
CS162
Operating Systems and
Systems Programming

Lecture 11

Thread Scheduling (con’t)
Protection: Address Spaces

October 3, 2007
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 11.210/03/07 Kubiatowicz CS162 ©UCB Fall 2007

• Banker’s algorithm:
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock
free afterward

» Technique: pretend each request is granted,
then run deadlock detection algorithm,
substituting

([Maxnode]-[Allocnode] ≤ [Avail]) for
([Requestnode] ≤ [Avail])

Grant request if result is deadlock free (conservative!)
» Keeps system in a “SAFE” state, i.e. there exists a

sequence {T1, T2, … Tn} with T1 requesting all remaining
resources, finishing, then T2 requesting all remaining
resources, etc..

– Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

Review: Banker’s Algorithm for Preventing Deadlock

Lec 11.310/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Review: Last Time

• Scheduling: selecting a waiting process from the ready
queue and allocating the CPU to it

• FCFS Scheduling:
– Run threads to completion in order of submission
– Pros: Simple (+)
– Cons: Short jobs get stuck behind long ones (-)

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

– Pros: Better for short jobs (+)
– Cons: Poor when jobs are same length (-)

Lec 11.410/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Goals for Today

• Finish discussion of Scheduling
• Kernel vs User Mode
• What is an Address Space?
• How is it Implemented?

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Lec 11.510/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

FCFS and RR Example with Different Time Quantum

P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

Lec 11.610/03/07 Kubiatowicz CS162 ©UCB Fall 2007

What if we Knew the Future?

• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has the least amount of
computation to do

– Sometimes called “Shortest Time to
Completion First” (STCF)

• Shortest Remaining Time First (SRTF):
– Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

– Sometimes called “Shortest Remaining Time to
Completion First” (SRTCF)

• These can be applied either to a whole program or
the current CPU burst of each program
– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average response time

Lec 11.710/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Discussion

• SJF/SRTF are the best you can do at minimizing
average response time
– Provably optimal (SJF among non-preemptive, SRTF
among preemptive)

– Since SRTF is always at least as good as SJF, focus
on SRTF

• Comparison of SRTF with FCFS and RR
– What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

– What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

Lec 11.810/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Example to illustrate benefits of SRTF

• Three jobs:
– A,B: both CPU bound, run for week
C: I/O bound, loop 1ms CPU, 9ms disk I/O

– If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

• With FIFO:
– Once A or B get in, keep CPU for two weeks

• What about RR or SRTF?
– Easier to see with a timeline

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

Lec 11.910/03/07 Kubiatowicz CS162 ©UCB Fall 2007

SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

CA BC

RR 100ms time slice

C’s
I/O

AC

C’s
I/O

AA

SRTF

Disk Utilization:
~90% but lots
of wakeups!

Disk
Utilization:

90%

Disk
Utilization:

9/201 ~ 4.5%

Lec 11.1010/03/07 Kubiatowicz CS162 ©UCB Fall 2007

SRTF Further discussion
• Starvation

– SRTF can lead to starvation if many small jobs!
– Large jobs never get to run

• Somehow need to predict future
– How can we do this?
– Some systems ask the user

» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

– But: Even non-malicious users have trouble predicting
runtime of their jobs

• Bottom line, can’t really know how long job will take
– However, can use SRTF as a yardstick
for measuring other policies

– Optimal, so can’t do any better
• SRTF Pros & Cons

– Optimal (average response time) (+)
– Hard to predict future (-)
– Unfair (-)

Lec 11.1110/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Predicting the Length of the Next CPU Burst
• Adaptive: Changing policy based on past behavior

– CPU scheduling, in virtual memory, in file systems, etc
– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help

• Example: SRTF with estimated burst length
– Use an estimator function on previous bursts:
Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.
Estimate next burst τn = f(tn-1, tn-2, tn-3, …)

– Function f could be one of many different time series
estimation schemes (Kalman filters, etc)

– For instance,
exponential averaging
τn = αtn-1+(1-α)τn-1
with (0<α≤1)

Lec 11.1210/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Multi-Level Feedback Scheduling

• Another method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to

Low Priority

Lec 11.1310/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Scheduling Details
• Result approximates SRTF:

– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling:

» serve all from highest priority, then next priority, etc.
– Time slice:

» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest

• Countermeasure: user action that can foil intent of
the OS designer
– For multilevel feedback, put in a bunch of meaningless
I/O to keep job’s priority high

