run the interrupt handler immediately

lw $r2,0($r4)
lw $r3,4($r4)
add $r2,$r2,$r3
sw 8($r4),$r2

…

Ex
te

rn
al
 I

nt
er

ru
pt

Pipeline Flush

Lec 4.279/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Use of Timer Interrupt to Return Control

• Solution to our dispatcher problem
– Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:
TimerInterrupt() {

DoPeriodicHouseKeeping();
run_new_thread();

}
• I/O interrupt: same as timer interrupt except that 
DoHousekeeping() replaced by ServiceIO().

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

Stack growth

Lec 4.289/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Choosing a Thread to Run
• How does Dispatcher decide what to run?

– Zero ready threads – dispatcher loops
» Alternative is to create an “idle thread”
» Can put machine into low-power mode

– Exactly one ready thread – easy
– More than one ready thread: use scheduling priorities

• Possible priorities:
– LIFO (last in, first out): 

» put ready threads on front of list, remove from front
– Pick one at random
– FIFO (first in, first out):

» Put ready threads on back of list, pull them from front
» This is fair and is what Nachos does

– Priority queue:
» keep ready list sorted by TCB priority field



Lec 4.299/10/07 Kubiatowicz CS162 ©UCB Fall 2007

Summary

• The state of a thread is contained in the TCB
– Registers, PC, stack pointer
– States: New, Ready, Running, Waiting, or Terminated

• Multithreading provides simple illusion of multiple CPUs
– Switch registers and stack to dispatch new thread
– Provide mechanism to ensure dispatcher regains control

• Switch routine
– Can be very expensive if many registers
– Must be very carefully constructed!

• Many scheduling options
– Decision of which thread to run complex enough for 
complete lecture


