
CS162
Operating Systems and
Systems Programming

Lecture 18

File Systems, Naming, and Directories

October 31, 2007
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 18.210/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Review: Device Drivers
• Device Driver: Device-specific code in the kernel that

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with
different device drivers

– Special device-specific configuration supported with the ioctl() system call
• Device Drivers typically divided into two pieces:

– Top half: accessed in call path from system calls
» implements a set of standard, cross-device calls like open(), close(), read(), write(), ioctl(),strategy()
» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep

until finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

Lec 18.310/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Review: Magnetic Disk Characteristic
• Cylinder: all the tracks under the

head at a given point on all surface
• Read/write data is a three-stage

process:
– Seek time: position the head/arm over the proper track
(into proper cylinder)

– Rotational latency: wait for the desired sector
to rotate under the read/write head

– Transfer time: transfer a block of bits (sector)
under the read-write head

• Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

• Highest Bandwidth:
– transfer large group of blocks sequentially from one track

Sector
Track

Cylinder
Head

Platter

Software
Queue

(Device Driver)

H
ardware

Controller

Media Time
(Seek+Rot+Xfer)

Request

Result

Lec 18.410/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Goals for Today

• Queuing Theory
• File Systems

– Structure, Naming, Directories

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 18.510/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Disk Performance Examples
• Assumptions:

– Ignoring queuing and controller times for now
– Avg seek time of 5ms,
– 7500RPM ⇒ Time for one rotation: 8ms
– Transfer rate of 4MByte/s, sector size of 1 KByte

• Read sector from random place on disk:
– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.25ms)
– Approx 10ms to fetch/put data: 100 KByte/sec

• Read sector from random place in same cylinder:
– Rot. Delay (4ms) + Transfer (0.25ms)
– Approx 5ms to fetch/put data: 200 KByte/sec

• Read next sector on same track:
– Transfer (0.25ms): 4 MByte/sec

• Key to using disk effectively (esp. for filesystems)
is to minimize seek and rotational delays

Lec 18.610/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Disk Tradeoffs

• How do manufacturers choose disk sector sizes?
– Need 100-1000 bits between each sector to allow
system to measure how fast disk is spinning and to
tolerate small (thermal) changes in track length

• What if sector was 1 byte?
– Space efficiency – only 1% of disk has useful space
– Time efficiency – each seek takes 10 ms, transfer
rate of 50 – 100 Bytes/sec

• What if sector was 1 KByte?
– Space efficiency – only 90% of disk has useful space
– Time efficiency – transfer rate of 100 KByte/sec

• What if sector was 1 MByte?
– Space efficiency – almost all of disk has useful space
– Time efficiency – transfer rate of 4 MByte/sec

Lec 18.710/31/07 Kubiatowicz CS162 ©UCB Fall 2007

DeparturesArrivals
Queuing System

Introduction to Queuing Theory

• What about queuing time??
– Let’s apply some queuing theory
– Queuing Theory applies to long term, steady state
behavior ⇒ Arrival rate = Departure rate

• Little’s Law:
Mean # tasks in system = arrival rate x mean response time
– Observed by many, Little was first to prove
– Simple interpretation: you should see the same number of
tasks in queue when entering as when leaving.

• Applies to any system in equilibrium, as long as nothing
in black box is creating or destroying tasks
– Typical queuing theory doesn’t deal with transient
behavior, only steady-state behavior

Queue

Controller

Disk

Lec 18.810/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Background: Use of random distributions

• Server spends variable time with customers
– Mean (Average) m1 = Σp(T)×T
– Variance σ2 = Σp(T)×(T-m1)2 = Σp(T)×T2-m1
– Squared coefficient of variance: C = σ2/m12

Aggregate description of the distribution.

• Important values of C:
– No variance or deterministic ⇒ C=0
– “memoryless” or exponential ⇒ C=1

» Past tells nothing about future
» Many complex systems (or aggregates)

well described as memoryless
– Disk response times C ≈ 1.5 (wider variance ⇒ long tail)

Mean
(m1)

mean

Memoryless

Distribution
of service times

σ

Lec 18.910/31/07 Kubiatowicz CS162 ©UCB Fall 2007

A Little Queuing Theory: Some Results
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– λ: mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = σ2/m12

– μ: service rate = 1/Tser
– u: server utilization (0≤u≤1): u = λ/μ = λ × Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue = λ × Tq (by Little’s law)

• Results:
– Memoryless service distribution (C = 1):

» Called M/M/1 queue: Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server:

» Called M/G/1 queue: Tq = Tser x ½(1+C) x u/(1 – u))

Arrival Rate
 λ

Queue ServerService Rate
 μ=1/Tser

Lec 18.1010/31/07 Kubiatowicz CS162 ©UCB Fall 2007

A Little Queuing Theory: An Example
• Example Usage Statistics:

– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller+seek+rot+trans)

• Questions:
– How utilized is the disk?