– Of course, if everyone did this, wouldn’t work!
• Example of Othello program:

– Playing against competitor, so key was to do computing
at higher priority the competitors.
» Put in printf’s, ran much faster! Lec 11.1410/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Administrivia

• Midterm I coming up in one week from today!:
– Wednesday, 10/10, 5:30-8:30
– Should be 2 hour exam with extra time
– Closed book, one page of hand-written notes (both sides)

• No class on day of Midterm
– I will post extra office hours for people who have
questions about the material (or life, whatever)

• Review Session
– 7:00pm Sunday 10/7
– 306 Soda Hall

• Midterm Topics
– Topics: Everything up to (and including) next
Monday (10/8)

– History, Concurrency, Multithreading, Synchronization,
Protection/Address Spaces

Lec 11.1510/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Scheduling Fairness
• What about fairness?

– Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):
» long running jobs may never get CPU
» In Multics, shut down machine, found 10-year-old job

– Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run

– Tradeoff: fairness gained by hurting avg response time!
• How to implement fairness?

– Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express

lanes get so long, get better service by going into one of
the other lines

– Could increase priority of jobs that don’t get service
» What is done in UNIX
» This is ad hoc—what rate should you increase priorities?
» And, as system gets overloaded, no job gets CPU time, so

everyone increases in priority⇒Interactive jobs suffer
Lec 11.1610/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Lottery Scheduling

• Yet another alternative: Lottery Scheduling
– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of
tickets given to each job

• How to assign tickets?
– To approximate SRTF, short running jobs get more,
long running jobs get fewer

– To avoid starvation, every job gets at least one
ticket (everyone makes progress)

• Advantage over strict priority scheduling: behaves
gracefully as load changes
– Adding or deleting a job affects all jobs
proportionally, independent of how many tickets each
job possesses

Lec 11.1710/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Lottery Scheduling Example

• Lottery Scheduling Example
– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable
response time?
» In UNIX, if load average is 100, hard to make progress
» One approach: log some user out

5%50%1/10
0.99%9.9%10/1
N/A50%2/0
50%N/A0/2
9%91%1/1

% of CPU each
long jobs gets

% of CPU each
short jobs gets

short jobs/
long jobs

Lec 11.1810/03/07 Kubiatowicz CS162 ©UCB Fall 2007

How to Evaluate a Scheduling algorithm?
• Deterministic modeling

– takes a predetermined workload and compute the
performance of each algorithm for that workload

• Queueing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms to be run
against actual data. Most flexible/general.

Lec 11.1910/03/07 Kubiatowicz CS162 ©UCB Fall 2007

A Final Word On Scheduling
• When do the details of the scheduling policy and

fairness really matter?
– When there aren’t enough resources to go around

• When should you simply buy a faster computer?
– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay
for itself in improved response time
» Assuming you’re paying for worse

response time in reduced productivity,
customer angst, etc…

» Might think that you should buy a
faster X when X is utilized 100%,
but usually, response time goes
to infinity as utilization⇒100%

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear”
portion of the load curve, fail otherwise

– Argues for buying a faster X when hit “knee” of curve

Utilization
Response

tim
e 100%

Lec 11.2010/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Virtualizing Resources

• Physical Reality:
Different Processes/Threads share the same hardware
– Need to multiplex CPU (Just finished: scheduling)
– Need to multiplex use of Memory (Today)
– Need to multiplex disk and devices (later in term)

• Why worry about memory sharing?
– The complete working state of a process and/or kernel is
defined by its data in memory (and registers)

– Consequently, cannot just let different threads of control
use the same memory
» Physics: two different pieces of data cannot occupy the same

locations in memory
– Probably don’t want different threads to even have access
to each other’s memory (protection)

Lec 11.2110/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency
– “Active” component of a process

• Address spaces encapsulate protection
– Keeps buggy program from trashing the system
– “Passive” component of a process

Lec 11.2210/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Important Aspects of Memory Multiplexing
• Controlled overlap:

– Separate state of threads should not collide in physical
memory. Obviously, unexpected overlap causes chaos!

– Conversely, would like the ability to overlap when
desired (for communication)

• Translation:
– Ability to translate accesses from one address space
(virtual) to a different one (physical)

– When translation exists, processor uses virtual
addresses, physical memory uses physical addresses

– Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

• Protection:
– Prevent access to private memory of other processes

» Different pages of memory can be given special behavior
(Read Only, Invisible to user programs, etc).