» Ans: server utilization, u = λTser
– What is the average time spent in the queue?

» Ans: Tq
– What is the number of requests in the queue?

» Ans: Lq = λTq (Little’s law)
– What is the avg response time for disk request?

» Ans: Tsys = Tq + Tser
• Computation:

λ (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
u (server utilization) = λ x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u)

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) = λ x Tq=10/s x .005s = 0.05
Tsys (avg time/customer in system) =Tq + Tser= 25 ms

Lec 18.1110/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Administrivia

• Course Feedback Tomorrow in Section
– Make sure to go to section!

• Group Evaluations not Optional
– You will get a zero for project if you don’t fill them out!
– We use these for grading

• Feel free to ask questions in lectures and sections
• Visit my office hours

– M/W 2-3, T 2/3 (sometimes!)
– Or: feel free to send email for a meeting

• Plan Ahead: this month will be difficult!!
– Project deadlines every week

Lec 18.1210/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Disk Scheduling
• Disk can do only one request at a time; What order do

you choose to do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be to
random spots on the disk ⇒ Very long seeks

• SSTF: Shortest seek time first
– Pick the request that’s closest on the disk
– Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but
may lead to starvation

• SCAN: Implements an Elevator Algorithm: take the
closest request in the direction of travel
– No starvation, but retains flavor of SSTF

• C-SCAN: Circular-Scan: only goes in one direction
– Skips any requests on the way back
– Fairer than SCAN, not biased towards pages in middle

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1

4

2

D
isk H

ead

3

Lec 18.1310/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Building a File System
• File System: Layer of OS that transforms block

interface of disks (or other block devices) into Files,
Directories, etc.

• File System Components
– Disk Management: collecting disk blocks into files
– Naming: Interface to find files by name, not by blocks
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite
crashes, media failures, attacks, etc

• User vs. System View of a File
– User’s view:

» Durable Data Structures
– System’s view (system call interface):

» Collection of Bytes (UNIX)
» Doesn’t matter to system what kind of data structures you

want to store on disk!
– System’s view (inside OS):

» Collection of blocks (a block is a logical transfer unit, while
a sector is the physical transfer unit)

» Block size ≥ sector size; in UNIX, block size is 4KB
Lec 18.1410/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Translating from User to System View

• What happens if user says: give me bytes 2—12?
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about: write bytes 2—12?
– Fetch block
– Modify portion
– Write out Block

• Everything inside File System is in whole size blocks
– For example, getc(), putc() ⇒ buffers something like
4096 bytes, even if interface is one byte at a time

• From now on, file is a collection of blocks

File
System

Lec 18.1510/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Disk Management Policies
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially in
logical space

– Directory: user-visible index mapping names to files
(next lecture)

• Access disk as linear array of sectors. Two Options:
– Identify sectors as vectors [cylinder, surface, sector].
Sort in cylinder-major order. Not used much anymore.

– Logical Block Addressing (LBA). Every sector has integer
address from zero up to max number of sectors.

– Controller translates from address ⇒ physical position
» First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk

• Need way to track free disk blocks
– Link free blocks together ⇒ too slow today
– Use bitmap to represent free space on disk

• Need way to structure files: File Header
– Track which blocks belong at which offsets within the
logical file structure

– Optimize placement of files’ disk blocks to match access
and usage patterns

Lec 18.1610/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Designing the File System: Access Patterns
• How do users access files?