» Kernel data protected from User programs
» Programs protected from themselves

Lec 11.2310/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Binding of Instructions and Data to Memory
• Binding of instructions and data to addresses:

– Choose addresses for instructions and data from the
standpoint of the processor

– Could we place data1, start, and/or checkit at
different addresses?
» Yes
» When? Compile time/Load time/Execution time

– Related: which physical memory locations hold particular
instructions or data?

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, -1
bnz r1, r0, loop…

checkit: …

0x300 00000020
… …

0x900 8C2000C0
0x904 0C000340
0x908 2021FFFF
0x90C 1420FFFF
…

0xD00 …

Lec 11.2410/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Multi-step Processing of a Program for Execution
• Preparation of a program for

execution involves components at:
– Compile time (i.e. “gcc”)
– Link/Load time (unix “ld” does link)
– Execution time (e.g. dynamic libs)

• Addresses can be bound to final
values anywhere in this path
– Depends on hardware support
– Also depends on operating system

• Dynamic Libraries
– Linking postponed until execution
– Small piece of code, stub, used to
locate the appropriate memory-
resident library routine

– Stub replaces itself with the
address of the routine, and
executes routine

Lec 11.2510/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Recall: Uniprogramming

• Uniprogramming (no Translation or Protection)
– Application always runs at same place in physical
memory since only one application at a time

– Application can access any physical address

– Application given illusion of dedicated machine by giving
it reality of a dedicated machine

• Of course, this doesn’t help us with multithreading

0x00000000

0xFFFFFFFF

Application

Operating
System

Va
lid

 3
2-

bi
t

A
dd

re
ss

es

Lec 11.2610/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Multiprogramming (First Version)
• Multiprogramming without Translation or Protection

– Must somehow prevent address overlap between threads

– Trick: Use Loader/Linker: Adjust addresses while
program loaded into memory (loads, stores, jumps)
» Everything adjusted to memory location of program
» Translation done by a linker-loader
» Was pretty common in early days

• With this solution, no protection: bugs in any program
can cause other programs to crash or even the OS

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000

Lec 11.2710/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Multiprogramming (Version with Protection)
• Can we protect programs from each other without

translation?

– Yes: use two special registers BaseAddr and LimitAddr
to prevent user from straying outside designated area
» If user tries to access an illegal address, cause an error

– During switch, kernel loads new base/limit from TCB
» User not allowed to change base/limit registers

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000 BaseAddr=0x20000

LimitAddr=0x10000

Lec 11.2810/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Segmentation with Base and Limit registers

• Could use base/limit for dynamic address translation
(often called “segmentation”):
– Alter address of every load/store by adding “base”
– User allowed to read/write within segment

» Accesses are relative to segment so don’t have to be
relocated when program moved to different segment

– User may have multiple segments available (e.g x86)
» Loads and stores include segment ID in opcode:

x86 Example: mov [es:bx],ax.
» Operating system moves around segment base pointers as

necessary

DRAM

<?
+

Base

Limit

CPU

Virtual
Address

Physical
Address

No: Error!

Lec 11.2910/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Issues with simple segmentation method

• Fragmentation problem
– Not every process is the same size
– Over time, memory space becomes fragmented

• Hard to do inter-process sharing
– Want to share code segments when possible
– Want to share memory between processes
– Helped by by providing multiple segments per process

• Need enough physical memory for every process

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 6

process 5

process 9

OS

process 9

process 10

Lec 11.3010/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Multiprogramming (Translation and Protection version 2)
• Problem: Run multiple applications in such a way that

they are protected from one another
• Goals:

– Isolate processes and kernel from one another
– Allow flexible translation that:

» Doesn’t lead to fragmentation
» Allows easy sharing between processes
» Allows only part of process to be resident in physical

memory
• (Some of the required) Hardware Mechanisms:

– General Address Translation
» Flexible: Can fit physical chunks of memory into arbitrary

places in users address space
» Not limited to small number of segments
» Think of this as providing a large number (thousands) of

fixed-sized segments (called “pages”)
– Dual Mode Operation

» Protection base involving kernel/user distinction

Lec 11.3110/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Example of General Address Translation

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
Lec 11.3210/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Two Views of Memory

• Recall: Address Space:
– All the addresses and state a process can touch
– Each process and kernel has different address space

• Consequently: two views of memory:
– View from the CPU (what program sees, virtual memory)
– View fom memory (physical memory)
– Translation box converts between the two views

• Translation helps to implement protection
– If task A cannot even gain access to task B’s data, no
way for A to adversely affect B

• With translation, every program can be linked/loaded
into same region of user address space
– Overlap avoided through translation, not relocation

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write

Lec 11.3310/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Example of Translation Table Format

Two-level Page Tables
32-bit address:

P1 index P2 index page offset
10 10 12

4 bytes

4 bytes

4KB

1K
PTEs

• Page: a unit of memory translatable by
memory management unit (MMU)
– Typically 1K – 8K

• Page table structure in memory
– Each user has different page table

• Address Space switch: change pointer
to base of table (hardware register)
– Hardware traverses page table (for
many architectures)

– MIPS uses software to traverse table
Lec 11.3410/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Dual-Mode Operation
• Can Application Modify its own translation tables?

– If it could, could get access to all of physical memory
– Has to be restricted somehow

• To Assist with Protection, Hardware provides at
least two modes (Dual-Mode Operation):
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode (Normal program mode)
– Mode set with bits in special control register only
accessible in kernel-mode

• Intel processor actually has four “rings” of
protection:
– PL (Priviledge Level) from 0 – 3

» PL0 has full access, PL3 has least
– Privilege Level set in code segment descriptor (CS)
– Mirrored “IOPL” bits in condition register gives
permission to programs to use the I/O instructions

– Typical OS kernels on Intel processors only use PL0
(“user”) and PL3 (“kernel”)

Lec 11.3510/03/07 Kubiatowicz CS162 ©UCB Fall 2007

For Protection, Lock User-Programs in Asylum
• Idea: Lock user programs in padded cell

with no exit or sharp objects
– Cannot change mode to kernel mode
– User cannot modify page table mapping
– Limited access to memory: cannot
adversely effect other processes
» Side-effect: Limited access to

memory-mapped I/O operations
(I/O that occurs by reading/writing memory locations)

– Limited access to interrupt controller
– What else needs to be protected?

• A couple of issues
– How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are
the same person. How do you manage this???

– How do programs interact?
– How does one switch between kernel and user modes?

» OS → user (kernel → user mode): getting into cell
» User→ OS (user → kernel mode): getting out of cell

Lec 11.3610/03/07 Kubiatowicz CS162 ©UCB Fall 2007

How to get from Kernel→User
• What does the kernel do to create a new user

process?
– Allocate and initialize address-space control block
– Read program off disk and store in memory
– Allocate and initialize translation table

» Point at code in memory so program can execute
» Possibly point at statically initialized data

– Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program

• How does kernel switch between processes?
– Same saving/restoring of registers as before
– Save/restore PSL (hardware pointer to translation table)

Lec 11.3710/03/07 Kubiatowicz CS162 ©UCB Fall 2007

User→Kernel (System Call)
• Can’t let inmate (user) get out of padded cell on own

– Would defeat purpose of protection!
– So, how does the user program get back into kernel?

• System call: Voluntary procedure call into kernel
– Hardware for controlled User→Kernel transition
– Can any kernel routine be called?

» No! Only specific ones.
– System call ID encoded into system call instruction

» Index forces well-defined interface with kernel
Lec 11.3810/03/07 Kubiatowicz CS162 ©UCB Fall 2007

System Call Continued
• What are some system calls?

– I/O: open, close, read, write, lseek
– Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
– Process: fork, exit, wait (like join)
– Network: socket create, set options

• Are system calls constant across operating systems?
– Not entirely, but there are lots of commonalities
– Also some standardization attempts (POSIX)

• What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started

• System Call argument passing:
– In registers (not very much can be passed)
– Write into user memory, kernel copies into kernel mem

» User addresses must be translated!w
» Kernel has different view of memory than user

– Every Argument must be explicitly checked!

Lec 11.3910/03/07 Kubiatowicz CS162 ©UCB Fall 2007

User→Kernel (Exceptions: Traps and Interrupts)
• A system call instruction causes a synchronous

exception (or “trap”)
– In fact, often called a software “trap” instruction

• Other sources of Synchronous Exceptions:
– Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

– Segmentation Fault (address out of range)
– Page Fault (for illusion of infinite-sized memory)

• Interrupts are Asynchronous Exceptions
– Examples: timer, disk ready, network, etc….
– Interrupts can be disabled, traps cannot!