– Need to know type of access patterns user is likely to
throw at system

• Sequential Access: bytes read in order (“give me the
next X bytes, then give me next, etc”)
– Almost all file access are of this flavor

• Random Access: read/write element out of middle of
array (“give me bytes i—j”)
– Less frequent, but still important. For example, virtual
memory backing file: page of memory stored in file

– Want this to be fast – don’t want to have to read all
bytes to get to the middle of the file

• Content-based Access: (“find me 100 bytes starting
with KUBI”)
– Example: employee records – once you find the bytes,
increase my salary by a factor of 2

– Many systems don’t provide this; instead, databases are
built on top of disk access to index content (requires
efficient random access)

Lec 18.1710/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Designing the File System: Usage Patterns
• Most files are small (for example, .login, .c files)

– A few files are big – nachos, core files, etc.; the nachos
executable is as big as all of your .class files combined

– However, most files are small – .class’s, .o’s, .c’s, etc.
• Large files use up most of the disk space and

bandwidth to/from disk
– May seem contradictory, but a few enormous files are
equivalent to an immense # of small files

• Although we will use these observations, beware usage
patterns:
– Good idea to look at usage patterns: beat competitors by
optimizing for frequent patterns

– Except: changes in performance or cost can alter usage
patterns. Maybe UNIX has lots of small files because big
files are really inefficient?

• Digression, danger of predicting future:
– In 1950’s, marketing study by IBM said total worldwide
need for computers was 7!

– Company (that you haven’t heard of) called “GenRad”
invented oscilloscope; thought there was no market, so
sold patent to Tektronix (bet you have heard of them!)

Lec 18.1810/31/07 Kubiatowicz CS162 ©UCB Fall 2007

How to organize files on disk
• Goals:

– Maximize sequential performance
– Easy random access to file
– Easy management of file (growth, truncation, etc)

• First Technique: Continuous Allocation
– Use continuous range of blocks in logical block space

» Analogous to base+bounds in virtual memory
» User says in advance how big file will be (disadvantage)

– Search bit-map for space using best fit/first fit
» What if not enough contiguous space for new file?

– File Header Contains:
» First block/LBA in file
» File size (# of blocks)

– Pros: Fast Sequential Access, Easy Random access
– Cons: External Fragmentation/Hard to grow files

» Free holes get smaller and smaller
» Could compact space, but that would be really expensive

• Continuous Allocation used by IBM 360
– Result of allocation and management cost: People would
create a big file, put their file in the middle

Lec 18.1910/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Linked List Allocation
• Second Technique: Linked List Approach

– Each block, pointer to next on disk

– Pros: Can grow files dynamically, Free list same as file
– Cons: Bad Sequential Access (seek between each block),

Unreliable (lose block, lose rest of file)
– Serious Con: Bad random access!!!!
– Technique originally from Alto (First PC, built at Xerox)

» No attempt to allocate contiguous blocks

Null

File Header

Lec 18.2010/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Linked Allocation: File-Allocation Table (FAT)

• MSDOS links pages together to create a file
– Links not in pages, but in the File Allocation Table (FAT)

» FAT contains an entry for each block on the disk
» FAT Entries corresponding to blocks of file linked together

– Access properties:
» Sequential access expensive unless FAT cached in memory
» Random access expensive always, but really expensive if

FAT not cached in memory

Lec 18.2110/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Indexed Allocation

• Third Technique: Indexed Files (Nachos, VMS)
– System Allocates file header block to hold array of
pointers big enough to point to all blocks
» User pre-declares max file size;

– Pros: Can easily grow up to space allocated for index
Random access is fast

– Cons: Clumsy to grow file bigger than table size
Still lots of seeks: blocks may be spread over disk

Lec 18.2210/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Multilevel Indexed Files (UNIX 4.1)
• Multilevel Indexed Files:

Like multilevel address
translation
(from UNIX 4.1 BSD)
– Key idea: efficient for small
files, but still allow big files

• File hdr contains 13 pointers
– Fixed size table, pointers not all equivalent
– This header is called an “inode” in UNIX

• File Header format:
– First 10 pointers are to data blocks
– Ptr 11 points to “indirect block” containing 256 block ptrs
– Pointer 12 points to “doubly indirect block” containing 256
indirect block ptrs for total of 64K blocks

– Pointer 13 points to a triply indirect block (16M blocks)

Lec 18.2310/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Multilevel Indexed Files (UNIX 4.1): Discussion

• Basic technique places an upper limit on file size that
is approximately 16Gbytes
– Designers thought this was bigger than anything anyone
would need. Much bigger than a disk at the time…

– Fallacy: today, EOS producing 2TB of data per day

• Pointers get filled in dynamically: need to allocate
indirect block only when file grows > 10 blocks
– On small files, no indirection needed

Lec 18.2410/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Example of Multilevel Indexed Files
• Sample file in multilevel

indexed format:
– How many accesses for
block #23? (assume file
header accessed on open)?
» Two: One for indirect block,

one for data
– How about block #5?