• On system call, exception, or interrupt:
– Hardware enters kernel mode with interrupts disabled
– Saves PC, then jumps to appropriate handler in kernel
– For some processors (x86), processor also saves
registers, changes stack, etc.

• Actual handler typically saves registers, other CPU
state, and switches to kernel stack

Lec 11.4010/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Additions to MIPS ISA to support Exceptions?
• Exception state is kept in “Coprocessor 0”

– Use mfc0 read contents of these registers:
» BadVAddr (register 8): contains memory address at which

memory reference error occurred
» Status (register 12): interrupt mask and enable bits
» Cause (register 13): the cause of the exception
» EPC (register 14): address of the affected instruction

• Status Register fields:
– Mask: Interrupt enable

» 1 bit for each of 5 hardware and 3 software interrupts
– k = kernel/user: 0⇒kernel mode
– e = interrupt enable: 0⇒interrupts disabled
– Exception⇒6 LSB shifted left 2 bits, setting 2 LSB to 0:

» run in kernel mode with interrupts disabled

Status
15 8 5 4 3 2 1 0

k e k e k eMask
old prev cur

Lec 11.4110/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Intel x86 Special Registers

Typical Segment Register
Current Priority is RPL
Of Code Segment (CS)

80386 Special Registers

Lec 11.4210/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Communication
• Now that we have isolated processes, how

can they communicate?
– Shared memory: common mapping to physical page

» As long as place objects in shared memory address range,
threads from each process can communicate

» Note that processes A and B can talk to shared memory
through different addresses

» In some sense, this violates the whole notion of
protection that we have been developing

– If address spaces don’t share memory, all inter-
address space communication must go through kernel
(via system calls)
» Byte stream producer/consumer (put/get): Example,

communicate through pipes connecting stdin/stdout
» Message passing (send/receive): Will explain later how you

can use this to build remote procedure call (RPC)
abstraction so that you can have one program make
procedure calls to another

» File System (read/write): File system is shared state!

Lec 11.4310/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Closing thought: Protection without Hardware
• Does protection require hardware support for

translation and dual-mode behavior?
– No: Normally use hardware, but anything you can do in
hardware can also do in software (possibly expensive)

• Protection via Strong Typing
– Restrict programming language so that you can’t express
program that would trash another program

– Loader needs to make sure that program produced by
valid compiler or all bets are off

– Example languages: LISP, Ada, Modula-3 and Java
• Protection via software fault isolation:

– Language independent approach: have compiler generate
object code that provably can’t step out of bounds
» Compiler puts in checks for every “dangerous” operation

(loads, stores, etc). Again, need special loader.
» Alternative, compiler generates “proof” that code cannot

do certain things (Proof Carrying Code)
– Or: use virtual machine to guarantee safe behavior
(loads and stores recompiled on fly to check bounds)

Lec 11.4410/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Summary
• Shortest Job First (SJF)/Shortest Remaining Time

First (SRTF):
– Run whatever job has the least amount of computation
to do/least remaining amount of computation to do

– Pros: Optimal (average response time)
– Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities
– Automatic promotion/demotion of process priority in
order to approximate SJF/SRTF

• Lottery Scheduling:
– Give each thread a priority-dependent number of
tokens (short tasks⇒more tokens)

– Reserve a minimum number of tokens for every thread
to ensure forward progress/fairness

• Evaluation of mechanisms:
– Analytical, Queuing Theory, Simulation

Lec 11.4510/03/07 Kubiatowicz CS162 ©UCB Fall 2007

Summary (2)
• Memory is a resource that must be shared

– Controlled Overlap: only shared when appropriate
– Translation: Change Virtual Addresses into Physical
Addresses

– Protection: Prevent unauthorized Sharing of resources
• Simple Protection through Segmentation

– Base+limit registers restrict memory accessible to user
– Can be used to translate as well

• Full translation of addresses through Memory
Management Unit (MMU)
– Every Access translated through page table
– Changing of page tables only available to user

• Dual-Mode
– Kernel/User distinction: User restricted
– User→Kernel: System calls, Traps, or Interrupts
– Inter-process communication: shared memory, or
through kernel (system calls)