» One: One for data
– Block #340?

» Three: double indirect block,
indirect block, and data

• UNIX 4.1 Pros and cons
– Pros: Simple (more or less)

Files can easily expand (up to a point)
Small files particularly cheap and easy

– Cons: Lots of seeks
Very large files must read many indirect blocks (four
I/Os per block!)

Lec 18.2510/31/07 Kubiatowicz CS162 ©UCB Fall 2007

File Allocation for Cray-1 DEMOS

• DEMOS: File system structure similar to segmentation
– Idea: reduce disk seeks by

» using contiguous allocation in normal case
» but allow flexibility to have non-contiguous allocation

– Cray-1 had 12ns cycle time, so CPU:disk speed ratio about
the same as today (a few million instructions per seek)

• Header: table of base & size (10 “block group” pointers)
– Each block chunk is a contiguous group of disk blocks
– Sequential reads within a block chunk can proceed at high
speed – similar to continuous allocation

• How do you find an available block group?
– Use freelist bitmap to find block of 0’s.

basesize

file header

1,3,2
1,3,3
1,3,4
1,3,5
1,3,6
1,3,7
1,3,8
1,3,9

disk group

Basic Segmentation Structure:
Each segment contiguous on disk

Lec 18.2610/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Large File Version of DEMOS

• What if need much bigger files?
– If need more than 10 groups, set flag in header: BIGFILE

» Each table entry now points to an indirect block group
– Suppose 1000 blocks in a block group ⇒ 80GB max file

» Assuming 8KB blocks, 8byte entries⇒
(10 ptrs×1024 groups/ptr×1000 blocks/group)*8K =80GB

• Discussion of DEMOS scheme
– Pros: Fast sequential access, Free areas merge simply

Easy to find free block groups (when disk not full)
– Cons: Disk full ⇒ No long runs of blocks (fragmentation),

so high overhead allocation/access
– Full disk ⇒ worst of 4.1BSD (lots of seeks) with worst of
continuous allocation (lots of recompaction needed)

file header

base size 1,3,2
1,3,3
1,3,4
1,3,5
1,3,6
1,3,7
1,3,8
1,3,9

disk groupbase size

indirect
block group

Lec 18.2710/31/07 Kubiatowicz CS162 ©UCB Fall 2007

How to keep DEMOS performing well?
• In many systems, disks are always full

– CS department growth: 300 GB to 1TB in a year
» That’s 2GB/day! (Now at 3—4 TB!)

– How to fix? Announce that disk space is getting low, so
please delete files?
» Don’t really work: people try to store their data faster

– Sidebar: Perhaps we are getting out of this mode with
new disks… However, let’s assume disks full for now

• Solution:
– Don’t let disks get completely full: reserve portion

» Free count = # blocks free in bitmap
» Scheme: Don’t allocate data if count < reserve

– How much reserve do you need?
» In practice, 10% seems like enough

– Tradeoff: pay for more disk, get contiguous allocation
» Since seeks so expensive for performance, this is a very

good tradeoff
Lec 18.2810/31/07 Kubiatowicz CS162 ©UCB Fall 2007

UNIX BSD 4.2
• Same as BSD 4.1 (same file header and triply indirect

blocks), except incorporated ideas from DEMOS:
– Uses bitmap allocation in place of freelist
– Attempt to allocate files contiguously
– 10% reserved disk space
– Skip-sector positioning (mentioned next slide)

• Problem: When create a file, don’t know how big it
will become (in UNIX, most writes are by appending)
– How much contiguous space do you allocate for a file?
– In Demos, power of 2 growth: once it grows past 1MB,
allocate 2MB, etc

– In BSD 4.2, just find some range of free blocks
» Put each new file at the front of different range
» To expand a file, you first try successive blocks in

bitmap, then choose new range of blocks
– Also in BSD 4.2: store files from same directory near
each other

Lec 18.2910/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Attack of the Rotational Delay
• Problem 2: Missing blocks due to rotational delay

– Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/block!

– Solution1: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a

track: give time for processing to overlap rotation
– Solution2: Read ahead: read next block right after first,
even if application hasn’t asked for it yet.
» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have

internal RAM that allows them to read a complete track
• Important Aside: Modern disks+controllers do many

complex things “under the covers”
– Track buffers, elevator algorithms, bad block filtering

Skip Sector

Track Buffer
(Holds complete track)

Lec 18.3010/31/07 Kubiatowicz CS162 ©UCB Fall 2007

How do we actually access files?
• All information about a file contained in its file header

– UNIX calls this an “inode”
» Inodes are global resources identified by index (“inumber”)

– Once you load the header structure, all the other blocks
of the file are locatable

• Question: how does the user ask for a particular file?
– One option: user specifies an inode by a number (index).

» Imagine: open(“14553344”)
– Better option: specify by textual name

» Have to map name→inumber
– Another option: Icon

» This is how Apple made its money. Graphical user
interfaces. Point to a file and click.

• Naming: The process by which a system translates from
user-visible names to system resources
– In the case of files, need to translate from strings
(textual names) or icons to inumbers/inodes

– For global file systems, data may be spread over
globe⇒need to translate from strings or icons to some
combination of physical server location and inumber

Lec 18.3110/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Directories
• Directory: a relation used for naming

– Just a table of (file name, inumber) pairs

• How are directories constructed?
– Directories often stored in files

» Reuse of existing mechanism
» Directory named by inode/inumber like other files

– Needs to be quickly searchable
» Options: Simple list or Hashtable
» Can be cached into memory in easier form to search

• How are directories modified?
– Originally, direct read/write of special file
– System calls for manipulation: mkdir, rmdir
– Ties to file creation/destruction

» On creating a file by name, new inode grabbed and
associated with new file in particular directory

Lec 18.3210/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Directory Organization

• Directories organized into a hierarchical structure
– Seems standard, but in early 70’s it wasn’t
– Permits much easier organization of data structures

• Entries in directory can be either files or
directories

• Files named by ordered set (e.g., /programs/p/list)

Lec 18.3310/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Directory Structure

• Not really a hierarchy!
– Many systems allow directory structure to be organized
as an acyclic graph or even a (potentially) cyclic graph

– Hard Links: different names for the same file
» Multiple directory entries point at the same file

– Soft Links: “shortcut” pointers to other files
» Implemented by storing the logical name of actual file

• Name Resolution: The process of converting a logical
name into a physical resource (like a file)
– Traverse succession of directories until reach target file
– Global file system: May be spread across the network

Lec 18.3410/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Directory Structure (Con’t)
• How many disk accesses to resolve “/my/book/count”?

– Read in file header for root (fixed spot on disk)
– Read in first data bock for root

» Table of file name/index pairs. Search linearly – ok since
directories typically very small

– Read in file header for “my”
– Read in first data block for “my”; search for “book”
– Read in file header for “book”
– Read in first data block for “book”; search for “count”
– Read in file header for “count”

• Current working directory: Per-address-space pointer
to a directory (inode) used for resolving file names
– Allows user to specify relative filename instead of
absolute path (say CWD=“/my/book” can resolve “count”)

Lec 18.3510/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Where are inodes stored?

• In early UNIX and DOS/Windows’ FAT file
system, headers stored in special array in
outermost cylinders
– Header not stored anywhere near the data blocks.
To read a small file, seek to get header, see
back to data.

– Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

Lec 18.3610/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Where are inodes stored?

• Later versions of UNIX moved the header
information to be closer to the data blocks
– Often, inode for file stored in same “cylinder group”
as parent directory of the file (makes an ls of that
directory run fast).

– Pros:
» Reliability: whatever happens to the disk, you can find

all of the files (even if directories might be
disconnected)

» UNIX BSD 4.2 puts a portion of the file header array
on each cylinder. For small directories, can fit all
data, file headers, etc in same cylinder⇒no seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from disk
at same time

Lec 18.3710/31/07 Kubiatowicz CS162 ©UCB Fall 2007

Summary
• Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency → ∞

Tq = Tser x ½(1+C) x u/(1 – u))
• File System:

– Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access

• File (and directory) defined by header
– Called “inode” with index called “inumber”

• Multilevel Indexed Scheme
– Inode contains file info, direct pointers to blocks,
– indirect blocks, doubly indirect, etc..

• DEMOS:
– CRAY-1 scheme like segmentation
– Emphsized contiguous allocation of blocks, but allowed to
use non-contiguous allocation when necessary

• Naming: the process of turning user-visible names into
resources (such as files)

